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An analytic interatomic bond-order potential is derived that depends explicitly on the valence of the
transition-metal element. It generalizes the second-moment Finnis-Sinclair and fourth-moment Carlsson po-
tentials to include higher moments. We find that the sixth-moment approximation predicts not only the struc-
tural trend from hcp→bcc→hcp→ fcc that is observed across the nonmagnetic 4d and 5d transition-metal
series, but also the different ferromagnetic moments of the bcc, fcc, and hcp phases of the 3d transition-metal
iron. An analytic expression for the force is obtained and proved to converge to the Hellmann-Feynman force
as higher moments are included.
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I. INTRODUCTION

The development of interatomic potentials that can model
the very small energy differences between the various phases
of transition metals and their alloys is key to the successful
large-scale atomistic simulation of processes such as melting,
amorphization, radiation induced defect cascades and subse-
quent defect clustering, and martensitic phase transitions.1

For the past two decades, the most widely used potentials
for the atomistic simulation of metals have been the
embedded-atom method �EAM� potentials2,3 and the closely
related Finnis-Sinclair �FS� potential.4 The FS potential is
derived from the second-moment approximation to the elec-
tronic density of states5,6 and its resultant square-root embed-
ding function is similar to the concave embedding function
employed in EAM parametrizations. Both types of potentials
may be classified as pair functionals.7 It is now generally
accepted, however, that the energy difference between crys-
tal structures of transition metals is driven by higher mo-
ments than the second as the second moment only accounts
for the root-mean-square width of the density of states
�DOS� but is insensitive to changes in shape.5,8 Therefore the
second-moment approximation is unable to describe the
competition between the fcc, bcc, and hcp phases of transi-
tion metals, and hence the observed trend across the non-
magnetic transition-metal series from hcp to bcc to hcp to
fcc. Contributions of moments of order higher than 2 to the
energy cannot be expressed in the form of pair functionals,
thus the limitations of the second-moment approximation ex-
tend to pair functionals in general.

Several improvements to the second-moment potentials
have been suggested that aim to cure their deficiencies by
including higher moment contributions to the energy. Carls-
son extended the second-moment approach by including the
contributions of the fourth moment that cannot be repre-
sented as a pair functional.9 Similarly, Hansen et al.10 and
Foiles11 added an additional fourth-moment contribution to
the EAM energy. These fourth-moment potentials have been
successful in accounting for the sizeable stability of the bcc
phase of the group-V and -VI transition metals compared to
the metastable close-packed fcc and hcp phases which cannot
be accounted for by the FS or EAM potentials.

However, the second-moment EAM- or FS-type poten-
tials and their fourth-moment extensions are limited in their

applicability by three key factors. First, the potentials are not
easily extendable if improved accuracy is required. For ex-
ample, in order that a potential is capable of predicting the
stacking fault energy or the energy difference between the
fcc and hcp structures, at least sixth-moment contributions
are required.8,12 None of the above potentials discusses the
sixth-moment contributions. Second, the above potentials do
not take into account the band-filling dependence of the ef-
fective interatomic interactions, whereas it is well known
that this drives the observed structural trends across the pe-
riodic table.8,13 Band-filling effects in these potentials are
therefore implicitly contained in the parameters of a specific
parametrization that has been fitted to reference data. An
explicit understanding of the dependence of the fitting pa-
rameters on the band filling would improve the physical in-
sight and therefore the robustness of a parametrization. Fi-
nally, the heat of formation of a transition-metal alloy is
critically affected by the offset of the atomic d levels in the
alloyed elements.12,14,15 This offset is ignored in the second-
moment models and their semiempirical fourth-moment ex-
tensions.

These limitations of the second-moment and fourth-
moment interatomic potentials can be overcome by deriving
the analytic form of the potentials directly by using pertur-
bation theory with respect to the underlying electronic struc-
ture. During the 1980s Moriarty16 applied generalized pertur-
bation theory �GPT� to the sp-d bands of transition metals
and obtained potentials for simple metals, noble metals, and
transition metals. In 1990 he published a simplified variant
of the GPT potential that expressed the many-atom interac-
tions analytically.17 The GPT potentials within the fourth-
moment approximation have proved very successful in mod-
eling defect behavior in nonmagnetic bcc transition
metals.18–20

At the same time Haydock21 and Turchi and Ducastelle22

applied perturbation theory within the tight-binding �TB� re-
cursion method. The resultant linear Green’s-function
method �LGM� has successfully explained structural and al-
loy trends across the transition-metal series.22 Toward the
end of the 1980s one of the current authors derived pertur-
batively an expression for the bond order23 that subsequently
developed in collaboration with Aoki12,24–28 into an exact
many-atom expansion for the bond-order potential �BOP�.
These BOPs have been applied by Vitek and his
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collaborators29–32 to a detailed study of dislocation behavior
in transition metals and intermetallics. Unfortunately, these
more fundamental approaches still required numerical inte-
gration of response functions, so that they were applicable to
lattice static simulations but not molecular dynamics �MD�.
Alternatively, large scale MD simulations could be per-
formed but then the prefactors of the various moment con-
tributions were replaced by fitting parameters.

In this paper we derive analytic expressions for the re-
sponse functions, bond energy, and forces that will allow us
to perform MD simulations of transition metals and their
alloys in the future. In Sec. II the TB model for the binding
energy of transition metals is briefly introduced �Sec. II A�,
the concept of moments and many-atom expansion for the
on-site bond energy discussed �Sec. II B�, and a key BOP
result presented that allows an intersite Green’s function to
be obtained from the derivative of an on-site Green’s func-
tion �Sec. II C�. In Sec. III analytic expressions are derived
for the on-site density of states �Sec. III A�, magnetic mo-
ments �Sec. III B�, and bond energy �Sec. III C�. We will see
that retaining up to the sixth moment in the expansions is
sufficient to explain both the different behavior of the ferro-
magnetic moments in 3d-valent iron between bcc and the
close-packed phases under pressure, and also the structural
trend from hcp→bcc→hcp→ fcc across the nonmagnetic 4d
and 5d transition-metal series. In Sec. IV analytic expansions
are obtained for the intersite spectrally resolved density-
matrix elements �Sec. IV A�, bond order �Sec. IV B�, and
forces �Sec. IV C�. We will show that the interatomic repre-
sentation for the bond energy can be constrained to be iden-
tical to that within the on-site representation, and also that
the analytic forces converge to the Hellmann-Feynman force
as higher moments are included. In Sec. V we conclude.

II. TIGHT-BINDING REPRESENTATION
OF THE BOND ENERGY

A. TB energy

A large number of papers on the basic formalism of tight-
binding theory are available in the literature, see, for ex-
ample, Ref. 33 and references therein. Here we only dicuss
the aspects necessary for the development of analytic bond-
order potentials for transition metals. We assume an ortho-
normal basis of atom-centered orbitals �i��, where i is the
atom index and � labels the five valence d orbitals on the
atom. The matrix representation of the Hamiltonian is then

given by the elements Hi�j�= �i��Ĥ�j��, which we take to be
real valued. The diagonal or on-site matrix elements of the
Hamiltonian are denoted by Ei�=Hi�i�. The on-site matrix
elements are identical, independent of the orbital �, if
crystal-field effects are neglected, Ei=Ei�.

