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We carry out a detailed analysis of the short-wave �semiclassical� approximation for the linear equations of
the elasticity in a smoothly inhomogeneous isotropic medium. It is shown that the polarization properties of the
transverse waves are completely analogous to those of electromagnetic waves and can be considered as spin
properties of optical phonons. In particular, the Hamiltonian of the transverse waves contains an additional
term of the phonon spin-orbit interaction arising from the Berry gauge potential in the momentum space. This
potential is diagonal in the basis of the circularly polarized waves and corresponds to the field of two “mag-
netic monopoles” of opposite signs for phonons of opposite helicities. This leads to the appearance of the Berry
phase in the equation for the polarization evolution and an additional “anomalous velocity” term in the ray
equations. The anomalous velocity has the form of the “Lorentz force” caused by the Berry gauge field in
momentum space and gives rise to the transverse transport of waves of opposite helicities in opposite direc-
tions. This is a manifestation of the spin Hall effect of optical phonons. The effect directly relates to the
conservation of total angular momentum of phonons and also influences reflection from a sharp boundary
�acoustic analog of the transverse Ferdorov-Imbert shift�.
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I. INTRODUCTION

The analogy between the linearized equations of elasticity
and Maxwell equations is well known and had been pointed
out in a number of textbooks �see, for instance, Ref. 1�. It
helps to predict new phenomena for acoustic waves by
knowing their optical counterparts. In particular, polarization
phenomena in optics can be mapped onto transverse acoustic
waves.

Polarization phenomena in classical electrodynamics and
in elasticity theory represent collective spin properties of
photons and phonons, respectively. In particular, the Berry
phase for photons manifests itself as the Rytov polarization
evolution law, long known in geometrical optics.2 This law is
applicable to transverse acoustic waves as well3 �see also
paper by Segert in Ref. 2�. The Berry phase arises due to a
weak intermode coupling, which in the case of Dirac or
Maxwell equations reveals itself as the spin-orbit
interaction.4–10 This interaction is described by an additional
gauge field �the Berry gauge field� that influences the evolu-
tion of particles and waves.4–6,8–12 Its effect on the intrinsic
degrees of freedom �phase and polarization� leads to the ap-
pearance of the Berry phase, while its influence on the trans-
lational degrees of freedom �in fact, on the trajectories of
particles� gives rise to the recently discovered topological
spin transport of particles.6–12 Examples of the topological
spin transport are the anomalous and spin Hall effects in
solids,12 analogous effects for relativistic electrons,6 and the
optical Magnus effect.7–11 Because of these phenomena, dif-
ferent polarization �spin� states of particles propagate along
slightly different trajectories.

In the present paper, we analyze the elasticity equations
for isotropic smoothly inhomogeneous media. Based on the
quantum-mechanical approach of the Berry gauge fields, we
derive the modified equations of the geometric acoustics for

longitudinal and transverse modes. The polarization phenom-
ena in the propagation of the transverse acoustic waves are
completely analogous to those in optics. That is, the Hamil-
tonian of the transverse acoustic waves contains an addi-
tional polarization term, which can be treated as the spin-
orbit interaction of phonons. It is due to the nontrivial Berry
gauge potential �connection� and field �curvature� in momen-
tum space of the transverse acoustic waves. As in optics, the
Berry gauge field has the form of opposite-signed “magnetic
monopoles” located at the origin of momentum space and
corresponding to phonons with opposite helicities. It gives
rise to the Berry phase and the Rytov polarization evolution
law, and causes an additional effective force which deflects
the rays in opposite directions depending on their polariza-
tion. The latter phenomenon is a manifestation of the topo-
logical spin transport or spin Hall effect of phonons. We
show that the modified geometric acoustics equations ob-
tained here are closely related to the conservation of the total
angular momentum of transverse phonons and that the trans-
verse polarization transport can also appear in the reflection
or refraction on a sharp boundary.

II. INITIAL EQUATIONS

The linear equations for the monochromatic wave field of
displacements in an elastic inhomogeneous medium read13

��ij

�Rj
+ ��2ui = 0, �1�

where u is the three-dimensional displacement vector, ��R�
is the density of the medium, R= �X ,Y ,Z� is the radius vec-
tor, the summation over repeated indices is understood, and
�ij =aijkl�uk /�Rl is the strain tensor which in an isotropic
medium takes the form
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aijkl = ��ij�kl + ���ik� jl + �il� jk� . �2�

Here ��R� and ��R� are the Lame coefficients. Substituting
Eq. �2� into Eq. �1� we obtain

�2ui

�Rj�Rj
+ �m − 1�

�2uj

�Ri�Rj
+ �0t

−2nt
2ui + �m − 2�

� ln �

�Ri

�uj

�Rj

+
� ln �

�Rj
� �ui

�Rj
+

�uj

�Ri
� = 0. �3�

Here the following quantities are introduced:

ct = ��/�, cl = ��� + 2��/�, nt,l = ct0,l0/ct,l, �4�

�t0,l0 = ct0,l0/�, m = ��l0nt

�t0nl
�2

= ��l

�t
�2

,

where ct,l are the local phase velocities of the transverse and
longitudinal waves, nt,l are the local refractive indices of the
transverse and longitudinal waves with respect to some “eta-
lon” homogeneous medium with parameters ct,l=ct0,l0, and
�t0,l0 and �t,l are the divided by 2	 wavelength of the trans-
verse and longitudinal waves in the etalon medium and in the
medium under consideration, respectively.

