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The mutual interaction between Josephson plasmon and energy-gap amplitude collective oscillations in a
SIS junction is considered where S denotes a superconducting electrode and I is a dielectric barrier. Using a
simple tunneling model we find that both modes can be stable for a range of magnitudes of the tunneling
interaction and Cooper coupling strength.
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Renewed interest in collective oscillations in Josephson
junctions has been generated by recent progress in quantum
information technology.1–6 Quantization of the Josephson
plasmon in SIS junctions �where S is a superconductor and I
is a dielectric barrier� has been successfully used in single
and double quantum logic gates.1–6 Several types of collec-
tive oscillations have been studied to date. The Josephson
plasmon �JP� has attracted the most attention due to its uti-
lization in various superconducting devices. The JP involves
oscillations of the Josephson supercurrent about its equilib-
rium value. A simple classical analogy is a pendulum with a
mass m=C�� /2e�2 and a rigidity k=�Jc /2e; here C is the
junction capacitance and Jc is the critical current. In such a
pendulum, the phase difference � across the junction serves
as a coordinate, while the velocity �̇ is related to the charge
Q=C��̇ /2e accumulated on the junction electrodes; here we
used the Josephson relationship V=��̇ /2e relating the volt-
age V and �. The JP pendulum frequency is then �JP
=�2eJc /�C.

Other types of collective oscillations are associated with
the phase and amplitude of the superconducting energy gap
�= ���ei�. In a bulk BCS superconductor, two modes have
been discussed:7 one involves a small oscillation ��t� of the
phase, ��t�=�0+��t�, while the other is an oscillation ��t�
of the gap amplitude, ���t� � =�0+��t�; here �0 and �0 de-
note the equilibrium values and t is the time. The first of
these modes is referred to as the Anderson-Bogoliubov �AB�
mode,8,9 and would occur at the electron plasma frequency
�p=�4�ne2 / �	0m*� �where n is the electron concentration,
m* is the electron effective mass; typically �p /	F�10 and
� /	F�10−3–10−4 for a Fermi energy 	F�1 eV�; this prop-
erty results from the fact that an oscillating phase necessarily
produces an oscillating current which in turn creates an os-
cillating charge density.10 The second mode, which was ex-
amined by Littlewood and Varma11 �LV�, is found to lie at or
above the absorption threshold 2� /�, and hence is strongly
damped. In previous work,8–14 the AB, LV, and JP modes
were discussed independently of each other, and their inter-
relationship was largely ignored.

In the SIS Josephson junction sketched in Fig. 1 one
would expect both symmetric �+� and antisymmetric �−� AB
and LV modes, �AB

± and �LV
± . The branches �AB

+ and �LV
± lie

near �p and 2�, respectively. In low-transparency junctions,
the �LV

± modes are strongly damped,14 while the �AB
− mode is

typically stable �since �AB
− 
2�� and actually coincides with

the aforementioned JP mode, i.e., �AB
− =�JP=�2eJc /�C. In

general, all the relevant modes �i.e., �LV
± and �AB

− � interact
with each other, which means that the Josephson supercur-
rent oscillations are hybridized with oscillations involving
elementary Cooper pair processes.

In this paper we study how the above AB, LV, and JP
modes are related to each other. Using a model approach we
derive analytical equations that describe the interrelationship
between the Josephson plasmon, AB, and LV modes. Our
earlier calculations15 addressed collective modes using a dif-
ferent quasiclassical approach considering more complex
SISIS junction. Here we consider a simpler SIS junction us-
ing a many-body method. It provides illustrative analytical
relationships between different branches of the collective
modes in the SIS junction. Finally we will discuss the pos-
sibility of experimentally observing the collective oscilla-
tions, e.g., in a tunneling experiment.

