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Consider a model of particles �nucleons� that has a two-body interaction, which leads to bound composites
with saturation properties. These properties are: all composites have the same density and the ground-state
energies of composites with k nucleons are given by −kW+�k2/3, where W and � are positive constants. W
represents a volume term and � a surface-tension term. These values are taken from nuclear physics. We show
that in the large N limit where N is the number of particles, such an assembly in a large enclosure at finite
temperature shows properties of liquid-gas phase transition. We do not use the two-body interaction but the
gross properties of the composites only. We show that �a� the p-� isotherms show a region where pressure does
not change as � changes just as in the Maxwell construction of a Van der Waals gas, �b� in this region the
chemical potential does not change, and �c� the model obeys the celebrated Clausius-Clapeyron relations. A
scaling law for the yields of composites emerges. For a finite number of particles N �up to some thousands� the
problem can be easily solved on a computer. This allows us to study finite particle number effects, which
modify phase-transition effects. The model is calculationally simple. Monte Carlo simulations are not needed.
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I. INTRODUCTION

A very popular and highly successful model for collisions
of two nuclei at intermediate energies �50 to 100 MeV per
nucleon� is the following. Because of many collisions be-
tween nucleons, a statistical equilibrium is reached. The tem-
perature rises. The system expands from normal density and
composites are formed on the way to disassembly. As the
system reaches between 3 to 6 times the normal volume, the
interactions between the composites become unimportant
�except for the long-range Coulomb interaction� and one can
do a statistical equilibrium calculation to obtain the yields of
the composites at a volume, which is called the freeze-out
volume. Although the model is simple, actual realistic calcu-
lations based on the model are much harder. The nucleus is a
finite system. It has two kinds of particles, neutrons, and
protons �generically termed nucleons�. Protons carry charges
and prevent large nuclei from being formed. For realistic
treatment, the idea of a strict freeze-out volume has to be
modified.

Here we consider the same physics but with the following
simplifications: only one kind of particle is considered and
the Coulomb interaction is neglected meaning arbitrarily
large “nuclei” can be formed. The energy scale is MeV �mil-
lion electron volt� and the length scale is fm �10−13 cm� so
the salient features of nuclear physics are retained. The bind-
ing energy and the volume of a composite is proportional to
the number of particles �nucleons� in the composite and have
a surface tension proportional to the surface area. We show,
with rather little effort, that the model leads to a first-order
phase transition as either the density, the temperature, or both
are varied. The system has a region of liquid-gas coexistence
where, as for the Maxwell construction of a Van der Waals
gas, pressure remains constant when the density increases
along the isotherm. In this region the chemical potential re-
mains unchanged. As one traverses the path from the liquid
phase to the gas phase the Clausius-Clapeyron relationship is
obeyed. For large systems, a scaling law for composites

emerges: if we know the yields of composites for one large
system, we know these for another large system.

A more realistic version of this model has been used for
Bevalac physics ��250 MeV per nucleon beam energy in the
lab� by many authors more than 25 years ago. It is not pos-
sible to quote all the references but a review article1 has a
more complete list. The possibility of a phase transition was
not considered as the collision energies were too high for the
liquid phase and only very light composites could be pro-
duced.

Phase transitions in heavy-ion collisions at intermediate
energies became a topic of considerable interest starting from
the mid-eighties and continues to be a central issue. There
are many approaches and a large literature too numerous to
list. We will refer here to only a few, which closely follow
the underlying physics considered here. The same model as
used here was adopted in Ref. 2 for finite nuclei. By extrapo-
lation it was shown that the model leads to a first-order phase
transition. A brief application of this model is given in Sec.
VII. A grand canonical model was used in Ref. 3, which
demonstrated a first-order phase transition. The approach
was quite different from what is used here. We use simpler,
more traditional, and numerical methods. Our results are
similar but sufficiently different to warrant a full description.
A discussion of Clausius-Clapeyron relations and a scaling
law highlight some interesting physics.

The celebrated statistical multifragmentation model
�SMM� of Copenhagen4 and the microcanonical models of
Gross and Randrup and Koonin,5,6 use the same underlying
physics as in this work. But the emphasis was on trying to be
as close to the actual nuclear situation as one can and thus
the phase-transition aspects are largely hidden.