We introduce the dimensionless differential operator of
the momentum of the wave as

p = − i�t0
�

�R
. �5�

�In wave problems that do not contain the Planck constant
explicitly, it is more convenient to use a characteristic wave-
length as the “wave constant.”10�. Operator �5� obeys similar
to the quantum-mechanical commutation relations

�Ri,pj� = i�t0�ij . �6�

Taking Eq. �5� into account, Eq. �3� can be written in the
operator form

Ĥu = 0, �7�

where the matrix operator Ĥ has the meaning of the �relativ-
istic� Hamiltonian operator and equals

Ĥ�p,R� = p2 − nt
2�R� + �m�R� − 1�Q̂�p� − i�t0R̂�p,R� ,

�8�

with

Qij = pipj, Rij = bp + �m − 2�aipj + bjpi, �9�

where a=�ln �, b=�ln �, and throughout the paper all ma-
trix operators are marked by hats, while scalars �when they
are summed up with matrices� are assumed to be multiplied
by the unit matrices of the corresponding rank. Equations
�7�–�9� describe the dynamics of a monochromatic field of
displacements in an isotropic inhomogeneous elastic me-
dium.

III. DIAGONALIZATION OF ELASTICITY EQUATIONS
IN SHORT-WAVE APPROXIMATION

When the inhomogeneity of a medium is smooth, i.e., the
characteristic space scale L of the variations of parameters is
large compared to the wavelengths, one can use the geomet-
ric acoustics approximation �an analog of the geometric op-
tics or semiclassical approximations�,14 which is an
asymptotic theory with respect to the small parameter


 =
max��t0,�l0�

L
� 1. �10�

To solve Eqs. �7�–�9� in the first, linear approximation in 
,

we diagonalize operator Ĥ, Eqs. �8� and �9�, to within 
. It
can be readily seen that the first three summands in the
Hamiltonian �8� are of the order of unity �zero order in 
�,
whereas the last summand, being proportional to the wave-
length and to the gradients of the Lame coefficients, is of the
order of 
. To diagonalize the zero-order part of Eq. �8�, we
note that its nondiagonal term is determined by the dyad

tensor Q̂=p � p, Eq. �9�, the same tensor that determines the
nondiagonal part of the Maxwell equations.10 Hence, in the
zero approximation, operator �8� can be diagonalized by the
unitary transformation similar to that for the photon electric
field10

u = Û�p�ũ, Û = � sin � cos  cos � sin  cos �

− cos � cos  sin � sin  sin �

0 − sin  cos 
	 ,

�11�

where �p , ,�� are the spherical coordinates in p space.

Transformation �11� is a rotation, Û�SO�3��SU�3�, super-
posing the direction of Z axis in R space and of the current p
vector in p space �see the Appendix�. Indeed, Eq. �11� leads

to the transformation of the Hamiltonian, Ĥ→ Ĥ�= Û†ĤÛ; so
that the third term in Eq. �8� becomes diagonal

Q̂� = Û†Q̂Û = �0 0 0

0 0 0

0 0 p2	 , �12�

and coincides with Eq. �9�, if px= py =0 and pz= p.
The diagonalization transformation does not change the

first, scalar term in Eq. �8�, but transforms the second one
due to the noncommutativity, Eq. �6�. Taking Eq. �6� into
account, we get

Û†�p�nt
2�R�Û�p� = Û†�p�n2�i�t0

�

�p
�Û�p�

= n2�i�t0
�

�p
+ �t0Â� = n2�R + �t0Â� ,

�13�

where
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Â�p� = iÛ†�Û

�p
�14�

is a pure gauge non-Abelian potential induced by the local
gauge transformation �11� in the p space �see Refs. 6, 10, and
12�, which provides the SU�3� gauge invariance of the equa-
tions. Accordingly to the theory of gauge fields and to the
Hamiltonian mechanics, R in Eq. �13� represents canonical
(or generalized in the classical mechanics� coordinates, cor-
responding to “usual” derivatives i�t0� /�p. At the same time,
the operator r̂ is the operator of the observable �i.e., related
to the center of the semiclassical particle or of the wave
packet� coordinates that correspond to the covariant deriva-
tives

r̂ = i�t0
D

Dp
= i�t0

�

�p
+ �t0Â = R + �t0Â . �15�

Matrix coordinates r̂i commute, �r̂i , r̂ j�=0, since the potential
�14� is a pure gauge one and the zero field tensor corresponds

to it.6,10,12 Substitution of Eq. �11� into Eq. �14� yields

Âp = 0, Â =
i

p�0 0 0

0 0 1

0 − 1 0
	,

Â� =
i

p sin � 0 − cos  − sin 

cos  0 0

sin  0 0
	 . �16�

Potential �14� and �16� is represented by means of antisym-
metric Hermitian matrices—generators of the SO�3� group
�see the Appendix�. Due to its nondiagonality, the second
term in the Hamiltonian �8� acquires nondiagonal elements
of the order of 
.

The last �matrix� term in the Hamiltonian �8� has no ana-
log in the Maxwell equations. Since it is of the order of 
, the
contribution of commutators �6� to it is of the order of 
2.
Assuming that the momentum and coordinates commute, we
obtain

R̂� = Û†R̂Û 
 bp +�
0 0 �m − 2�

�a � p�z

sin 

0 0 �m − 2�
�p � �a � p��z

p sin 

�b � p�z

sin 

�p � �b � p��z

p sin 
�m − 2�ap + bp

	 . �17�

Thus, after the diagonalization transformation �11� we ob-

tain the equation Ĥ�ũ=0 with the Hamiltonian

Ĥ��p,R� = p2 − nt
2�R + �t0Â�p��

+ �m�R� − 1�Q̂��p� − i�t0R̂��p,R� , �18�

where the components are determined by Eqs. �12�, �16�, and
�17�.

In the zero approximation in 
 �locally homogeneous me-
dium, or zero wavelength�, the Hamiltonian �18� equals

Ĥ��0��p,R� = p2 − nt
2�R� + �m�R� − 1�Q̂��p� . �19�

This Hamiltonian is diagonal and different modes are sepa-
rated. A characteristic equation for these modes is

Ĥ��0���t0k,R� = 0, �20�

where k is the wave vector. From Eqs. �4�, �12�, �19�, and
�20� it follows that the first two levels of the Hamiltonian
�19� are degenerated �Q11=Q22=0� and correspond to waves
with dispersion �=kct, i.e., to the transverse �“optical”�
shear waves with

ũ = �ũ1

ũ2

0
	 .