Within the TB bond model the binding energy of nonmag-
netic d-valent transition metals may then be written as the
sum of repulsive and bond energies,34

U = Urep + Ubond. �1�

The repulsive contribution comprises a pairwise overlap re-
pulsion and a short-ranged core term Urep=Upair+Ucore,29,30

whereas the attractive bond energy may be written in the
form

Ubond = �
i�

2�EF

�E − Ei�ni��E�dE , �2�

where the prefactor of 2 accounts for the spin degeneracy.
The bond energy may be decomposed in terms of the contri-
butions associated with each individual site, namely

Ui
bond = 10�EF

�E − Ei�ni�E�dE , �3�

where the average density of states ni�E� is defined by

ni�E� =
1

5 �
�=1

5

ni��E�dE . �4�

Equation �2� gives the on-site representation of the total bond
energy. Alternatively, this total bond energy may be ex-
pressed in terms of the off-diagonal elements of the density
matrix �i�j�,

Ubond = �
i�j

�
��

2� j�i�Hi�j�. �5�

This representation of the bond energy is called the intersite
representation. The number of electrons in the orbital �i�� is
given by the diagonal elements of the density matrix Ni�
=2�i�i�=2�EFni�dE.

The bond order measures the strength of a bond as the
difference between the number of electrons in the bonding
state N+ and in the antibonding state N−, respectively.13,27 It
is related to the density matrix by a factor of 2,

�i�j� =
1

2
�N+ − N−� = 2�i�j�. �6�

The density matrix �i�j� may be expressed in terms of the
single-particle Green’s function G as

�i�j� = −
1

�
Im �EF

Gi�j��E�dE . �7�

Since the Green’s-function operator Ĝ is defined by

�E− Ĥ�Ĝ=1̂, it follows at once that the on-site expression
Eq. �2� and the intersite expression Eq. �5� for the bond en-
ergy are identical.

B. On-site representation

The on-site representation for the bond energy Eq. �2�
may be computed within an O�N� approach by using the
Lanczos algorithm21,35 to evaluate the local electronic den-
sity of states. The algorithm transforms the original TB
Hamiltonian matrix into the form of a semi-infinite one-
dimensional nearest-neighbor chain by applying the recur-
rence relation

bn+1�un+1� = �Ĥ − an��un� − bn�un−1� , �8�

with b0=0 and �u0�= �i��, where the only nonvanishing ma-
trix elements are given by
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�um�Ĥ�un� = 	an if m = n ,

bn if m = n − 1,

bn+1 if m = n + 1.

 �9�

Since the resultant Hamiltonian matrix with respect to the
Lanczos orbitals is tridiagonal, the diagonal matrix element
of the Green’s function corresponding to the starting state

G00= �u0�Ĝ�u0�= �u0��E− Ĥ�−1�u0� may be immediately writ-
ten as a continued fraction expansion,35

G00�E� =
1

E − a0 −
b1

2

E − a1 −
b2

2

E − a2 −
b3

2

�

. �10�

As the starting Lanczos orbital �u0� has been chosen as the
appropriate atomic orbital �i��, the local density of states is
given by ni��E�=− 1

� Im G00�E�.
The recursion coefficients �an ,bn� that enter the continued

fraction for the local density of states ni��E� may be ex-
pressed directly in terms of the moments of the density of
states �i�

�n�, where

�i�
�n� =� Enni��E�dE . �11�

As is well known, the zeroth moment �i�
�0�=1 corresponds to

the maximum number of electrons with given spin that may
occupy the orbital �i��, the first moment �i�

�1� defines the
center of gravity of the local density of states, the second
moment �i�

�2� measures its mean square width, the third mo-
ment �i�

�3� and fourth moment �i�
�4� its skewness and bimodal-

ity, respectively. An important identity relates the moment
�i�

�n� to all possible hopping paths of length n that start and
end on orbital �i��,5,36

�i�
�n� = �

i1�1,i2�2,. . .,in−1�n−1

�i��Ĥ�i1�1�

��i1�1�Ĥ�i2�2� ¯ �in−1�n−1�Ĥ�i�� . �12�

Thus by taking �u0�= �i�� as the starting orbital along the
semi-infinite Lanczos chain, it is straightforward to write the
moments as functions of the recursion coefficients an and bn

2,
so that, for example,

�i�
�0� = 1, �i�

�1� = 0, �i�
�2� = b1

2, �i�
�3� = a1b1

2, and

�i�
�4� = b1

2b2
2 + b1

4 + a1
2b1

2, �13�

where for simplicity we have taken the on-site energy Ei
=a0 as the energy zero. It follows that the recursion coeffi-
cients may be expressed in terms of the moments as

b1
2 = �i�

�2�, a1 = �i�
�3�/�i�

�2�, and

b2
2 = ��i�

�4�/�i�
�2�� − ��i�

�3�/�i�
�2��2 − �i�

�2�. �14�

Thus b1 is a measure of the root-mean-square width, a1 is the
skewing, and b2 is the bimodality of the density of states.

The latter follows directly from Eq. �10� since the continued
fraction comprises only two poles for b2=0.

The average local density of states ni�E� may be obtained
from Eq. �10� by evaluating the corresponding recursion co-
efficients �an ,bn� from the average moments,

�i
�n� =� Enni�E�dE =

1

5 �
�=1

5

�i�
�n�. �15�

Therefore both the local density of states and the on-site
bond energy may be computed within an O�N� real-space
approach.37,38 This methodology has been implemented in
the standard Oxford O�N� �OXON� package.27,28

An important many-atom expansion for the local on-site
bond energy has been derived by Aoki, initially indirectly
using BOP theory see Eq. �23� of Ref. 26� and later directly

using the properties of the Green’s function G0n= �u0�Ĝ�un�
defined along the semi-infinite Lanczos chain see Eq. �B11�
of Ref. 39�. The expansion takes the form

Ui
bond = 10�

n=1

�

�	2n�EF�bn
2 − bn−1

2 � + 	2n+1�EF��an − an−1�bn�� ,

�16�

where the response functions are defined by

	m = 	−
1

�
Im �EF

G0�m−2�/2�G�m−2�/2�0dE for m even,

−
1

�
Im �EF

G0�m−3�/2�G�m−1�/2�0dE for m odd. 