Our approach is based on the well-known tunneling
model14–18 from which we obtain the collective oscillations
�CO� and their mutual interaction. Along with terms consid-
ered in Ref. 14 we include additional contributions from the

Coulomb charging ŴQ and Josephson ŴJ energies of the

junction.19 We will see that the terms ŴQ and ŴJ have a
different symmetry structure as compared to the formerly
studied case.14 The charging energy originates from a finite
capacitance C�0 of the Josephson junction, which was not
accounted for in the former work. This allows a more con-
sistent study of both the phase and amplitude oscillations of

FIG. 1. Schematic of collective oscillations in a SIS junction. �a�
The Josephson plasmon �JP� results from oscillations of the super-
current across the SIS junction, which are accompanied by small
voltage oscillations V= �� /2e��̇. �b� The LV amplitude mode in a
bulk superconductor. �c� The AB phase mode in a bulk supercon-
ductor. Out-of-phase processes and particles are shown by thinner
lines.
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the energy gap �. Although the tunneling model is applicable
in the low-transparency limit, it allows a concise and system-
atic delineation of the CO branches.

We start by writing the total effective Hamiltonian in the

form H̃= Ĥ−�N̂, where

Ĥ = Ĥ0 + Ĥint. �1�

The first term is given by

Ĥ0 = �
p,�,i

	pâi,p,�
† âi,p,� + �

p,�,i�j

t̄pâi,p,�
† âj,p,�, �2�

where 	p is the kinetic energy of an electron with momentum
p and t̄p is the tunneling matrix element between the two
superconducting electrodes denoted by i and j. The interac-
tion term involves three contributions that we write as

Ĥint = ĤC + ĤT + Ŵ; �3�

the first two terms represent the Cooper coupling and tunnel-
ing interaction, while the third term, which we write as

Ŵ = ŴQ + ŴJ, �4�

accounts for the charge on, and the current flowing between,

the junction electrodes. ĤC and ĤT can be written in the form

ĤC = − g �
q,i,�

���̂i,q,�
† ��̂i,q,� + �Âi,q,�

† �Âi,q,�� , �5�

ĤT = TJ �
q,i�j,�

���̂i,q,�
† ��̂ j,q,� + �Âi,q,�

† �Âj,q,�� , �6�

where i , j=1,2, g= �
q�2, 
q is the electron-phonon coupling
matrix element, TJ= �t̄p�2, and we defined the operators

�̂i,q,� = �
p

�âi,p,�
† âi,−p−q,−�

† − âi,−p+q,−�âi,p,��/�2,

Âi,q,� = �
p

�âi,p,�
† âi,−p−q,−�

† + âi,−p+q,−�âi,p,��/�2, �7�

which are associated with the phase and amplitude of the
order parameter, respectively. The Coulomb and Josephson

energies ŴQ and ŴJ of the SIS junction in the pendulum
approximation19 are expressed through the operators �7�

ŴQ =
m

2 �
q,�

��̂̇q,���̂̇q,�, ŴJ =
k

2�
q,�

��̂q,���̂q,�, �8�

where �̂q,�=�̂i,q,�−�̂ j,q,� and 
̂q,�= Âi,q,�− Âj,q,� are opera-
tors of the phase and gap amplitude difference across the SIS
junction, m=C�� /2e�2 is the mass, and k=�Jc /2e is the ri-

gidity. The quantum mechanical operator �̂̇q,� is related to

the electric charge operator Q̂ through the Josephson rela-

tionship �̂̇q,�= �2e /��Q̂ /C. The charge operator Q̂ generally

does not commute with the phase difference operator �̂q,�,

i.e., 	Q̂ , �̂q,�
=2ei. However, we are interested in the Joseph-
son plasmon with the lowest excitation energy, when one can

use �̇
ˆ

q,�→ i��̂q,�. Although all the interlayer coupling terms

�6� and �8� originate from the tunneling interaction 	second
term in Eq. �2�
, they apparently have a different meaning
and structure; namely, Eq. �6� describes the coupling be-
tween two linear phase oscillations in adjacent layers while
Eq. �8� is a nonlinear part of energy of the Josephson SIS
junction, which depends on the interlayer phase difference.
In this way Eq. �8� describes a pendulum with a kinetic en-

ergy ŴQ and potential energy ŴJ.
We calculate the collective mode spectrum by locating the

poles of the susceptibility �̂�ij��q , i�n� characterizing the lin-
ear response of the system.14,20 This susceptibility is given
by the expression