Similarly, the third level of the system �Q33= p2� corresponds
to the longitudinal, compression wave with

ũ = � 0

0

ũ3
	

and with the dispersion �=kcl. Double degeneracy of the
transverse modes is the polarization degeneracy: the trans-
verse oscillations with different polarizations have the same
dispersion in a homogeneous isotropic medium.14 In an in-
homogeneous medium, the polarization degeneracy is lifted
by the nonzero gradients of the parameters.8 The lifting of
the degeneracy can be interpreted in terms of the spin-orbit
interaction of phonons �see Refs. 6 and 7�.

In the first approximation in 
, the Hamiltonian �18� takes
the form
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Ĥ��p,R� 
 Ĥ��0��p,R� − �t0 �nt
2�R�Â�p� − i�t0R̂��p,R� ,

�21�

where we have expanded the second term of Eq. �18� in a

Taylor series. The correction to the Hamitlonian Ĥ��0� in Eq.
�21� is nondiagonal. Its upper left 2�2 sector �elements with
indices 11, 12, 21, and 22� contains corrections to the trans-
verse waves, and the lower right element �with index 33� is
the correction to the longitudinal wave, whereas the cross
terms with indices 13, 23, 31, and 32 describe coupling and
transitions between the transverse and longitudinal modes.
Since the cross terms are of the order of 
, it follows from
the adiabaticity theory that their contribution to the wave
evolution is of the order of 
2. Indeed, for the transverse and
longitudinal waves these terms generate the appearance of
longitudinal and transverse components of the field, respec-
tively, ũ3�
 and ũ1 , ũ2�
.10,14 �The presence of such com-
ponents implies minor changes in the polarization of a given
mode rather than the excitation of other modes.� The 
-order
longitudinal component contributes only to order 
2 to the
transverse field components and vice versa. Thus, one can
neglect the cross terms in the Hamiltonian �21�,15 which
leads to the breaking of gauge invariance SU�3�→SU�2�
�1. As a result, the Hamiltonian �21� and the wave equation

Ĥ�ũ=0 separate into two independent parts for the transverse
and longitudinal waves:

Ĥtũ� = 0,

Ĥt�p,R� = p2 − nt
2�R� − �t0 �nt

2�R�Ât�p� − i�t0b�R�p ,

�22�

Hlũ3 = 0,

Hl�p,R� = m�R�p2 − nt
2�R� − i�t0�2b�R�p + �m − 2�a�R�p� ,

�23�

where

ũ� = �ũ1

ũ2
�

and Âl�A33=0. The transverse sector of the potential �16�,

Ât � �A11 A12

A21 A22
� ,

can be written �in the spherical coordinates� as

Ât = p−1 cot  �0,0,1��̂2, �24�

where

�̂2 = �0 − i

i 0
�

is the Pauli matrix. The components of the potential �24�
commute with one another and Ât is an Abelian U�1� gauge
potential from the SU�2� sector. �The potential is Abelian due

to the fact that the transverse phonon is a massless particle;
in a general case, it is a non-Abelian SU�2� potential.6,9� It
can be transformed to a diagonal form by a global unitary
transformation

ũ� = V̂�, V̂ =
1
�2

�1 1

i − i
�, Ĥt → V†ĤtV, Ât → V†̂ÂtV ,

�25�

which has the meaning of the transition to the basis of cir-
cularly polarized waves �i.e., the helicity basis�:

� = ��+

�− � ,

�±= �ũ1� iũ2� /�2.10 �In what follows, we use only the

helicity-basis representation and notations of Ĥt and Ât are
related to this representation.� Upon transformation Eq. �25�
the Hamiltonian �22� becomes diagonal �in fact, splits into
two independent Hamiltonians describing the circularly po-
larized waves of opposite helicities�:

Ĥt� = 0,

Ĥt�p,R� = p2 − nt
2�R� − �t0 �nt

2�R�Ât�p� − i�t0b�R�p .

�26�

Here

Ât = p−1 cot  �0,0,1��̂3 � At�̂3 �27�

is a diagonal potential, and

�̂3 = �1 0

0 − 1
� .

Equation �26� possesses the SU�2� gauge invariance which
can be attributed to the spin of optical phonons. However,
representation �27� shows that, in fact, we are dealing with
the single U�1� gauge potential At and U�1� gauge invariance
of the equations �see the Appendix�.

As seen from the Hamiltonians �22�, �26�, and �27�, the
third, proportional to the gradient of the refractive index,
�nt

2, term in Eq. �26� lifts the degeneracy of the transverse
waves. This term has the same form as that of the spin-orbit
interaction of electrons and photons: it is a product of the
grad of scalar potential and the Berry gauge potential.5,6,8,10

Therefore, ĤSO=−�t0�nt
2�R�Ât�p� in Eq. �26� can be re-

garded as the spin-orbit interaction of transverse phonons; it
couples spin �polarization� and translational degrees of free-

dom. Because of ĤSO, the medium can be considered as a
weakly anisotropic one where the circularly polarized waves
are independent normal modes, exactly as is for photons.8,10

The operator of covariant coordinates, Eq. �15�, also be-
comes diagonal in the present approximation. For longitudi-
nal and circular transverse waves, respectively, it is

rl = R, r̂t = R + �t0Ât. �28�

These are the operators of the center of wave packets for the
corresponding modes. Observed coordinates of the trans-
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versely polarized wave packets can be obtained by the
quantum-mechanical convolution of operator �28� with the
state vector �see below, Sec. VI�.