II. BASIC FORMULAS

If we have na particles of type a, nb particles of type b, nc
particles of type c, etc. all enclosed in a volume V and inter-
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actions between particles can be neglected, the grand parti-
tion function for this case can be written as

Zgr = �
i=a,b,c,. . .

exp�e��izi� . �1�

Here the �i is the chemical potential and zi the canonical
partition function of one particle of type i. The average num-
ber of particles of type i is given by ��ln Zgr� /����i�;

ni = e��izi. �2�

It is possible that one of the species can be built from two
other species. In reverse, a heavier species can also break up
into two lighter species. If � number of particles of type a
can combine with � number of particles of type b to produce
	 number of particles of type c, then chemical equilibrium
implies7 that the chemical potentials of a, b, and c are related
by ��a+��b=	�c.

In our model we have N nucleons in a volume V but these
nucleons can be singles or form bound dimers, trimers, etc.
Chemical equilibrium implies that a composite with k bound
nucleons has a chemical potential k� where � is the chemi-
cal potential of the monomer �nucleon�. Thus our ensemble
has monomers, dimers, trimers, etc. up to some species with
kmax bound nucleons where ideally kmax→
. For practical
calculations, we use a finite value of kmax. Most of the results
shown here use kmax=2000 although we have also done cal-
culations with much larger values. Choosing kmax=2000 does
not mean that the total number of nucleons is 2000. The total
number of nucleons can be infinite but the largest species
allowed in the calculation �is somewhat artificially� limited
to 2000. The total number of nucleons will be denoted by N
where N is very large. The quantity kmax plays an essential
role; setting kmax too low �for example, 200 as shown in Sec.
VII� then makes the liquid-gas transition disappear. An as-
sembly with �200 particles or less does not display the typi-
cal behavior of liquid-gas coexistence.

We now look into zi, the partition function of one com-
posite of i nucleons. This factors into two parts—a tradi-
tional translation energy part and an intrinsic part: zi
=zi�tran�zi�int� where

zi�tran� =
V

h3 � exp�− �p2/2mi�d3p =
V

h3 �2�miT�3/2. �3�

The intrinsic part zi�int� of course contains the key to phase
transition. If we regard each composite to exist only in a
ground state with energy ei

gr, then zi�int�=exp�−�ei
gr�. We

use ei
gr=−iW+�i2/3 where nuclear physics sets W=16 MeV

and �=18 MeV. This simple model itself will lead to the
main results of this paper. Because of the surface term, en-
ergy per particle drops as i grows. Let us denote by F the
free energy of the N nucleons where N is the total number of
nucleons; E is the energy and S is the entropy: F=E−TS. At
finite temperature, F will go to its minimum value. The key
issue is how the system of N nucleons breaks up into clusters
of different sizes as the temperature changes. At low tem-
perature E and hence F minimize by forming very large clus-
ters �liquid�. But as the temperature increases, S will increase
by forming a larger number of clusters, thus breaking up the

big clusters. Gaseous phase will appear. How exactly this
will happen requires calculation and we find that the system
goes through a first-order liquid-gas phase transition.

We used here a slightly more sophisticated model for
zi�int�. This does not make the calculation any harder �or
alter the qualitative features� but makes it more realistic. We
make the surface tension temperature dependent in confor-
mity with usual parametrization;4 ��T�=�0��Tc

2−T2� / �Tc
2

+T2��5/2.
Here �0=18 MeV and Tc=18 MeV. At T=Tc surface ten-

sion vanishes and we have a fluid only. For us this is unim-
portant as our focus will be the temperature range 3–8 MeV.

In computing the partition function zi�int� we include
not just the ground state but also excited states of the com-
posite in an approximate fashion. We should compute
zi�int�=exp�−�ei

gr�+�	gi�e�exp�−�e�. Here e�ei
gr and gi�e�

is the density of excited states of this particular composite.
Instead of trying to calculate zi�int� by performing the sum
and integral we use a well-known trick. Utilize the relation
zi�int�=exp�−f i�int� /T� where f i�int�=ei

T−Tsi and now use
the Fermi-gas formula for the nucleus with i nucleons �ap-
proximately correct and widely used at intermediate tem-
perature�. This gives ei

T=ei
gr+ iT2 /�0. This is similar to elec-

tron gas at finite temperature �excitation energy goes like T2�
except that in nuclear physics the value of �0 is �16 MeV.
The intrinsic entropy of the nucleus at this temperature is
2iT /�0. The expression for zi�int� is now complete and easily
tractable.