�̂�ij��q,i�n� = − �
0

�

d� ei�n��T̂�Ôq
�i����Ôq

†�j��0�� , �9�

where Ôq is the four-component vector

Ôq = ��̂i,q,�,�̂ j,q,�,Âi,q,�,Âj,q,��

and T̂� is the time ordering operator. In the random phase
approximation this susceptibility is given by

�̂ = �̂�0� − �̂�0�V̂�̂ = �Î + �̂�0�V̂�−1�̂0. �10�

The seqular equation for the eigenfrequencies �q takes the
form

det�Î + �̂�0�V̂� = 0; �11�

here �̂�0�=−1̂B�+� � 1̂B�−� is the susceptibility of a noninter-

acting system, 1̂ is a unit 2�2 matrix, � means the direct
matrix sum,22 and the auxiliary function Bq,n

± is defined as

Bq,n
± = −� dp

�2��2

E + E�

2EE�

�EE� + 		� ± �2�
�i�n�2 − �E + E��2 , �12�

where �n is the Bose Matsubara frequency, E=Ep, E�

=Ep+q, and 	�	p, 	��	p+q. The interaction V̂ has the form

V̂ = 	�g + �2m/2 − k/2�1̂ + �k/2 − �2m/2 − TJ��̂1


� �g1̂ − TJ�̂1� .

The function Bq,�
+ in Eq. �12� can be rewritten as

Bq,�
+ = f − Q�q,�� , �13�

where

f = �
p

�c 1

Ep
tanh

Ep

2T
, �14�

which in equilibrium satisfies 1−gf =0,

Qq,� =� dp

�2��2

E + E�

4EE�

�2 − �	� − 	�2

�2 − �E + E��2 , �15�

and �c is the cutoff frequency. Equation �11� for the eigen-
frequencies yields the following algebraic equations for the
collective modes:

D� = 0 = �1 − B−g�2 − B−
2TJ

2 �LV mode� ,
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D� = 0 = �1 − B+g�2 − B+
2TJ

2

+ B+�1 − B+g + B+TJ��k − m�2� �phase mode� ,

which in the limit q→0 yields

Q�q,�� = N�0�I�����2 − vF
2q2/2�/�2��2; �16�

here I���= �4�̃�̃�−1 ln	��̃+ �̃� / ��̃− �̃�
, �̃=� /2�, and �̃

=��̃2−1. The auxiliary function I��� has a threshold at �̃
=1 ��=2�� related to pair breaking.

The function B−�q ,�� is rewritten as

B−�q,�� = f − P�q,�� , �17�

where

P�q,�� =� dp

�2��2

E + E�

4EE�

�2 − �	� − 	�2 + �2��2

�2 − �E + E��2


 N�0�I���	�2 − vF
2q2/2 − �2��2
/�2��2. �18�

If TJ=0, one obtains D�=0=1−B−g, which gives the disper-
sion relation for the LV mode as �2−vF

2q2 /2− �2��2=0
where vF is the Fermi velocity. For TJ�0, approximating
I���=−��2�−�� one gets for the LV± modes

�LV±
2 = �2��2�1 −

1

�

D/�

D/� � 1
� +

1

2
vF

2q2, �19�

where D is the junction transparency, and �=gN�0� with
N�0� the density of states. In the same approximation the
equation for the AB− mode �JP� is obtained as

m

g
��JP

2 − �2� =
�

�2��2��2 −
1

2
vF

2q2��m

g
��JP

2 − �2� − 1� .

Solving this equation one obtains21

�1,2 = ± ��2 ± ��4 − B−, �20�

where �2=q2vF
2 /4+2�2 /�+�JP

2 /2−g /2m and B−
=�JP

2 �4�2 /�+q2vF
2 /2�−gq2vF

2 / �2m�. From Eq. �20� one can
see that in the limit C→� �i.e., for large-area junctions� and
when q→0 only the LV− mode remains 	which depends
only on g and �=N�0�g
 while the JP mode vanishes since
�JP=0.