�17�

The prefactor 10 in Eq. �16� is a consequence of this bond
energy arising from all five d orbitals on site i with spin up
and spin down. Note that the recursion coefficients �an ,bn�
and hence the Lanczos chain Green’s functions G0n are im-
plicitly dependent on the site i through the average moments
�i

�n�.
Contact can now be made with both the second-

moment4–6 and fourth-moment9–11 expressions for the bond
energy. Simplifying Eq. �16� by neglecting odd moment con-
tributions through setting an=0 and keeping only the first
two terms in the resultant expansion, we find

Ui
bond = 10��i

�2��	̂2�
F� + 	̂4�
F��i
�4�/��i

�2��2 − 2�� ,

�18�

using the relationship between recursion coefficients and mo-
ments given by Eq. �14�. The 	̂ are the reduced response
functions introduced in the original BOP paper,23 being de-
fined to be dimensionless through 	̂n=	n /��i

�2�. They take a
simple analytic form23 under the approximation bn=b1 and
an=0 when

	̂n�
F� =
1

�
� sin�n + 1�
F

n + 1
−

sin�n − 1�
F

n − 1
� , �19�

where 
F=cos−1EF / �2b1�� for n�2.
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We see immediately from Eq. �18� that the first term cor-
responds to the second-moment contribution of the Finnis-
Sinclair potential,4 whereas the second term corresponds to
the fourth-moment contribution introduced by Carlsson.9 Im-
portantly, however, Eq. �18� also contains prefactors that are
valence dependent through the Fermi energy EF. Unfortu-
nately, Alinaghian et al.40 found that the simplest approxima-
tion for the response functions given by Eq. �19� leads to
poor structural prediction as can be seen from the b2=b1
curve in their Fig. 2. On the other hand, they showed that
using the correct value of b2 in Eq. �16� leads to good
agreement40 with the fourth-moment TB results of Brown
and Carlsson41 but involves extremely complicated analytic
expressions42 for the two response functions 	̂2�b2 /b1� ,EF�
and 	̂4�b2 /b1� ,EF�. One of the goals of this paper is to de-
rive an analytic expression for the on-site bond energy that is
physically transparent and easy to use in MD simulations of
transition metals and their alloys. This will be pursued in
Sec. III A once we have addressed the intersite representa-
tion for the bond energy.

C. Intersite representation

Unlike the on-site representation, the intersite representa-
tion allows a decomposition of the bond energy associated
with a given atom in terms of the individual contributions
from its neighboring bonds. This provides physical and
chemical insights into the weakening or strengthening of
bonds due to, for example, the presence of nearby defects or
impurities. It also provides a procedure for calculating the
force on a given atom k directly by using the Hellmann-
Feynman theorem43,44 which states that

Fk
bond = − �

i�j
�
��

��kHi�j��� j�i�, �20�

since �=2� by Eq. �6�. This deceptively simple expression
appears to give the force for “free” once the bond order has
been calculated because the gradient of the TB Hamiltonian
matrix elements are straightforward to evaluate. Unfortu-
nately, the bond orders are very poorly converged if they are
computed directly from Eq. �6� as the difference between the
numbers of occupied bonding and antibonding states. This
led to the development of BOP theory during the late 1980s
and early 1990s as an attempt to obtain a rapidly convergent
O�N� method for evaluating the intersite Green’s function
and hence the intersite density matrix or bond order.12,23–26

A key result of BOP theory25 is that the intersite Green’s
function Gi�j� can be written as the derivative of an on-site
Green’s function which as we have seen in Eq. �2� can be
expressed as a well-behaved continued fraction. This can be
proved very simply. Let us take the starting Lanczos orbital
�u0

�� as an admixture of the relevant orbitals on the two sites
i and j, namely

�u0
�� = ci��i�� + cj�ei�j�� , �21�

where �=cos  and ci�
2 +cj�

2 =1. Then

G00
� = �u0

���E − Ĥ�−1�u0
�� = ci�

2 Gi�i� + cj�
2 Gj�j� + 2ci�cj��Gi�j�.

�22�

Hence the intersite Green’s function Gi�j� can be written as
the derivative of the diagonal Green’s function G00

� as

Gi�j� =
1

2ci�cj�

dG00
�

d�
. �23�

In conventional BOP theory23,26,27 G00
� =G00

� ��an
� ,bn

���
from Eq. �10�, so that

Gi�j� =
1

2ci�cj�
��

n=0

�
�G00

�

�an
�

�an
�

��
+ �

n=1

�
�G00

�

�bn
�

�bn
�

��
� . �24�

Performing the partial derivatives and substituting the result-
ant intersite Green’s function with �=0 into Eq. �7�, an exact
many-atom expansion for the bond order may be derived,
namely,

�i�j� = 2�
n=1

�

�	2n�an−1
i�j� + 	2n+1�bn

i�j�� , �25�

where the Lanczos chain response functions have already
been defined in Eq. �17�. The coefficients ��an ,�bn� depend

on the interference paths �i�j�
�m� = �i��Ĥm�j�� that link the

atomic orbitals �i�� and �j�� see, for example, Eqs. �2.26�–
�2.30� of Ref. 12�. Substituting this expression for the bond
order, or intersite density-matrix element, into Eq. �5� leads
to a many-body expression for the intersite bond energy.

In practice, the on-site and intersite expressions for the
bond energy are evaluated using a Lanczos chain that is ex-
act only up to some given level nmax /2 by setting an−1=a�

and bn=b� for n�nmax /2 �that is, all moments �n are exact
up to �nmax

, Ref. 45�. It is clear that this approximation to the
tail of the Lanczos chain will lead to the many-atom expan-
sion for the bond energy Eq. �16� within the on-site repre-
sentation, terminating after n=nmax /2−1. In 1993 Aoki26

showed that by suitably truncating the many-body expansion
for the bond order within the intersite representation the re-
sultant bond energy Eq. �5� could be made identical to that
for the on-site representation at any level of approximation
nmax. This methodology of numerical BOPs has been imple-
mented in the standard OXON package, where the bond orders
or intersite density-matrix elements are used to determine the
forces directly by using the Hellmann-Feynman theorem.27

However, due to the slow convergence of the Hellmann-
Feynman forces, this approach has to date only been applied
to nondynamic simulations.29–32 In the following sections we
introduce a different approach that leads to analytic expres-
sions for the local density of states, bond energies, and
forces.

III. ON-SITE EXPANSIONS

A. Density of states

The simplest approximation to the average on-site density
of states ni�E� is to assume that the recursion coefficients
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take constant values an=ai�, bn=bi� all the way along the
Lanczos chain �see Sec. 12 of Ref. 21�. This results in a
semielliptic density of states ni0�E�=ni0��� / �2bi�� where

ni0��� =
2

�
�1 − �2, �26�

with �= �E−ai�� / �2bi��. We see that this represents a single
band of states between �= ±1 and E=ai�±2bi�. The second-
moment approximation corresponds to taking ai�=ai0, bi�
=bi1, so that the resultant bond energy is proportional to bi1
or the square root of the second moment about site i.4

In this paper the second-moment approximation is ex-
tended by writing the local density of states in the form21,22

ni��� = ni0��� + �ni��� . �27�

The semielliptic behavior of ni0��� suggests expanding �ni���
in terms of Chebyshev polynomials of the second kind46

Pn��� since they are orthonormal with respect to the weight
function 2

�
�1−�2, that is

2

�
�

−1

1

Pn���Pm����1 − �2d� = �nm. �28�

Thus we write

ni��� =
2

�
�1 − �2�1 + �

m=0
�̃i

�m�Pm���� . �29�

The Chebyshev polynomials of the second kind satisfy the
recurrence relation

Pm+1��� = 2�Pm��� − Pm−1��� , �30�

with P0���=1 and P1���=2�. Since P0���=1, we have

ni��� =
2

�
�1 − �2�

m=0
�i

�m�Pm��� , �31�

where ��0�=1+ �̃�0� and ��m�= �̃�m� for m�0.
A similar expansion of the density of states employing

Chebyshev polynomials of the first kind is used in the kernel
polynomial method.47–49 However, the Chebyshev polynomi-
als of the first kind are orthogonal with respect to the weight
function 2

�
1

�1−�2 and therefore are not well adapted to a sys-
tematic extension of the second moment density of states Eq.
�27�, while the Chebyshev polynomials of the second kind,
which we use, are the eigenstates of the semi-infinite con-
stant Lanczos chain21 and therefore are well suited for the
expansion of the density of states of transition metals.