IV. BERRY GAUGE FIELD AND SPACE
NONCOMMUTATIVITY

The transverse-wave sector of the potentials �14� and

�16�, Ât, is no longer a pure gauge potential, since, as will be
shown, a nonzero field corresponds to it. It is the Berry
gauge potential, or the Berry connection, that describes the
parallel transport of the vector of displacement. For the case
of the transverse wave, we deal with the two-component vec-
tor

�ũ1

ũ2
�

orthogonal to p, and a natural parallel transport in the prin-
cipal fiber bundle over the unit sphere of tangent vectors p / p
in momentum space can be associated with it. This parallel
transport is described by an effective vector potential �con-
nection� and field �curvature�, generated by the “magnetic
monopole” in the origin of p space.2 Indeed, the field corre-
sponding to the potential �27� reads �in Cartesian coordi-
nates�:

F̂ij
t =

�

�pi
∧ Âj

t = − eijk
pk

p3 �̂3 �29�

�eijk is the unit antisymmetric tensor�. It can also be associ-

ated with the vector field F̂t dual to the antisymmetric tensor
�29�,

F̂t =
�

�p
� Ât = −

p

p3 �̂3 � Ft�̂3. �29��

Equations �29� and �29�� describe the Berry gauge field
�Berry curvature� of the form of two magnetic monopoles of
opposite signs located at the origin of p space, which corre-
spond to waves of opposite helicities. This Berry curvature is
a particular case of the Berry gauge field for ultrarelativistic
�massless� particles with well-defined helicity �:

F� = − �
p

p3 . �30�

Optical phonons, as well as photons, have helicities �= ±1
related to waves of right-hand and left-hand circular polar-
izations. One can say that the helicity �=0 �prohibited for
photons� corresponds to longitudinal waves whose Berry
gauge field vanishes.

It is important to note that nontrivial connection and cur-
vature in the fiber bundle over p space directly relate to the
noncommutativity of covariant coordinates for the transverse
waves.6,10,12,16,17 Equations �28� and �29�, and the commuta-
tion relations �6� yield

�r̂ti, r̂tj� = �–t0F̂ij
t � 0. �31�

As in the photon case,16 the noncommutativity of the coor-
dinates can be attributed to the fact that a phonon in a helic-

ity state cannot be localized. Although in the semiclassical
approximation we deal with a specific polarization in the
center of the wave packet, this is not a pure polarized state of
the whole packet. Even if the center of the wave packet
possesses pure circular polarization, the edges of the packet
will be elliptically polarized due to the orthogonality condi-
tion �see Ref. 18�.

V. EVOLUTION OF LONGITUDINAL WAVES

Consider the evolution of longitudinal waves described by
the Hamiltonian �23�. We first rewrite Eq. �23� using Eq. �4�
as

Hlũ3 = 0,

Hl�pl,R� = pl
2 − nl

2�R� − i�–l0 �ln���R� + 2��R��pl,

�23��

where, similarly to Eq. �5�, we have introduced the differen-
tial operator of the momentum normalized by the longitudi-
nal wavelength: pl=−i�l0� /�R. The geometrical optics
�acoustics� ansatz ũ3=Al�R�exp�i�l0

−1�l�R�� in Eq. �23��, in
the zero and first approximations in 
 �i.e., in �l0� yields,
respectively:3,14

���l�2 − nl
2 = 0, �32�

2 � �l � Al + ��2�l + ��l �ln�� + 2���Al = 0. �33�

Equation �32� is the eikonal equation for �l, whereas Eq.
�33� is the transport equation for the amplitude Al.

We introduce the local wave vector kl= �–l0
−1��l and, cor-

responding to it, the dimensionless momentum �l=��l
=�l0kl. The transition p→� corresponds to the transition
from the differential momentum operator to the “classical”
momentum of the plane wave. The eikonal equation gives
the dispersion equation for the longitudinal waves, �l=nl.
Taking it and Eq. �4� into account, the transport equation �33�
can be integrated resulting in the continuity equation

���Al
2cl� = 0. �34�

Here cl=cl�l /�l is the local phase-velocity vector. Equation
�34� ensures the conservation of energy flux in the beam
tube.3,14

The rays are the real parts of the characteristics of the
wave equation, Eq. �23��. The last, imaginary term in the
Hamiltonian �23�� does not contribute to the real rays �it
accounts only for variations of the amplitude Al�; therefore,
they coincide with characteristics of the eikonal equation
�32�. The latter are described by the Hamiltonian equations
with the Hamiltonian

�l��l,�l� = 1
2 ��l

2 − nl
2��l�� = 0, �35�

where the coefficient 1
2 is introduced for the convenience.

For the longitudinal waves, �l�R, Eq. �28�. The canonical
equations for Eq. �35� are the standard ray equations of the
geometrical optics or acoustics:14
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d�lc

dsl
= −

��l� �lc,�lc�
��l

=
1

2
�nl

2��lc�,

d�lc

dsl
=

��l��lc,�lc�
��l

= �lc. �36�

Here sl is the ray parameter connected with the ray length, l,
as dl=nldsl. Solutions of Eqs. �36�, �lc�sl�, �lc�sl�, represent
rays, i.e., the trajectories along which the centers of semi-
classical wave packets move in the phase space � �l ,�l�.

VI. EVOLUTION OF TRANSVERSE WAVES

The evolution of transverse waves can be regarded as that
of optical phonons, i.e., particles with spin 1 and helicity �
= ±1.

A. Basic equations

Taking Eq. �4� into account, we rewrite Eq. �26� as

Ĥt� = 0,

Ĥt�p,R� = p2 − nt
2�R� − �–t0 �nt

2�R�Ât�p� − i�–t0 �ln��R�p .