In Fig. 2�a� we plot ��q� versus the coupling strength g.
Here we used the following parameters: vF=1 �in units of
���0 /�, �0 being the BCS coherence length�, �=1+ i0.05
�where the imaginary part models an inelastic scattering rate
and is introduced to smooth the singularities�, q=0.2, k
=0.7, m=2, TJ=0.4, and �=0.3g. One can see that the am-
plitude modes are strongly affected by the pairing interaction
and change significantly as g increases. The phase mode �AB

+

is shown for the hypothetical case of a neutral supercon-
ductor; it moves to very high frequencies ��10 eV in metals�
when intralayer Coulomb repulsion is taken into account.

In Fig. 2�b� we show the dispersion law for �AB
− �q�

�which coincides with the Josephson plasmon� for the same
parameters as used in Fig. 2�a� for g=1 and 2. One can see
that the wave vector dependence of the Josephson plasmon,
�AB

− �q�, is very weak.21

In Fig. 2�c� we plot the JP and LV− branches for

��JP/�=0.3 with the remaining parameters the same as for
the g=1 curve in Fig. 2�b�. The two branches JP and LV−
cross each other, but are expected to split 	as depicted by the
dashed curves in Fig. 2�c�
 in the vicinity of the mode cross-
ing if a bias dc supercurrent j�0 is applied across the SIS
junction. The splitting gap is evaluated as �spl
 ���2

+1�−1�1− �2�−1/2�JP �where �= j / jc, and jc is the critical su-
percurrent�.

In Fig. 3 we plot the �11��� �which corresponds to the
phase oscillations �AB

� � and �44��� �which is related to am-
plitude oscillations �LV

± � components of the dynamic suscep-
tibility for q=0.3. Note that curve 1 	where g=1 and other
parameters the same as for the LV+ curve in Fig. 2�a�
 ex-
hibits a sharp Josephson plasmon peak at �̃=0.37 and a
wider peak at �̃=1.42 corresponding to phase oscillations.
Curve 2 was plotted for a stronger electron-phonon interac-
tion strength, g=2. The upper peak is shifted to a higher
frequency �̃=1.8 and broadens. We emphasize that the upper
peaks are for a neutral superconductor only, and, as noted
above, are shifted to very high frequencies as the Coulomb
repulsion is turned on. Curves 3 and 4 show �44��� for g
=1 and 2 and are related to amplitude oscillations. One can
see that a strong pairing interaction destroys the amplitude
mode �LV

− .

FIG. 2. Mode frequencies and their dispersion for the phase and
amplitude modes. �a� The mode frequencies �AB

± and �LV
± versus the

electron-phonon interaction strength g. The AB− mode corresponds
to the JP. The dotted line denotes the absorption threshold by qua-
siparticles at ��2� /�. �b� The Josephson plasmon frequency ver-
sus the wave vector. �c� Schematic representation of the coupling
between the phase and amplitude modes.

FIG. 3. The susceptibility function for the phase and amplitude
oscillations.
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The collective modes discussed in this paper can be de-
tected by measuring the real and imaginary parts of the com-
plex ac impedance Yac��� versus frequency � in SIS tunnel
junctions. The functions Re�Yac���� and Im�Yac���� are out
of phase with each other and are determined by the ac Jo-
sephson and quasiparticle currents. The LV and AB modes
can be further distinguished by applying a dc magnetic field
parallel to the junction. The interplay between different types
of collective modes can be studied in SIS junctions having a
relatively high transparency �D
10−3–10–2, for which the
tunneling approximation still works� at low temperatures.
For the case of Nb-I-Nb junctions with �=0.82 and vF
=1.37�108 cm/s, one finds a 1% decrease of �LV± below
the absorption threshold 2� /� already at transparency D

�10−2. The effect is even stronger in Sn-I-Sn junctions
where � is smaller. A different tendency takes place for the
AB− mode �JP, which is shifted by ��2��JP/ �����. Since
the energy gap � is essentially smaller in Sn than in Nb, the
shift of �JP in Sn-I-Sn junctions is also less significant. We
conclude that the collective oscillations of the superconduct-
ing gap amplitude and phase in “clean” Josephson junctions
may be long lived for appropriate values D and �.
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