The coefficients �i
�m� are given by

�i
�m� = �

−1

1

Pm���ni���d� . �32�

They may be expressed in terms of the dimensionless mo-
ments �̂i

�n� of the density of states ni���= �2bi��ni�E�, namely

�̂i
�n� = �

−1

1

�nni���d� . �33�

Expanding the Chebyshev polynomials in Eq. �32� explicitly
as

Pm��� = �
n=0

m

pmn�n, �34�

where the pmn satisfy the recursion relation

p�m+1�n = 2pm�n−1� − p�m−1�n, �35�

with pmn=0 if n�0 or n�m, we find that

�i
�m� = �

n=0

m

pmn�̂i
�n�. �36�

The dimensionless moments �̂i
�n� may be obtained directly

from the moments �i
�n� of the average local density of states

ni���. Substituting �= �E−ai�� / �2bi�� into Eq. �33� and per-
forming the binomial expansion, we have

�̂i
�n� =

1

�2bi��n�
l=0

n �n

l
��− 1�lai�

l �i
�n−l�. �37�

We expect these expansion coefficients �i
�m� for m�0 to

vanish for the special case of the constant Lanczos chain
with an=ai�, bn=bi�. This is confirmed by defining new vari-
ables,

�in = �ain − ai��/bi�, �in = �bin
2 − bi�

2 �/bi�
2 , �38�

and using the relationship Eq. �14� between the moments and
the Lanczos recursion coefficients. Note that we have chosen
these variables because G00�E� in Eq. �10� is a function of
�an ,bn

2�.
The resultant expressions for the normalized moments

�̂i
�n� and the expansion coefficients �i

�n� are given in Tables I
and II, respectively, for n=0,1 , . . . ,6. We see that the �i

�m�

indeed vanish for m�0 for the constant Lanczos chain with

TABLE I. Dimensionless moments �̂i
�m� for m=0,1 , . . . ,6 as a

function of parameters �n and �n. The second and third columns
give exact and linear expressions, respectively.

Exact Linear

�̂i
�0� 1 1

2�̂i
�1� �0 �0

22�̂i
�2� 1+�0

2 1

23�̂i
�3� 2�0+�0

3 2�0

24�̂i
�4� 2+3�0

2+�0
4+�2 2+�2

25�̂i
�5� 5�0+4�0

3+�0
5+�2+2�0�2+�2�2 5�0+�2

26�̂i
�6�  5+9�0

2+5�0
4+�0

6+2�0�2+�2
2+5�2

+3�0
2�2+2�0�2�2+�2

2�2+�2
2+�3+�2�3

� 5+5�2+�3
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�in=0, �in=0. Moreover, �i
�0� is always unity so that the first

term in the expansion for �ni��� in Eq. �29� will drop out in
general as �̃i

�0�=0.
The local density of states ni��� can therefore be expanded

in terms of the Chebyshev polynomials of the second kind as

ni
�nmax���� =

2

�
�1 − �2 �

m=0

nmax

�
n=0

m

pmn�̂i
�n�Pm��� , �39�

where we have introduced the upper summation limit nmax to
indicate the largest exact moment �̂i

�nmax� included in the ex-
pansion. Because the expansion is linear with respect to the
moments of the density of states, this expansion may also be
used to calculate the orbital resolved density of states,

ni�
�nmax���� =

2

�
�1 − �2 �

m=0

nmax

�
n=0

m

pmn�̂i�
�n�Pm��� , �40�

with

�̂i�
�n� =

1

�2bi��n�
l=0

n �n

l
��− 1�lai�

l �i�
�n−l�. �41�

We will make use of Eq. �40� in the derivation of the expres-
sions for the bond order in Sec. IV A.

The rate of convergence of the infinite series as nmax
→� will be dependent upon the choice of the reference den-
sity of states ni0���. Although the choice of ai� and bi� could
be optimized for each atom at each step in an MD simulation

using input from all the exact moments or recursion
coefficients,50 our goal in this paper is to derive simple ana-
lytic expressions for the densities of states, bond energies,
and forces. We will see from Fig. 4 in the next section that
choosing ai�=ai1 and bi�=bi1 leads to a sufficiently accurate
convergence of the resultant bond energy provided we take
nmax=6 and include up to the sixth moment, �6, exactly.
Moreover, the choice of bi�=bi1 guarantees that the local
density of states ni�E� scales as the inverse of b1, thereby
retaining the spirit of the second-moment approximation. In
addition, the choice of ai�=ai1 partially reflects the asymme-
try of the band edges with respect to the on-site energy that is
always present in close-packed metallic systems due to the
many three-body rings and resultant self-returning three hop
contributions to the third moment.8

We have evaluated the d-band density of states for the
bcc, fcc, and ideal hcp structures within the sixth-moment
expansion corresponding to nmax=6, assuming that a�=a1
and b�=b1, where we have dropped the site indices as all
sites are equivalent. The calculations were carried out using
canonical bond integrals dd� :dd� :dd�=−6:4 :−1.51 First-
nearest neighbors only were retained for the fcc and ideal
hcp structures, whereas for bcc second-nearest neighbors
were also included assuming that the bond integrals fall off
with distance as the inverse fifth power.52 The bcc bond in-
tegrals were scaled to guarantee that the second moment ��2�

of the average bcc density of states was identical to that for
fcc and hcp.8 Table III gives the resultant values of �n and �n,
the dimensionless moments �̂�n� and the expansion coeffi-
cients ��n�, respectively. We find that �1 and �1 are identi-
cally zero for all three structures due to our choice of b�

=b1 and a�=a1, respectively.
The upper panel in Fig. 1 compares the densities of states

of bcc, fcc, and hcp within the sixth-moment expansion cor-
responding to nmax=6 using the exact expressions for the
moments that are given in Table I. As expected, we see that
the bcc density of states is much more bimodal than the
close-packed structures fcc and hcp due to its value of �2 in
Table III being more negative than for either fcc or hcp. On
the other hand, the two close-packed structures have very
similar values of �n and �n for n�2, the first significant
difference being �3 where hcp takes a negative value but fcc
a positive value in Table III. Since �3 only affects the expan-
sion coefficient ��6� in Table II, it follows from Eq. �31� that
there will be a difference in the sixth-order Chebyshev poly-
nomials P6��� contribution in the density of states. This ac-

TABLE II. Expansion coefficients �i
�n� for n=0,1 , . . . ,6 as a

function of �n and �n.