�26��

Unlike the longitudinal waves, the transverse waves have
extra degrees of freedom, namely, the polarization which can
be considered as the spin of optical phonons. Therefore, the
geometrical acoustics ansatz takes the form �
=e�R�At�R�exp�i�t0

−1�t�R��, where the unit vector of polar-
ization,

e = �e+

e− � ,

e†e=1, is introduced. In the zero approximation in 
 �i.e., in
�t0� we obtain the eikonal equation

���t�2 − nt
2 = 0, �37�

whereas the terms of the first order in Eq. �26�� give rise to
two equations describing the variations of the wave ampli-
tude and the evolution of the polarization vector, respec-
tively,

2 � �t � At + ��2�t + ��t �ln ��At = 0, �38�

2i���t � �e + ��nt
2�̂t�e = 0. �39�

Here, similarly to the previous section, �t=��t=�t0kt, and
from now on the Berry gauge potential and field are consid-

ered in the �t space: �̂t� Ât� �t�, �̂t� F̂t� �t�, etc.
Eikonal equation �37� gives the dispersion equation �t

=nt, and the transport equation �38� with Eq. �4� provides for
the energy conservation law �the continuity equation�:3

���At
2ct� = 0. �40�

where ct=ct �t /�t is the phase-velocity vector.

B. Polarization evolution and Berry phase

Polarization evolution equation �39� and the ray equations
are closely connected with each other. They represent the
equations of motion for the translational and intrinsic �spin�
degrees of freedom, respectively.9 In the zero approximation
in 
, the ray equations follow from the eikonal equation �37�
and have the form completely similar to Eq. �36�:14

�̇tc
�0� = 1

2 �nt
2��tc

�0��, �̇tc
�0� = �tc

�0�. �41�

From here on the dot stands for the derivative with respect to
the ray parameter st: dl=ntdst. Let us consider Eq. �39� on a
zero-approximation ray, �t=�tc

�0��st�, �t=�lc
�0��st�. �We use

here the zero approximation for rays, since Eq. �39� has been
derived from the terms of the order of 
.� Then, in Eq. �39�

���t � �e��tc
�0�� =

dec

dst
,

ec�e��tc
�0�� �̂c

t ��̂t� �tc
�0�� and using the first Eq. �41� we

obtain

ėc = i��̂c
t �̇tc

�0��ec. �42�

Since �̂t, Eq. �27�, is an Abelian potential, Eq. �42� can
be integrated,

ec = expi�
0

st

�̂c
t �̇tc

�0�dst�ec0 = expi�
C

�̂t� �t�d�t�ec0,

�43�

where ec0�ec�st=0�, and C is the contour of the zero-
approximation evolution in the momentum �t space: C
= � �t=�tc

�0��st��. Expression �43� shows that waves of the
right-hand and left-hand circular polarizations acquire addi-
tional phases upon the evolution, that are equal in the abso-
lute values but are of opposite signs: ec=exp�i�B�̂3�ec0, or

�ec
+

ec
− � = � ei�B

ec0
+

e−i�B
ec0

− � . �44�

The phase �B=�B�C�=�C�
td �t is the Berry geometrical

phase, similar to that of light and is determined by the con-
tour integral of the Berry gauge potential in �t space. From
Eq. �27� it follows �compare with Ref. 2�:

�B = �
C

�td�t = �
C

cos � d� , �45�

where ��t ,� ,�� are the spherical coordinates in the �t

space.
If a cyclic evolution takes place in �t space, i.e., the

contour C is a loop, the contour integral can be reduced to a
surface one, and the Berry phase is determined by the flux of
the Berry gauge field of the magnetic monopole, Eqs. �29�
and �29��:
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�B = �
C

�td�t = �
S

�td2�t = �
S

sin � d�d� = − � .

�46�

Here S is a surface strained on the loop C �C=�S�, and � is
the solid angle at which the surface is seen from the origin of
�t space.

It follows from Eq. �44� that, for an arbitrary elliptic po-
larization of the wave, the Berry phase causes the rotation of
the polarization ellipse at the angle −�B. This rotation was
first described by Rytov2,3 and was detected for electromag-
netic waves in the experiments by Ross, Tomita, and Chiao.2

The Berry phase is a nonzero upon cyclic evolution if the ray
is a nonflat curve �e.g., a helix�. In fact, the polarization
ellipse rotates in accordance to the Levi-Civita parallel trans-
port law along the curved ray in three-dimensional space.2

Note that the quantity �c=ec
†�̂3ec= �ec

+2
−ec

−2
�� �−1,1� is

conserved upon the evolution of the polarization vector, Eq.
�42�:

�̇c = ėc
†�̂3ec + ec

†�̂3ėc

= − iec
†��̂c

t �̇tc
�0���̂3ec + iec

†�̂3��̂c
t �̇tc

�0��ec = 0. �47�

This reflects the fact that helicity is an adiabatic invariant in
the evolution of massless particles. It is natural to refer to �c
as the “mean helicity” or the “degree of helicity” in the cen-
ter of the wave packet.

C. Ray equations and topological spin transport of phonons

Ray equations are the equations of characteristics �pro-
jected on the real phase space� of Eq. �26��. The last, imagi-
nary term in Eq. �26�� does not contribute to these equations.
However, the polarization term in Eq. �26��, �i.e. the term of

the spin-orbit interaction of phonons, ĤSO� does contribute to
the characteristics of the wave equation, despite its smallness
of the order of 
. As a result, the rays of transverse acoustic
waves are described by the Hamiltonian

�̂t� �t,R� = 1
2 ��t

2 − nt
2�R� − �–t0 �nt

2�R��̂t��t��


 1
2 ��t

2 − nt
2�R + �–t0�̂

t�� = 1
2 � �t

2 − nt
2��̂t�� = 0,

�48�

where �̂t=R+�t0�̂
t, Eq. �28�. The canonical equations in

usual coordinates R

�̇tc = −
��̂t� �̇tc,Rc�

�R
, Ṙc =

��̂t� �tc,Rc�
��tc

,

are not gauge invariant: their form depends on the choice of

gauge for the potential �̂t, and, hence, cannot describe real
rays. On the other hand, in the covariant coordinates �̂t, we
get a gauge-invariant matrix-operator equations6–12 which in
the first approximation in 
 read