Let us now summarize the relevant equations. For k=1
�the nucleon that has no excited states�,

n1 =
V

h3 �2�mT�3/2 exp��/T� �4�

and for k�1,

nk =
V

h3 �2�mT�3/2k3/2 exp
��k + Wk + kT2/�0 − ��T�k2/3�/T� .

�5�

Here nk is the average number of composites with k nucle-
ons. In the rest of the paper, for brevity, we will omit the
qualifier “average.” It is always implied.

A useful quantity is the multiplicity defined as

M = 	
k=1

kmax

nk. �6�

The number of nucleons bound in a composite with k nucle-
ons is knk and obviously N=	k=1

kmaxknk. The pressure is given
by

p = 	
k=1

kmax nk

V
T . �7�

Quantities like N, V, nk are all extensive variables. These
equations can all be cast in terms of intensive variables like
N /V=�, nk /N, etc., so that we can assume both N and V
approach very large values and fluctuations in the number of
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particles can be ignored. Thus for a given temperature and
density we solve for � using

� =
�2�mT�3/2

h3 �exp��/T� + 	
k=2

kmax

k5/2

exp
��k + Wk + kT2/�0 − ��T�k2/3�/T� . �8�

The sum rule N=	k=1
kmaxknk changes to 1=	knk /N.

From what we have described so far it would appear that
V in Eqs. �3�, �4�, and �6� is the freeze-out volume V, the
volume to which the system has expanded. Actually, if the

freeze-out volume is V, then in these equations we use Ṽ,
which is close to V but less. The reason for this is the fol-
lowing. To a good approximation a composite of k nucleons
is an incompressible sphere with volume k /�0 where the
value of �0 is �0.16 fm−3. The volume available for transla-

tional motion �Eq. �3�� is then Ṽ=V−Vexcluded where we ap-
proximate Vexcluded�N /�0=V0, the normal volume of a
nucleus with N nucleons. Similar corrections are implicit in
Van der Waals equation of state. This is meant to take care of
hard sphere interactions between different particles. This an-
swer is approximate. The correct answer is multiplicity de-
pendent. The approximation of noninteracting composites in
a volume gets to be worse as the volume decreases. We re-
strict our calculation to volumes V greater than 2V0. This is
how the calculations reported in the next section proceed. We

choose a value of V0 /V=� /�0 from which V0 / Ṽ= �̃ /�0
=� / ��0−�� is deduced. This value of �̃ is used in Eq. �8� to
calculate � and all other quantities. We plot results as a
function of � /�0. If we plotted them as function of �̃ /�0 the
plot would shift to the right.

Calculations in Ref. 3 are continued beyond the limit
� /�0=0.5. They find one can identify a critical point at T
=Tc=18.0 MeV, � /�0=1, and pc=
. At very high pressure
the model should break down: zk�int� must change at such
high pressure although nuclear physics says that nuclei being
highly incompressible moderate pressures should leave the
internal partition functions relatively unchanged. Another
way of saying this is that interaction between composites
should be taken into account for V�V0.

III. P-� CURVES FOR ISOTHERMALS

For a given temperature T and � we solve for � and then
pressure. This is plotted in Fig. 1. For each isotherm shown
the pressure rises rapidly at first with � but then flattens out.
The flattening depends upon the value of kmax. For low kmax
�shown in Sec. VII� there will not be any flattening. The
value of kmax used in Fig. 1 is 2000. There is still a very
slight rise in p �not discernible in the figure�. The figure
empirically allows us to designate two regions: a purely gas
phase where the pressure rises with density and a liquid-gas
coexistence phase where the volume changes but the pres-
sure is nearly stationary. One way of seeing this is that p

=T�M / Ṽ�. As Ṽ decreases so does M so as to compensate in
the coexistence region. Figure 1 also shows that in the gas

phase, the chemical potential rises rapidly with density but
then flattens out in the coexistence phase.

A discussion about � dependence in the coexistence re-
gion is in order here. For kmax large � is much more sensitive
to � than pressure �� has weighting of k5/2 �Eq. �8�� whereas
p has k3/2 weighting �Eqs. �5� and �7���. For very large kmax
an infinitesimal change in � will lead to a finite change in �
but only a very small change in p. In the limit kmax→
 we
will reach ideal liquid-gas phase transition: no change of �
in the coexistence region and no change of pressure. This is
demonstrated in Sec. VI.