Exact Linear

�i
�0� 1 1

�i
�1� �0 �0

�i
�2� �0

2 0

�i
�3� �0

3 0

�i
�4� �0

4+�2 �2

�i
�5� �0

5+�2+2�0�2+�2�2 �2

�i
�6� �0

6+3�0
2�2+�2

2+2�0�2�1+�2�

+�2
2�1+�2�+�3+�2�3 � �3

TABLE III. Numerical values of expansion parameters �n and �n, the dimensionless moments �̂i
�n�, and exact coefficients �i

�n� for
sixth-moment expansion in bcc, fcc, and hcp structures.

bcc fcc hcp bcc fcc hcp bcc fcc hcp

�0 0.232 0.240 0.240 �̂i
�1� 0.116 0.120 0.120 �i

�1� 0.232 0.240 0.240

�1 0.000 0.000 0.000 �̂i
�2� 0.263 0.264 0.264 �i

�2� 0.054 0.058 0.058

�1 0.000 0.000 0.000 �̂i
�3� 0.060 0.062 0.062 �i

�3� 0.013 0.014 0.014

�2 −0.371 −0.231 −0.235 �̂i
�4� 0.112 0.122 0.121 �i

�4� −0.369 −0.227 0.232

�2 0.156 −0.123 −0.129 �̂i
�5� 0.036 0.033 0.033 �i

�5� −0.074 −0.205 −0.211

�3 0.399 0.009 −0.123 �̂i
�6� 0.063 0.068 0.066 �i

�6� 0.389 −0.014 −0.114
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counts for the fcc and hcp curves crossing each other six
times in Fig. 1 between the bottom and top of the bands.
Finally, we should point out that as might be expected from
polynomial expansions, the density of states display unphysi-
cal negative values. However, these are only observed very
close to the band edges and with small absolute values, so
that they will not interfere with any treatment of groups III–
VIII transition metals and their alloys.

The lower panel compares the densities of states for
nmax=6 using the approximate expressions for the moments
that include only the linear terms with respect to �n and �n,
as given in the right-hand column of Table I. The corre-
sponding values of the expansion coefficients ��n� in Table II
lead to the following simple form of the density of states:

ni
�nmax,L���� =

2

�
�1 − �2�1 + �

m=0

nmax/2

�imP2m+1���

+ �i�m+1�P2m+2����� , �42�

where the superscript L denotes that the linear approximation
has been made and for generality we have reintroduced the
site indices for systems with nonequivalent sites. This is con-
sistent with the first-order Dyson equation for the Lanczos
chain Green’s function Im G00 when the constant chain is
perturbed by on-site energy shifts �aim−ai�� / �2bi�� and in-
tersite hopping integral shifts �bim−bi�� / �2bi�� since to first
order �im=4�bim−bi�� / �2bi��. This first-order expansion for
the density of states has been discussed previously by
Haydock21 and Turchi and Ducastelle.22 Importantly, how-
ever, using the exact expansion coefficients, Eq. �39� main-
tains the linear dependence of the density of states on the
dimensionless moments �̂i

�n� that we will see is central to the

equivalence of our on-site and intersite energy expressions.
We observe in Fig. 1 that this approximate form does an
excellent job in reflecting the different behavior of the exact
bcc, fcc, and hcp curves within the sixth-moment expansion.

Although, as is well known, the density of states con-
verges very slowly with respect to the number of exact mo-
ments retained, integrated quantities converge much
faster,21,52 as we will see in the next two subsections.

B. Magnetic moments

Magnetism plays an important role in determining the
structure and properties of some 3d transition-metal ele-
ments. In particular, iron’s phase diagram shows all three
common metallic structures bcc �� and � phases�, fcc ��
phase�, and hcp �� phase� as a function of temperature and
pressure.53 We might have expected Fe to behave more like
the nonmagnetic isovalent 4d element Ru and the 5d element
Os which are hcp in their ground states. But the narrow 3d
band and high peak in the density of states at the Fermi level
in nonmagnetic iron help to stabilize a large magnetic mo-
ment and drive the bcc phase to be more stable than the
nonmagnetic hcp phase at low temperatures and pressure.
This very different behavior in the magnetic moments of bcc,
hcp, and fcc iron is due to the dependence of the magnetic
moments on the shape of the nonmagnetic density of states
in the vicinity of the Fermi level.

This dependence follows directly from the Stoner model
of itinerant magnetism54 which predicts the self-consistent
ferromagnetic moment is determined by the condition55–58

In̄s�EF� = 1, �43�

where I is the Stoner exchange integral and n̄s�EF ,m� is the
average density of states per spin between the down-spin and
up-spin Fermi levels when the down-spin electrons are
flipped about the initial nonmagnetic Fermi level EF to create
a spin imbalance m. Thus the Stoner condition requires an
integral over the nonmagnetic density of states, namely

n̄s�EF,m� =

�
EF

↓

EF
↑

ns�E�dE

EF
↑ − EF

↓ =
m

EF
↑ − EF

↓ , �44�

where m=N↑−N↓. The self-consistent value of the magnetic
moment is then obtained by finding the value of m in Eq.
�44� such that n̄s�EF�=1/ I from Eq. �43�.

Within canonical d-band theory the shape of the density
of states remains unaltered as the volume changes, so that the
Stoner condition, Eq. �43� may be rewritten57,58 in terms of
the dimensionless density of states per spin ns���, namely

I/�2b1��n̄s��F,m� = 1, �45�

where 2b1=W /2 is half the bandwidth. The variation of the
resultant self-consistent magnetic moment with normalized
exchange integral I / �2b1� for Nd=7 corresponding to iron is
plotted in the left-hand panel of Fig. 2 using the highly ac-
curate linear tetrahedron method to evaluate the density of
states. We see that canonical Stoner theory predicts that the
magnetic moment of bcc iron decreases gradually with de-

FIG. 1. �Color online� Comparison of bcc, fcc, and ideal hcp
d-band densities of states within sixth-moment expansion. Curves
in upper and lower panels were evaluated using exact and linear
expressions for expansion coefficients in Table II, respectively.
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creasing normalized exchange integral �or volume�, whereas
the two close-packed structures fcc and hcp initially fall pre-
cipitously at some critical value of normalized exchange in-
tegral �or volume�. These k-space TB predictions, first made
30 years ago,57,58 were later confirmed by first-principles
density-functional theory �see, for example, Ref. 59�.

The right-hand panel of Fig. 2 shows the predicted varia-
tion of the magnetic moments using the expansion Eq. �31�
of the density of states and the resultant band occupancy for
up and down spins with nmax=6. It follows from Eq. �31�
using �1−�2Pn���=sin�n+1�
� that the total number of
electrons per atom on site i, Ni, is given by

Ni�
F� = 10�
m=0

nmax

�i
�m�	̂m+1�
F� , �46�

where

	̂1 = 1 −

F

�
+

1

2�
sin�2
F� �47�

and 	̂m+1�
F� has already been defined in Eq. �19� for m
�0. Thus the magnetic moment m=N↑−N↓ can be expressed
as

mi = 5 �
m=0

nmax

�i
�m�	̂m+1��F

↑� − 	̂m+1��F
↓�� . �48�

We see from the right-hand panel in Fig. 2 that the resultant
self-consistent moments reproduce the very different mag-
netic behavior of bcc and the two close-packed phases. As
explained in Refs. 57 and 58 this is due to the nonmagnetic
Fermi level falling near the top of the broad right-hand peak
of the bcc density of states in Fig. 1, whereas the Fermi
levels of fcc and hcp fall halfway down the slope. Clearly the
sixth-moment expansion is unable to reproduce the oscilla-
tions in the fcc and hcp TB curves that are observed in the
left-hand panel. These are intimately related through Eq. �45�
to the fine structure of the density of states such as local

peaks or troughs57,58 which are smoothed out in the sixth-
moment expansion.