�̇̂tc =
1

2
�nt

2��̂tc�, �̇̂tc = �̂tc + �–t0�̂c
t � �̇tc

�0�

= �̂tc − �–t0

�tc
�0� � �̇tc

�0�

�tc
�0�3 �̂3, �49�

where �̂c
t ��̂t��tc

�0�� and the 
-order term had been calcu-
lated on the zero-approximation ray. These equations are
gauge-invariant with respect to SU�2� gauge transformations
related to the initial double degeneracy of the level and de-
scribe the trajectory of the wave packet center. Equations
�49� can also be derived as a semiclassical limit of the
Heisenberg quantum equations of motion for p and r̂t �Refs.
6, 9, 10, and 12� or from classical mechanics
considerations.11 In the former case, the polarization term
related to the Berry gauge field appears due to the noncom-
mutativity of coordinates r̂t, Eq. �31�. Equations �49� are
equations for matrix operators, and in order to find the real
physical trajectories �rays� one has to make a quantum-
mechanical convolution of operators with the polarization
vector of the wave. In so doing, we obtain

�̇tc =
1

2
� nt

2��tc�, �̇tc = �tc + �–t0�c
t � �̇tc

�0�

= �tc − �c�
–

t0

�tc
�0� � �̇tc

�0�

�tc
�0�3 , �50�

where ��tc�i=ec
†��̂tc�iec, ��tc�i=ec

† ��̂tc�iec, and ��c
t �i

=ec
†��̂c

t �iec.
Equations �50� are one of the central results of the present

paper. Analogous equations have been previously derived for
the evolution of various quantum particles with spin: elec-
trons, photons, quasiparticles in solids, etc.6–12 Equations
�50� differ from the traditional ray equations of the geometri-
cal optics or acoustics, Eqs. �41�, by the additional polariza-
tion term proportional to the wavelength �t0. Since it contrib-
utes to the equation for the “velocity” �̇tc, it is frequently
referred to as the “anomalous velocity.”12 This term has the
form of the Lorentz force caused by the magnetic monopole
located at the origin of momentum space. Thus, the Berry
gauge field reveals itself as being completely similar to the
magnetic field but in momentum space rather than in coordi-
nate space. In this respect, the Berry phase is an analog of the
Dirac phase �Aharonov-Bohm effect�, whereas the additional
term in the ray equations of motion is an analog of the Lor-
entz force. It should be noted that the polarization term in
Eq. �50� is directly connected to the Berry phase, Eqs.
�43�–�46�: it is the Berry phase that shifts the phase front of
the wave and changes characteristics of the wave equation.8

The reason why the additional term in Eq. �50� had been
unnoticed in geometrical optics and acoustics for a long
time, is that that the rays were associated with the character-
istics of the eikonal �zero-approximation� Eq. �37�, while the
characteristics of the initial wave equation differ from them
�in contrast to the case of longitudinal waves� already in the
first order in 
.

The remarkable feature of the new term in Eqs. �50� is its
dependence on the polarization of the wave. This means that
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the refraction of transverse waves becomes dependent on
their polarization. In particular, the circularly polarized
waves of opposite helicities shift in opposite directions or-
thogonally to the wave momentum. For quantum particles
this phenomenon is treated as the appearance of the spin
current, which is orthogonal to the direction of the particle
motion and to the external applied force. Therefore, the ef-
fect is called the �intrinsic� spin Hall effect. Thus, Eqs. �50�
describe the intrinsic spin Hall effect (or the topological spin
transport) of optical phonons.

Since the polarization correction in Eq. �50� is small,
the perturbation method for rays14 can be evoked. The first-
order perturbations, �tc−�tc

�0�=��tc�st ,�c�, �tc−�tc
�0�

=��tc�st ,�c�, obey equations

��̇tc =
1

2
���tc � � �nt

2��tc
�0�� , �51�

��̇tc = ��tc − �c�
–

t0

�tc
�0� � �̇tc

�0�

�tc
�0�3 .

In the important special case ���0, the second equation in
�51� can be immediately integrated.8,10 This leads to the ex-
pression for the deflection of rays, ��tc, in the form of a
contour integral in the �t space:

��tc = − �c�
–

t0�
0

st �tc
�0� � �̇tc

�0�

�tc
�0�3 dst = − �c�

–
t0�

C

�t � d�t

�t
3 .

�52�

Although the deflection �52� is proportional to the wave-
length, it can be large because of its nonintegrability and lead
to observable phenomena �see optical examples in Refs.
7–10�. For closed trajectories in �t space, the deflection �52�
can be expressed by means of the Berry phase8,10 as

��tc = − �c�
–

t0
��B

��tc
�0� . �53�

As an example, the ray trajectories of transverse waves of
right-hand and left-hand circular polarizations in a cylindri-
cally symmetric waveguide medium are shown in Fig. 1.

Since the optical and acoustic ray equations are identical, the
calculations for the trajectories of rays in optical gradient-
index waveguides7,8 can be applied to the respective acoustic
problem.

VII. CONSERVATION OF TOTAL ANGULAR MOMENT
OF PHONONS

It is important to note that the Berry gauge field, noncom-
mutativity of coordinates, and the derived ray equations �50�
are closely connected to the conservation of the total angular
momentum of the transverse acoustic wave �optical
phonons�. The total angular momentum of phonon, which
consists of the orbital and spin parts, can be written �in units

�–t0=�� as9

j = �tc � �tc + �–t0�c

�tc

�tc
. �54�

�We assume that the orbital angular momentum is deter-
mined only by the motion of the center of phonon, i.e., it
does not carry any orbital angular momentum relative to the
center.19� Taking Eqs. �47� and �50� into account, the deriva-
tive of the total angular momentum along the ray equals

j̇ = �̇tc � �tc + �tc � �̇tc + �–t0�c

�̇tc �tc
2 − �tc� �tc �̇tc�

�tc
3

= �tc � �̇tc =
�tc � �n2��tc�

2
. �55�

The first and the third terms in Eq. �55� are canceled due to
the polarization term in the ray equations �50�. From Eq. �55�
it follows that in a spherically symmetric medium nt��t�
=nt��t� and �n2 ��tc, the total angular momentum of the
transverse acoustic wave is conserved and represents an in-
tegral of motion, j̇=0. In a cylindrically symmetric medium,
nt��t�=nt��xt

2+yt
2 ,zt�, the integral of motion is the z compo-

nent of the total angular momentum: j̇z=0. Thus, it is the
polarization term in the ray equations �50� that provides the
conservation of the total angular momentum of the trans-
verse waves. A detailed consideration of the connection be-
tween the angular momentum and the issues discussed
�Berry phase, topological spin transport, and localizability�
for photons can be found in Refs. 6, 9, 16, and 17.