IV. WHAT CONSTITUTES THE GAS AND WHAT
CONSTITUTES THE LIQUID?

As an example, at fixed temperature 7 MeV we show in
Fig. 2 the distribution of composites �a� in the pure gas re-
gion �� /�0=0.12� and �b� in the coexistence region �� /�0

=0.22�. In the gas phase the sum rule 	knk /N=1 is ex-
hausted well before we reach 50. There are no heavy com-
posites. In the coexistence region there are light particles

FIG. 1. Behavior of pressure p and chemical potential � against
� /�0 for three different temperatures: dashed �7.5 MeV�, solid
�7 MeV�, and dashed-dotted �6 MeV�. We identify as purely gas
phase the region where the pressure and the chemical potential �
rise with density and the coexistence region where they remain
constant.
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�k�40�, then nothing for a long range of k, and then there
are heavy particles with k between 1800 to kmax=2000 �the
figure shows the population of k=1900 to kmax=2000�. A
safe functional definition for the gas phase is all composites
between k=1 to k=100 and for the liquid phase all compos-
ites between kmax−300 to kmax. Thus both the liquid and the
gas phases are quite complicated, consisting of not one or
two but many species, although they are all made up of the
same elemental nucleon.

V. CLAUSIUS-CLAPEYRON RELATIONS

In the coexistence region the pressure is a rapidly increas-
ing function of the temperature. In Fig. 1 these are the flat
regions shown for three temperatures �dashed-dotted:
6 MeV, solid: 7 MeV, and dashed: 7.5 MeV�. The Clausius-
Clapeyron relation for liquid-gas phase transition provides an
equation for the rate of change:7

dp

dT
=

�s

�v
, �9�

where �s can be taken to be the change of entropy per unit
mass and �v the corresponding change in volume as matter
moves across phase transition. We can take these changes to
be per nucleon. The following substitutions are made: �s
=L /T �L is the latent heat� and �v=vgas−vliq. The standard
approximation now is vgas�vliq, vgas=1/�gas�T / p, and thus

dp

dT
�

Lp

T2 . �10�

If we make the assumption that L is nearly independent of
temperature, then the equation integrates out to give

ln p = ln p0 − L/T . �11�

This does not work well in our case �Fig. 3�: ln p is not a
linear function of �=1/T. We can discard the assumption
that L is constant and instead use Eq. �10� to get an idea of L
using values of dp /dT, p, and T from Fig. 1. If this is done
then at 6 MeV temperature, the value of L turns out to be
54 MeV and at 7 MeV temperature this reaches 70 MeV.
Since the binding energy per particle for an infinite cluster is
16 MeV, these values are clearly unacceptably high.

Let us ask what went wrong in going from Eq. �9� to Eq.
�11�. The passage from Eq. �10� to Eq. �11� assumed that the
latent heat is independent of temperature. We will show that
this is approximately correct. However, the approximation
vgas�T / p is very inaccurate and depending upon the tem-
perature, corrections due to vliq can be significant. When all
this is taken into account, Eq. �9� is satisfied remarkably
well. We elaborate first on the latent heat. For definiteness fix
on the isothermal at 7 MeV. From Fig. 1 we can determine
the density at which the system enters the purely gaseous
phase and its energy per particle from 	nkek /N, where ek

FIG. 2. At temperature 7 MeV yields of composites at two den-
sities � /�0=0.12 �gas phase� and � /�0=0.22 �the coexistence
phase�. For the first case there are no heavy composites �dashed
line�. The sum rule 	knk /N=1 is already satisfied to good accuracy
by k=40. In the second case �solid line� there are light particles
�less than 50 nucleons� and there are heavy particles �greater than
1800 particles�. Together these exhaust the sum rule. In k space
there is a huge gap for particles between large and small. The oc-
cupation number in this region is very close to zero.

FIG. 3. A plot of ln�p� against the inverse of temperature. The
relationship is not linear. Here p0 is 1 MeV fm−3.
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= �3/2�T+ek�int�. Here ek�int� consists of volume energy
�which is negative�, surface energy, and as well, contribu-
tions from excited states. The expressions are given in Sec.
II. The nucleons are passing from a liquid state �from a com-
posite with k�2000� to the gaseous phase. The energy per
particle in the liquid phase was taken from a composite of
1950 particles. Reasonable variation around this number will
only change the calculated value slightly. Latent heat per
particle calculated is 12.66 MeV at temperature 6 MeV and
11.55 MeV at 7.5 MeV.