Choosing a value of I=0.63 eV �Ref. 60� and W=5 eV
�Ref. 61� for iron at its equilibrium volume would lead to a
normalized exchange integral of 0.25, which can account
from Fig. 2 for the experimental observation that bcc iron is
ferromagnetic with a large moment but hcp iron is nonmag-
netic. Second-moment models62,63 can account for the local
volume dependence of the magnetic moments but they can-
not predict the structural variation that depends explicitly on
the shape of the density of states. In the next subsection we
derive the expansion for the bond energy of nonmagnetic
systems. We will return to the magnetic contribution to the
binding energy in a future publication.

C. Bond energy

The bond energy associated with atom i can be written
from Eq. �3� as

Ui
bond = 20bi��

−1

�F

�� − �i0/2�ni���d� , �49�

where �= �E−ai�� / �2bi��. Substituting in the expansion for
the density of states, Eq. �31�, and using the recurrence rela-
tion for �Pm��� given by Eq. �30�, we find

Ui
bond�nmax� = 10bi� �

m=0

nmax

�i
�m��

−1

�F 2

�
�1 − �2Pm+1��� − �i0Pm���

+ Pm−1����d� . �50�

Substituting �=cos 
 and �1−�2Pm���=sin�m+1�
� into
the above equation, we obtain

Ui
bond�nmax� = 10bi� �

m=0

nmax

�i
�m�	̂m+2�
F� − �i0	̂m+1�
F�

+ 	̂m�
F�� , �51�

where the reduced response functions are defined in Eqs.
�19� and �47� for m�0 and 	0=0. This expression can be
simplified by substituting in the exact values of the expan-
sion coefficients �i

�2� and �i
�3� in Table II for ai�=ai1, bi�

=bi1. We find

Ui
bond�nmax� = 10bi1��̂2�
F� + �i0�̂3�
F� + �

m=4

nmax

�i
�m��̂m�
F�� ,

�52�

where

�̂2�
F� = 	̂2�
F� , �53�

�̂3�
F� = �i0
2 	̂5�
F� + �i0�1 − �i0

2 �	̂4�
F� + 	̂3�
F� ,

�54�

�̂m�
F� = 	̂m+2�
F� − �i0	̂m+1�
F� + 	̂m�
F� . �55�

Further, if the expansion coefficients are approximated by

FIG. 2. �Color online� Variation of bcc, fcc, and hcp ferromag-
netic moments m with normalized Stoner exchange integral I / �2b1�
for N=7 corresponding to iron. In the left-hand panel the k-space
linear tetrahedron method was used to evaluate the TB density of
states, whereas in the right-hand panel nmax=6 expansion was used,
Eq. �39�.
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their linearized values in Table II, then Eq. �52� reduces to

Ui
bond�nmax� = 10bi1�Ûi0

bond�
F� + �
m=2

nmax/2

�im�̂2m�
F�

+ �
m=2

nmax/2−1

�im�̂2m+1�
F�� , �56�

where Ûi0
bond�
F� is the dimensionless bond energy of the

reference Lanczos chain within the linear approximation. It
is given by

Ûi0
bond�
F� = �̂2�
F� + �i0�̂3�
F� . �57�

Within the symmetric fourth-moment approximation this ex-
pression simplifies to

Ui
�bond�/�10��i

�2�� = 	̂2�
F� + 	̂4�
F� + 	̂6�
F��

��i
�4�/��i

�2��2 − 2� . �58�

We see that this looks similar to our earlier expression, Eq.
�18�, for the bond energy. Importantly, however, the prefactor
for the fourth-moment contribution is not simply 	̂4 as in Eq.
�18� but �	̂4+ 	̂6�, the additional response function 	̂6 arising
from the �b2 /b1�2 dependence in the exact response function
	2�b2 /b1� ,EF� in Eq. �17�. For half full bands �correspond-
ing to 
F=� /2� the new prefactor �	̂4+ 	̂6� takes a value of
0.061 compared to the old 	̂4 prefactor value of 0.170.40 The
new slope agrees very well with the slope of the line in the
Brown-Carlsson plot41 of normalized TB bond energy vs
fourth moment for s-valent structures containing no odd-
membered rings.

The convergence of the bond-energy expansion, Eq. �52�,
with respect to higher moments is illustrated in Fig. 3. This
shows the band filling dependence of the bond energy for the
reference Lanczos chain to first order and the further five
contributions �n=4–8� for bcc, fcc, and hcp. We see that the
reference contribution is an order of magnitude larger than
other contributions and varies almost parabolically with band
filling. Thus the influence of the third moment is small and
accounts for the second-moment approximation5,6,8 provid-
ing a good explanation for the observed variation of the co-
hesive energies across the nonmagnetic 4d and 5d transition-
metal series.

The differentiation of the relative structural stability of
bcc, fcc, and hcp requires moments higher than third. We see
that the fourth-moment contribution �n=4� favors the bcc
structure over the close-packed in the vicinity of half full
bands whereas the close-packed structures are favored to-
ward the band edges, as observed in practice across the non-
magnetic transition-metal series. This behavior due to the
presence of two nodes in the n=4 curves reflects the in-
creased bimodality of the bcc density of states compared to
fcc and hcp in Fig. 1. We observe that differentiation of the
close-packed structures requires the sixth-moment contribu-
tion �n=6� whose curves display four nodes, as expected
from the moment theorem of Ducastelle and
Cyrot-Lackmann.64 This contribution correctly predicts that

away from half full bands the bcc phase gives way on either
side to the hcp phase. We see that that contributions from
n=7 and n=8 are small.

Figure 4 shows explicitly the convergence of the �bcc-fcc�
and �hcp-fcc� energy differences as the number of moments
is increased. We see that the fourth-moment approximation
indeed stabilizes bcc for half full bands, whereas the sixth-
moment contribution is required to differentiate fcc and hcp.
We also observe for these crystalline metallic systems that
the linear and first-order approximations to the expansion
coefficients reproduce reasonably well the results from using
the exact coefficients in Table II. Thus our analytic d-valent
BOPs are able to converge to sufficient accuracy by nmax
=6 to reproduce energy differences that are of the order of
less than 1% of the cohesive energy. In particular, they pre-
dict the observed structural trend from hcp→bcc→hcp
→ fcc across the nonmagnetic transition-metal series �apart
from N=9 corresponding to Pd and Pt, where the sp-d hy-
bridization contribution is dominant8�.