VIII. TRANSVERSE FEDOROV-IMBERT SHIFT

Another example of transverse polarization transport
takes place in the media with sharp inhomogeneities, which
corresponds to the limit 
→�. It is known in optics that a
wave packet �or a beam� reflected or refracted from a flat
interface between two homogeneous media experiences a
small polarization-dependent transverse shift. This is called
the Fedorov-Imbert shift, and it has been described theoreti-
cally and measured experimentally.20,21,18 Analogously to the
topological spin transport in smoothly inhomogeneous me-
dia, upon scattering at a sharp interface, the center of the
wave packet is shifted from the plane of incidence, with the

FIG. 1. �Color online�. Rays of right-hand, �����, and left-hand,
�����, circular polarizations in a waveguide smoothly inhomoge-
neous medium with cylindrical symmetry. Picture �a� shows the end
view for the rays propagating along the waveguide axis, picture �b�
displays the rays propagating across the waveguide and correspond-
ing to the whispering gallery modes. The rays of the zero approxi-
mation are depicted by bold lines in both pictures.
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displacement proportional to the mean helicity of the inci-
dent wave. The Fedorov-Imbert shift also relates directly to
the conservation of total angular momentum.18,21

Here we consider the reflection of a monochromatic
acoustic wave packet �or beam� from a plane boundary be-
tween an isotropic homogeneous medium and the vacuum. If
the z axis is orthogonal to the boundary, the z component
of the total angular momentum of waves, J, is conserved,
Jz=const. When the wave packet is composed of N phonons,
its total angular momentum is given by J=Nj, where j
is defined by Eq. �54� for transverse waves and

j= ��–t0 / �–l0��lc��lc for longitudinal wave packets that do
not carry spin angular momentum. The reflection of acoustic
waves represents two-channel scattering because there are
two packets, transverse and longitudinal, in the reflected
field.13 If the energy reflection coefficients in the two chan-
nels �i.e. the number of phonons reflected in each one� are Rt
and Rl, respectively, �Rt+Rl=1�, then the conservation law,
J0z=Jtz+Jlz, yields:18

j0z = Rt jtz + Rl jlz. �56�

From here on the subscripts 0, t, and l denote quantities
related to the incident, transverse-reflected, and longitudinal-
reflected waves, respectively. If there are more than two
channels in the system �for example, two reflected and two
refracted waves�, the conservation law for Jz takes the form
similar to Eq. �56� with the corresponding number of terms
on the right-hand side. In the semiclassical approximation,
when the characteristic dimensions of the wave packet are
much larger than the wavelength, the reflection coefficients
Rl and Rt, are, in fact, the reflection coefficients of the cen-
tral plane wave in the packet. Thus, when the problem of the
reflection of a semiclassical wave packet is considered, the
conservation law �56� contains only standard characteristics
of the plane wave reflection, which can be easily calculated.

Unit central polarization vector ec for the transverse wave
can be parametrized by the single complex number �:

ec = �1 − i�

1 + i�
���2�1 + ���2�

�Ref. 18� �� is a ratio of the complex components of the
displacement orthogonal to the plane of propagation and of
the in-plane components�. Then, �c=2 Im � /1+ ���2 and the z
component of the total angular momentum of a single trans-
verse phonon, Eq. �54�, becomes

jz = − ��cx + �–t0
2 Im �

1 + ���2
�cz, �57�

where �=yc is the shift of the center of gravity of the wave
packet along the y axis.

For a transverse elliptically polarized incident wave
packet with central polarization �0, using the acoustic
Fresnel reflection coefficients,13 one can derive

Rt =
�Rl�2 + ��0�2

1 + ��0�2
, Rl =

cl cos �l

ct cos �0

�R2�2

1 + ��0�2
, �t =

�0

R
.

�58�

where �t characterizes the central polarization of the re-
flected transverse wave packet, �0 is the angle of incidence
of the transverse wave, �l is the angle of reflection of the
longitudinal wave determined by the Snell’s law �conserva-
tion law for the x component of the momentum, �cx=const�:
sin �l=cl /ct sin �0, and

R1 =
ct

2 sin 2�l sin 2�0 − cl
2 cos2 2�0

ct
2 sin 2�l sin 2�0 + cl

2 cos2 2�0

,

R2 =
2clct sin 2�0 cos 2�0

ct
2 sin 2�l sin 2�0 + cl

2 cos2 2�0

, �59�

are the Fresnel coefficients.
Substituting Eqs. �57�–�59� into Eq. �56�, we obtain

Rt�t + Rl�l = − �–t0�c0 cot�0�1 + R1� . �60�

Here �t and �l are the transverse shifts of the reflected
beams and �0=0. Equation �60� shows that at least one of
the reflected wave packets does experience the transverse
shift proportional to the helicity of the incident wave packet,
�c0. Unfortunately, the single conservation law �56� and �60�
is not sufficient for the determination of two unknown shifts
in the two-channel scattering.18 To determine the explicit ex-
pressions for �t,l, one has to solve a complex problem of the
reflection of the particular wave packet taking into account
its spectral structure �see, e.g., Ref. 18 and paper by
Nasalski20�.