By far the major error is in assuming that vgas�T / p. The

pressure is given by p= �M / Ṽ�T and not �N / Ṽ�T, where M is
the multiplicity and N of course the total number of particles.
Thus p= �M /N�T /vgas. The factor �M /N� when the system
just turns into a pure gas phase is 0.276 at T=6.0 MeV,
0.194 at 7.0 MeV, and 0.152 at 7.5 MeV. Writing � for M /N
we find that Eq. �10� should be rewritten as

dp

dT
=

Lp

T2��1 − p/��0�T��
, �12�

where we have used the fact that vliq=1/�0. As an example,
at 7 MeV dp

dT =0.0535 fm−3 from Fig. 1 and 0.0530 fm−3 es-
timated from formula �12�. At 6 MeV the corresponding
numbers are 0.0129 fm−3 and 0.0108 fm−3, respectively.

VI. LIMIT LARGE Kmax

We will now consider changes in the values of various
quantities as we change from one large value of kmax to an-
other large value of kmax. For definiteness we will concen-
trate on one isothermal �for example, the T=7 MeV case�. In
Fig. 1 we have two regions: pure gas phase and the coexist-
ence phase. The pure gas phase is trivial. Nothing changes as
we go from one large kmax to another; kmax=2000 is large
enough in this case. It is easy to see why results become
insensitive to changes in the value of kmax. In the gas phase
there is no population in high k composites so it does not
matter whether the summation stops at a given high value of
kmax or another high value of kmax. The situation is more
complicated but also more interesting in the coexistence re-
gion as we have population both at the lower end and the
higher end of k.

In Fig. 4 we plot the values of � and pressure calculated
for kmax in the range kmax=2000–5000. This is done at a
fixed value of � /�0=0.3, which is in the coexistence region.
As shown in the figure, both curves are well fit by a param-
etrization a+b exp�−ckmax�, where kmax�2000 with values
given in the caption. This means that within the accuracy
with which this calculation was carried out, the values of �
and pressure in the infinite kmax limit are −18.504 MeV and
0.0294 MeV fm−3, respectively.

A similar calculation as above was done for � /�0=0.4.
The fitted values of a, b, and c for � were −18.504 MeV,
0.33892 MeV, and 0.0003197 MeV, respectively. For pres-
sure, the parameters were 0.0294 MeV fm−3, 0.007633
MeV fm−3, and 0.0003906 MeV fm−3, respectively. Note that
the extrapolation demonstrates that neither � nor the pres-

sure change in the coexistence region in the limit kmax→
.
This firmly establishes the present model as a model of
liquid-gas phase transition as was stated in Sec. III.

Lastly we want to estabish a scaling law. Given the frac-
tional occupation fk�kmax�=knk /N for a large value of kmax,
do we know the fractional occupation fk��kmax� � for another
large value of kmax? Based on the discussion, so far we ex-
pect that if one is in the purely gas phase fk�kmax�= fk�kmax� �
and this is indeed the case.

In the coexistence phase a lowest-order approximation is
based on the following approximation. We expect the frac-
tional occupation to match near the beginning �k small�, near
the end �near k�kmax and k��kmax� �, and in between there is
almost no occupation. Thus for k small fk�kmax�� fk�kmax� �
and near the high end fk�kmax�� fk��kmax� �, where kmax−k
=kmax� −k�. This is not very accurate but an accurate represen-
tation for low k is given using the parametrization

FIG. 4. The solid curve in the upper panel is a plot of � against
kmax in the range of kmax=2000–5000 with density at � /�0=0.3 and
temperature 7 MeV. The dashed curve is a fit with the parametriza-
tion a+b exp�−ckmax�. The values of the fit parameters are a
=−18.504 MeV, b=0.33748 MeV, and c=0.0003842. Similar
quantities for pressure are shown in the lower panel. The fit param-
eters are a=0.0294 MeV fm−3, b=0.007503 MeV fm−3, and c
=0.0003842. Similar curves for � /�0=0.4 yield an equally good fit
and give the same values for a but different values for b and c.
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ln fk�kmax� = ln fk�kmax� � +
k

T
b�exp�− ckmax� − exp�− ckmax� �� .