IV. INTERSITE EXPANSION

A. Spectrally resolved density matrix

In Sec. II C we saw from Eq. �23� that BOP theory ex-
presses the off-diagonal Green’s-function matrix elements
Gi�j� as the derivative with respect to the phase of the diag-

onal Green’s-function matrix element G00
� = �u0

��Ĝ�u0
��, where

FIG. 3. �Color online� Dimensionless bond energy contributions
for reference Lanczos chain and the next five contributions �n
=4–8� for bcc, fcc, and hcp as function of band filling.
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�u0
�� is the starting Lanczos orbital, Eq. �21�, comprising an

admixture of orbitals on site i and j. Unlike numerical BOP
theory25 where G00

� is considered as a function of the recur-
sion coefficients �an ,bn� as in Eq. �24�, in the present ana-
lytic approach we will consider G00

� as a function of the

moments ��0
�n����� where from Eq. �21� �0

�n����= �u0
��Ĥn�u0

��
is given by

�0
�n���� = ci�

2 �i�
�n� + ci�

2 �i�
�n� + 2�ci�cj��i�j�

�n� . �59�

Thus using Eq. �23� we can write

Gi�j��E� = �
n

1

2ci�cj�

�G00�E�
��0

�n�
��0

�n�

��
= �

n

�i�j�
�n� �G00�E�

��0
�n� .

�60�

This intersite Green’s function is different from the numeri-
cal BOP in that it is independent of ci� and cj�. The conver-
gence of the expansion therefore is independent of the choice
of starting orbital �u0

�� whether an atom-based orbital or a
bond-based state is used.39

Written in terms of the dimensionless energy �
= �E−a�� / �2b��, this equation reads

Gi�j���� = �
n

1

2ci�cj�

�G00���
��̂0

�n�
��̂0

�n�

��
= �

n

�̂i�j�
�n� �G00���

��̂0
�n� ,

�61�

where the dimensionless interference paths are given by

�̂i�j�
�l� = �

n=0
�i�j�

�n� ��̂0
�l�

��0
�n� =

1

�2b��l �
n=0

l �n

l
��− a��n−l�i�j�

�n� ,

�62�

with �i�j�
�0� =0 for �i��� �j��. The definition of �̂�n� in Eq. �62�

is analogous to that of the dimensionless moments in Eq.
�33�. The upper limit of the summation in Eq. �62� is due to
��̂i�

�n�

��̂i�
�l� =0 for l�n.

Assuming a�=ai� and b�=bi� to be site dependent and
taking the expansion of Eq. �61� only to a finite number of
moments nmax will in general break the Hermiticity of Gi�j�.
For finite nmax, we therefore use an explicitly symmetric
form of Gi�j�

�nmax�,

Ḡi�j�
�nmax��E� =

1

2
Gi�j�

�nmax��E� + Gj�i�
�nmax��E�� , �63�

where here and in the following a� and b� are taken from the
first index of G, i.e., Gi�j�

�nmax�=Gi�j�
�nmax��ai� ,bi�� and Gj�i�

�nmax�

=Gj�i�
�nmax��aj� ,bj��.
The spectrally resolved density-matrix element ni�j�

=− 1
� ImGi�j� can therefore be written as

n̄i�j��E� =
1

2
ni�j��E� + nj�i��E�� , �64�

where ni�j��E�=ni�j���� / �2bi��. Including moments up to
nmax, it follows from Eq. �40� that

ni�j�
�nmax���� =

2

�
�1 − �2 �

m=0

nmax

�i�j�
�m� Pm��� , �65�

where

�i�j�
�m� = �

n=0

m

pmn�̂i�j�
�n� . �66�

The definition of �i�j�
�m� is analogous to the definition of the

expansion coefficients �i
�m� in Eq. �32�.

We now examine the constraint on the spectrally resolved
density matrix for the on-site and intersite bond energies re-
sulting from Eqs. �39� and �65� to be equivalent. These two
different representations are guaranteed to be identical if the
integral kernels of the on-site expansion, Eq. �2�, and inter-
site expansion, Eq. �5�, are the same for each atom,24 that is,

�E − Ei�ni
�nmax��E� =

1

5�
j�i

�
��

Hi�j�ni�j�
�nmax��E� . �67�

In reduced units �= �E−ai�� / �2bi�� this equivalence reads

FIG. 4. �Color online� Convergence of �bcc-fcc� and �hcp-fcc�
normalized energy differences as the number of moments is in-
creased using exact expressions �dark curves� and linear expres-
sions �light curves� for expansion coefficients. Energies have been
normalized with respect to fcc bond energy at half full band.
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�� − �i0/2�ni
�nmax���� =

1

5�
j�i

�
��

hi�j�ni�j�
�nmax���� , �68�

where hi�j�=Hi�j� / �2bi��. The left-hand side of Eq. �68�
may be rewritten by inserting the expansion for the density
of states, Eq. �31�, and using the Chebyshev recurrence rela-
tion Eq. �30�, so that

��on� =
1

�
�1 − �2 �

m=0

nmax

�i
�m�Pm+1��� − �i0Pm��� + Pm−1���� .

�69�

As expected, we find that the uppermost expansion coeffi-
cient that enters the summation corresponds to m=nmax.

On the other hand, the right-hand side of Eq. �68� may be
rewritten by inserting the expansion for the spectrally re-
solved density matrix, Eq. �65�, so that

��inter� =
2

�
�1 − �2 �

m=0

nmax

�
n=0

m

pmn��̂i
�n+1� −

�i0

2
�̂i

�n��Pm��� ,

�70�

since

1

5�
j�i

�
��

hi�j��̂i�j�
�n� = �̂i

�n+1� −
�i0

2
�̂i

�n�. �71�

Equation �70� may be further simplified by taking into ac-
count that

�
n=0

m

pmn�̂�n+1� = �
−1

1

�Pm���ni���d� =
1

2
�i

�m+1� + �i
�m−1�� ,

�72�

where the first equality follows from Eq. �34� and the second
equality from Eqs. �30� and �32�. Hence

��inter� = ��on� +
1

�
�1 − �2�i

�nmax�Pnmax+1���

− �i
�nmax+1�Pnmax

���� . �73�

We find therefore that the uppermost expansion coefficient
that enters the intersite kernel is m=nmax+1. This is not to-
tally unexpected since we have obtained the intersite kernel
in Eq. �70� via a single multiplication of the Hamiltonian
matrix with the spectral function.

Thus our constraint on the definition of the spectrally re-
solved intersite density-matrix element is that the additional
factor in the square brackets of Eq. �73� must vanish. This
can be achieved most simply and robustly by adding a con-
straint contribution to Eq. �65�,

�ni�j�
�nmax���� =

1

�
�1 − �2�̂i�j��i

�nmax+1�Pnmax
���

− �i
�nmax�Pnmax+1���� , �74�

where

�̂i�j� =
1

nmax
�
n=1

nmax �̂i�j�
�n�

�̂i
�n+1� − ��i0/2��̂i

�n� . �75�

Substituting Eqs. �74� and �75� into the right-hand side of
Eq. �68�, premultiplying by the Hamiltonian matrix elements
and summing over j, �, and �, we see that we achieve the
exact cancellation of the second term on the right-hand side
of Eq. �73�. In the next section we will find that this choice
of terminator leads to only small additional contributions to
the bond order while guaranteeing the equivalence of the
on-site and intersite representation for the bond energy.