It is worth noting that the ray equations in a smoothly
inhomogeneous medium, Eqs. �50�, can also be derived im-
mediately from the expression for the transverse shift in the
refraction on the interface between two media with a weak
contrast of the refractive indices, �nt. In such a case, the
transverse wave is almost completely transformed into the
refracted transverse wave �i.e., a one-channel scattering takes
place� and the conservation of the normal component of the
total angular momentum enables one to find a small trans-
verse shift of its center: �t��c�t0�nt /nt tan �0. The transi-
tion from small values to differentials in this problem gives
the required equations �50� �see Ref. 7�. This fact emphasizes
the common nature of the two polarization transport phe-
nomena related to the opposite limits, 
→0 and 
→�.

IX. CONCLUSIONS

We have carried out a semiclassical analysis of the evo-
lution of monochromatic linear acoustic waves in a smoothly
inhomogeneous isotropic medium. The modified geometrical
acoustics have been developed, which accounts for the cou-
pling between polarization and translational degrees of free-
dom of the transverse waves, i.e., the spin-orbit interaction of
optical phonons. Similar to electrons, photons, etc., the spin-
orbit interaction of phonons directly relates to the Berry
gauge potential �connection� describing parallel transport in
momentum space. The influence of the ray trajectories on the
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polarization brings about Berry phases of opposite signs for
the right-hand and left-hand circularly polarized transverse
waves and the Rytov rotation of the polarization ellipse. The
reciprocal effect of the polarization influence on the ray tra-
jectories is described by an additional term in the ray equa-
tions of motion, which has the form of the “Lorentz force”
caused by the Berry gauge field in momentum space. Be-
cause of this term, waves of different polarizations propagate
along slightly different trajectories and waves of opposite
helicities experience deflections in opposite directions, or-
thogonal to the ray direction and to the gradient of inhomo-
geneity �“external force”�. It was shown that the polarization
term makes the ray equations compatible with the conserva-
tion law of the total angular momentum of optical phonons.
This conservation law also predicts the transverse polariza-
tion shift of the acoustic wave packet reflected from the flat
sharp boundary. This is an acoustic analog of the optical
Fedorov-Imbert shift. The longitudinal acoustic waves con-
tribute to the evolution of the transverse ones only when
scattering by sharp inhomogeneities takes place; otherwise,
in a smooth medium, the evolutions of two types of waves
are independent.

The phenomena discussed above can manifest themselves
in the following acoustic systems. First, the Berry phase ob-
served as the Rytov rotation of the polarization plane reveals
itself in the propagation of waves along helical trajectories,
for instance, in helical rods of circular cross section �i.e.
helical acoustic waveguides�, similar to the optical experi-
ments of Ross and of Tomita and Chiao2 �the possibility of
such an effect has also been mentioned by Segert2�. The
predicted transverse polarization deflection �spin Hall effect�
of phonons is difficult to observe due to its smallness. How-
ever, it can be enhanced significantly, for instance, by the
accumulation of deflections in circular waveguides7,8 or in
periodic media.10 Polarization transport can also be notice-
able in phononic crystals with additional inhomogeneity,
similarly to photonic crystals.9 Besides, the transverse topo-
logical transport can be dramatically increased when the
beam carries an additional �intrinsic� orbital angular
momentum.22 The spin Hall effect has been detected for
photons7,20,23 and recently for electrons in solids.24 There is
good reason to believe that in the near future polarization
transport will also be measured in acoustics.

APPENDIX: DIAGONALIZATION TRANSFORMATION
AND GAUGE POTENTIALS VIA GENERATORS

OF SO(3) GROUP

The generators of group SO�3� are

Ê1 = �0 0 0

0 0 − i

0 i 0
	, Ê2 = � 0 0 i

0 0 0

− i 0 0
	, Ê3 = �0 − i 0

i 0 0

0 0 0
	 .

�A1�

Operator exp�−i�Ên�, where Ê��E1 ,E2 ,E3� and n
�S2�R3 is a unit vector, is a rotation about n axis by an
angle �. It can be calculated explicitly that

�exp�− i�Ên��ij = �ij cos � − eijknk sin � + ninj�1 − cos ��
�A2�

�eijk is the unit antisymmetric tensor�. Using �A2� one can
show that the diagonalization transformation �11� is a rota-
tion which can be presented as a combination of two rota-
tions about x and z axes:

Û = exp− i�� −
	

2
�Ê3�exp�iÊ1� . �A3�

Obviously, the diagonalization transformation is defined up
to an arbitrary rotation in the plane orthogonal to p. For the
transformation �A3�, a subsequent rotation about z axis
�which is directed along p after transformation �11� or �A3��
will not affect the diagonalization, i.e., the diagonalization
scheme has the SO�2��U�1� degree of freedom Û

→ Û exp�−i�Ê3�. Indeed,

exp�− i�Ê3� = �cos � − sin � 0

sin � cos � 0

0 0 1
	

and it does not mix up “transverse” and “longitudinal” sec-
tors in the diagonalized wave equation.

Pure gauge potential �16� induced by the rotational trans-
formation �11� can also be represented by means of the gen-
erators �A1� as

Âp = 0, Â = −
i

p
Ê1, Â� =

i

p
�cot Ê3 − Ê2� . �A4�

After neglecting the cross terms in this potential, i.e., after
the transition from Eq. �21� to Eqs. �22� and �23�, only the

term proportional to Ê3 survives in �A4� and gives rise to the
Berry gauge potential �24�. It is the upper left 2�2 sector of

Ê3 that equals Pauli matrix �̂2 in Eq. �24�. This shows ex-
plicitly that the mentioned degrees of freedom of the rota-
tions about p �z axis� brings about U�1� Berry connection

originated from the generator Ê3 in the induced pure gauge
potential and describing the Levi-Civita parallel transport
along the ray.2
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