�13�

An equation relating the large clusters can also be written
down, but the functional form is quite complicated.

VII. SMALL SYSTEMS: AN EXACT CANONICAL
MODEL SOLUTION

The model can be solved when the number of particles N
is finite. Extensive use of the canonical model has been made
to fit experimental data8 so just an outline will be presented
for completeness. Among other applications, the canonical
model can be used to study finite particle number effects on
phase-transition characteristics.

Consider again N identical particles in an enclosure V and
temperature T. These N nucleons will combine into mono-
mers, dimers, trimers, etc. The partition function of the sys-
tem in the canonical ensemble can be written as

QN = 	 �
i

�zi�ni

ni!
. �14�

Here zi is the one-particle partition function of a composite,
which has i nucleons. We already encountered zi in Sec. II:
zi=zi�tran�zi�int� with zi�tran� and zi�int� given in detail.
Other forms for zi can be used in the method outlined here.
The summation in Eq. �14� is over all partitions, which sat-
isfy N=	ini. The summation is nontrivial as the number of
partitions, which satisfy the sum, is enormous. We can define
a given allowed partition to be a channel. The probablity of
the occurrence of a given channel P�n��� P�n1 ,n2 ,n3 ,…� is

P�n�� =
1

QN
� �zi�ni

ni!
. �15�

The average number of composites of i nucleons is easily
seen from the above equation to be

�ni� = zi
QN−i

QN
. �16�

Since 	ini=N, one readily arrives at a recursion relation9

QN =
1

N
	
k=1

N

kzkQN−k. �17�

For one kind of particle, QN above is easily evaluated on a
computer for N as large as 3000 in a matter of seconds. It is
this recursion relation that makes the computation so easy in
the model. Of course, once one has the partition function, all
relevant thermodynamic quantities can be computed. For ex-
ample, Eq. �7� still gives the expression for pressure although
one could correct for the center-of-mass motion by reducing

the multiplicity by 1: p=T�M −1� / Ṽ. The chemical potential
can be calculated from �=F�N�−F�N−1�, where the free
energy is F�N�=−T ln QN, which is readily available from
the calculation.

In Fig. 5 we show an example of the canonical model
calculation. The temperature is 6 MeV. The number of par-

ticles N is 200. The value of the largest allowed cluster kmax
is also 200. This would be a typical nuclear physics case. In
the same figure we also show the result of a grand canonical
calculation with the same kmax �of course for the grand ca-
nonical N is very large�. At small density the results are the
same but they become different at larger densities. In the
canonical result there is a small region where dp /d� is nega-
tive. This is a finite particle number effect since for large N
�grand canonical result� any negative compressibility disap-
pears. Negative compressibility can lead to negative value
for cp.8 The grand canonical result shows that for kmax=200
typical liquid-gas coexistence is not found and there is no
region where p is constant when the density changes.

VIII. DISCUSSION

Results in Sec. III to Sec. VI show that the model of
excited matter breaking up into clusters with saturation prop-
erties leads to a first-order phase transition. This has rel-

FIG. 5. The solid curve in the upper panel is a plot of pressure
against density in the canonical model. The number of particles is
N=200 exactly and kmax is also 200. Note that there is a region of
negative compressibility. The dashed curve is the grand canonical
result with the same kmax. The two curves coincide at low density.
Note that in the grand canonical model the increase of pressure with
density goes down later but never disappears for this low kmax. The
lower panel compares the chemical potentials.

CHAUDHURI, DAS GUPTA, AND SUTTON PHYSICAL REVIEW B 74, 174106 �2006�

174106-6



evance to heavy-ion collisions at intermediate energy but
may have significance in other areas of physics as well. This
model for first-order phase transitions is extremely easy to
implement. A very significant advantage of the model is that
it can be solved not only in the thermodynamic limit �large
N� but also for a finite number of particles. Thus one can
study how observables change as one progresses from small
to large systems.

We would like to end this discussion by noting that in
spite of a very different approach that is adopted here to
arrive at the key equations �5�, �7�, and �8�, formally the
pressure and density equations have the same structure as
those encountered in the well-known Mayer cluster

expansion.10 These are p=
�2�mT�3/2

h3 	k=1

 exp���k�bk and �

=
�2�mT�3/2

h3 	k=1

 exp���k�kbk. Here, instead of the cluster inte-

gral bk, we have k3/2zk�int�.
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