B. Bond order

The bond order between orbitals on different atoms i and
j may be obtained directly from integrating the spectrally
resolved density-matrix element up to the Fermi energy. We
find

�̄i�j� =
1

2
�i�j� + � j�i�� , �76�

where

�i�j�
�nmax� = 2��

m=1

nmax

�i�j�
�m� 	̂m+1�
F� + �̂i�j��i

�nmax+1�	̂nmax+1�
F�

− �i
�nmax�	̂nmax+2�
F��� . �77�

The prefactor 2 accounts for the spin degeneracy in non-
magnetic systems and the second contribution inside the
curly brackets results from integrating the constraint contri-
bution Eq. �75�. The expansion coefficients �i�j�

�m� depend ex-
plicitly on the interference paths through Eq. �66�. These
paths are illustrated diagrammatically in Fig. 2 of Ref. 12. If
we take into account only the leading diagram for each order
within the ring approximation12 and neglect the constraint
contribution, then expansion Eq. �77� is identical to Eq. �17�
of the original BOP paper.23

Figure 5 compares the resultant bond orders for bcc, fcc,
and hcp within the sixth-moment approximation correspond-
ing to nmax=6 with k-space TB results. We see that our con-
strained bond-order expression reproduces the TB results ex-
tremely well, including the fine details between the in-plane
and out-of-plane bond orders in the hcp structure. The un-
constrained sixth-moment approximation also reproduces the
TB results well, introducing only a small contribution that is
visible for the bcc � bond order in the top right-hand panel
of Fig. 5. This shows that the constraint contribution is in-
deed small.

C. Forces

The forces resulting from the bond-energy expansion may
be evaluated with an effort similar to the evaluation of
Hellmann-Feynman forces.43,44 It follows from Eq. �49� that
for the particular case where a� and b� are chosen to be site
independent, the gradient of the bond energy is given by
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�kU
bond = 20b��

i
�

−1

�F

�� − 1/2�i0��kni���d�

= 20b��
−1

�F

��
i

�kni���d� . �78�

The second equality follows because we have made the ex-
cellent approximation for metals that each atom remains lo-
cally charge neutral, so that �kNi vanishes. Substituting the
expansion for the density of states, Eq. �39�, the gradient
becomes

�kU
bond�nmax� = 10b� �

m=0

nmax

�
n=0

m

pmn�k�
i

�̂i
�n�

�	̂m+2�
F� + 	̂m�
F�� . �79�

The derivative of the dimensionless moments �k�̂i
�n� may be

further simplified,

�k�
i

�̂i
�n� =

1

5�
i�

�i���kĥ
n�i��

=
1

5�
i�

�i��nĥn−1�kĥ�i��

=
1

5 �
i�j�

n�̂i�j�
�n−1��khj�i�, �80�

where ĥ= �Ĥ−a�� / �2b�� and we have taken into account that
the trace of a product of operators is invariant with respect to
cyclic exchange of arguments. Finally, by introducing

�̃i�j�
�nmax� = 2 �

m=0

nmax

�
n=0

m

pmnn�̂i�j�
�n−1�	̂m+2�
F� + 	̂m�
F�� , �81�

with �̂i�j�
�−1� =0, the forces may be written in a form similar to

Hellmann-Feynman forces,

Fk
bond = − �kU

bond�nmax� = − �
i�j�

�̃i�j�
�nmax���kHj�i�� . �82�

We prove in the Appendix that as nmax tends to infinity,

�̃�nmax�→�, so that we recover the exact Hellmann-Feynman
force Eq. �20�. It remains for future research to investigate
the magnitude of the errors made by using site-dependent
coefficients ai� and bi� in our analytic BOP expansion.

V. CONCLUSION

In this paper we have derived analytic expressions for the
bond energy and forces within d-valent transition-metal sys-
tems. This has been achieved by expanding the on-site den-
sity of states in terms of Chebyshev polynomials of the sec-
ond kind weighted by the semielliptic density of states
corresponding to the well-known second-moment approxi-
mation. The resulting expansion generalizes the second-
moment approximation to the density of states by including
higher moments that enter the expansion linearly. We showed
using Stoner theory that including contributions up to the
sixth moment in the density of states was sufficient to repro-
duce the very different behavior observed between the ferro-
magnetic moments of bcc 3d-valent iron and its close-packed
fcc and hcp phases under pressure. The corresponding sixth-
moment expansion for the bond energy associated with a
given site was also found to display the hcp→bcc→hcp
→ fcc structural trend across the nonmagnetic 4d and 5d
transition-metal series.

We have derived an analytic expression for the bond order
by using BOP theory to write the intersite Green’s function
as a derivative of an on-site Green’s function. The resultant
expansion coefficients are linear combinations of the inter-
ference paths that link the atoms at the two ends of the bond.
We showed that the corresponding intersite representation
for the bond energy can be constrained to be identical to that
within the on-site representation. An analytic expression for
the forces is obtained in terms of a linear combination of the
interference paths. It is proved to converge to the Hellmann-
Feynman force as higher moments are included.

These analytic BOPs not only generalize the previous
second-moment Finnis-Sinclair and fourth-moment Carlsson
potentials to include higher moments, but they also give ex-
plicit analytic expressions for the valence dependence of the
prefactors associated with the different moment contribu-
tions. Thus they are applicable to both the study of property
trends across the transition-metal elements and alloy behav-
ior. These potentials are currently being fitted to bcc transi-
tion metals in order to perform large scale MD simulations of

FIG. 5. Comparison of first nearest-neighbor �, �, and � bond
orders within sixth-moment approximation with k-space TB results
for bcc, fcc, and hcp as a function of the d valence. Dark �light�
curves correspond to Eq. �76� with �without� constraint contribu-
tion. As the latter contribution is small, light curves are visible only
for bcc � bond order.
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defect evolution under high-energy neutron bombardment in
fusion reactors.
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APPENDIX: CONVERGENCE TO
HELLMANN-FEYNMAN FORCE

In this Appendix we show that �̃i�j�
�nmax� as defined in Eq.

�81� converges to the bond order for nmax→�. We start by
rewriting the interference paths in terms of the eigenstates
�k�,

ĥ�k� = �k�k� , �A1�

with ĥ= �Ĥ−a�� / �2b��, so that

�̂i�j�
�n� = �i��ĥn�j�� = �

k

�i��k��k
n�k�j�� . �A2�

The derivative of the interference paths may be written as

�
k

�

��k
�̂i�j�

�n� = �
k

n�i��k��k
n−1�k�j�� = n�̂i�j�

�n−1�. �A3�

Therefore Eq. �81� becomes

�̃i�j�
�nmax� = 2�

k

�

��k
��

m=0

nmax

�
n=0

m

pmn�̂i�j�
�n� ��F

�Pm���� . �A4�

Substituting Eqs. �65� and �66�, this may be rewritten as

�̃i�j�
�nmax� = 2�

k

�

��k
��F

�ni�j�
�nmax����d� . �A5�

Taking the limit nmax→� and making use of the spectral
representation of ni�j����,27

ni�j���� = �
l

�i��l��l�j����� − �l� , �A6�

the above equation becomes

�̃i�j� = 2�
l

�
k

�

��k
��F

��i��l��l�j����� − �l�d� , �A7�

=2 �
l

occupied

�
k

�

��k
�l�i��l��l�j�� , �A8�

=2 �
l

occupied

�
k

�lk�i��l��l�j�� , �A9�

=2 �
l

occupied

�i��l��l�j�� , �A10�

=�i�j�. �A11�

Hence our analytic expression for the forces, Eq. �82�, tends
to the Hellmann-Feynman result as nmax→�.
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