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We investigate NMR relaxation rates 1 /T1 of quantum spin chains in magnetic fields. Universal properties
for the divergence behavior of 1 /T1 are obtained in the Tomonaga-Luttinger-liquid state. The results are
discussed in comparison with experimental results.
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I. INTRODUCTION

One-dimensional �1D� quantum spin systems with an en-
ergy gap above a singlet ground state have attracted a great
amount of attention both theoretically and experimentally.
When the magnetic field is applied, the energy gap vanishes
at the lower critical field Hc1 due to the Zeeman effect and a
quantum phase transition from a gapped spin liquid to the
Tomonaga-Luttinger liquid �TLL� takes place.1–10 For some
typical 1D gapped spin systems, it was verified theoretically
that the critical exponent of the spin-correlation function in
Hc1�H�Hc2 shows characteristic field dependence in each
model1–9,11–16 with Hc2 being the upper critical field corre-
sponding to the saturation of the magnetization. Furthermore,
it was argued that such characteristic field dependence of the
critical exponent can be detected by NMR measurements in
the TLL regime.4,17 When temperature is decreased in the
TLL regime, the NMR relaxation rate 1 /T1 shows diver-
gence behavior and its exponent is described as a function of
the critical exponent of the spin-correlation function. When
the NMR measurement is performed on the nuclei located at
the sites different from the electronic spins, relaxation occurs
through a dipolar interaction between the nuclear and elec-
tron spins. In this case, 1 /T1 is expressed as a sum of the
longitudinal and transverse relaxation processes in magnetic
fields. The divergence of 1 /T1 with decreasing temperature is
caused by one of these relaxation processes.17

Stimulated by these theoretical studies, NMR relaxation
rates in Hc1�H�Hc2 were measured in the Haldane-gap
compound �CH3�4NNi�NO2�3,18 the S=1/2 bond-alternating
spin-chain compound pentafluorophenyl nitronyl nitroxide
�F5PNN�,19 and the S=1 bond-alternating spin-chain com-
pound Ni�C9H24N4��NO2�ClO4.20 In these experiments, the
increase of 1 /T1 in the gapless regime was observed with
decreasing temperature. However, the field dependence of
the divergence exponent derived from the experiments is still
controversial. To develop precise evaluation, it is indispens-
able to clarify the field and temperature dependences of fac-
tors other than the divergence ones in the expression of 1/T1.

In this paper, we investigate the NMR relaxation rate of
quantum spin chains in the TLL state. In Sec. II, we evaluate
the field and temperature dependences of factors other than
the divergence ones of 1 /T1 in the TLL state. A criterion that
the temperature dependence appears only in the power-law
behavior is obtained. In Sec. III, we discuss the divergence
behavior of 1 /T1 in connection with theoretical results ob-
tained so far for some 1D gapped spin systems in magnetic

fields. We further discuss the experimental results in com-
parison with the present results.

II. FIELD AND TEMPERATURE DEPENDENCES OF 1/T1

IN TLL STATE

Let us start our discussion from the formula of 1 /T1:

1
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where Fzz�q� and F��q� are the longitudinal and transverse
components of the hyperfine form factor, and �R
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��q ,�� are the longitudinal and transverse dynamical sus-
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Spin-correlation functions in the one-component TLL are ex-
pressed as

�Sz�x,��Sz�0,0�� = m2 + C1��x + iv��−2 + �x − iv��−2�

+ C2 cos�2kFx��x2 + v2�2�−2g
¯ , �4�

�S+�x,��S−�0,0�� + �S−�x,��S+�0,0��

= C3 cos��x��x2 + v2�2�−1/2g

+ C4 cos��x��x2 + v2�2�−1/2g−2g
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where m is the magnetization satisfying 0	m	1/2,
2kF=��1−2m�, and v and � are the velocity of the spinon
excitation and the imaginary time, respectively. C’s are posi-
tive constants, which have solely field dependence character-
istic of the model.

The expressions for �R
zz�q ,�� and �R

��q ,�� at finite
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temperatures were obtained in Ref. 4 by conformally
mapping v�± ix onto the Matsubara strip as
v�± ix→ ��v /�kBT�sin��v�± ix��kBT /�v� in Eqs. �4� and
�5�, and then performing Fourier transform with respect to x
and t in Eqs. �2� and �3�. We assume that the q dependence of

the hyperfine form factor is weaker than that of the dynami-
cal susceptibility around the gapless point and that the hy-
perfine form factor takes the value at the wave number of the
gapless point. Using the dynamical susceptibilities and this
assumption, we obtain the following expression for 1 /T1:
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where 2
=2g+1/2g−2, ��̃k�q̃�= �q̃− k̃� denotes the linear dispersion relation of the spinon excitation around the gapless point
q=k �k=2kF, �, and �−2kF�, �̃=�� /4�kBT and q̃=�vq /4�kBT are the dimensionless variables, and
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with B�x ,y� being the beta function. Note that the exponents
of the power-law behavior about T were obtained in Ref. 4.

In Fig. 1, we show the spectral weights of
Im 
(�̃ ,��̃k�q̃� ;�) and Im �(�̃ ,��̃�−2kF

�q̃� ;2
) for several
values of �, where 2
=�+1/�−2. Around the gapless

point �q̃= �q̃− k̃�
0, the peak appears at �̃=0, indicating
the presence of the overdamped spinon excitation. The
NMR relaxation is dominated by the contribution of these
excitations.21 As � is decreased in Im 
(�̃ ,��̃k�q̃� ;�)
and � approaches unity in Im �(�̃ ,��̃�−2kF

�q̃� ;2
),

FIG. 1. The spectral weights of Im 
(�̃ ,��̃k�q̃� ;�) and Im �(�̃ ,��̃�−2kF
�q̃� ;2
) for several values of �, where �q̃= �q̃− k̃� and

2
=�+1/�−2.
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the overdamped peak grows and its width becomes
narrow. Note that for g=1/2 ��=1�, where the divergence
of 1 /T1 vanishes, 
(�̃ ,��̃��q̃� ;1) takes the same form
as the universal dynamical staggered susceptibility
of an SU�2� spin chain obtained in Ref. 21:


(�̃ ,��̃��q̃� ;1)= �

�̃

��1/4−i��̃+��̃��q̃�����1/4−i��̃−��̃��q̃���

��3/4−i��̃+��̃��q̃�����3/4−i��̃−��̃��q̃��� . The spec-

tral profile of its imaginary part adequately scaled22 agrees
well with each other.

We next investigate the integrated values with respect
to q̃ in the expression �6�. For the appearance of the TLL
state, the small q region of the linear dispersion curve around
the gapless point k �=2kF ,�, and �−2kF� has to be
considered. We thus introduce the upper cutoff of the
q̃ integral around the gapless point as Ik�� ;T�
=lim�̃→0�

k̃

q̃max,kdq̃ Im 
(�̃ ,��̃k�q̃� ;�) and J�−2kF
�2
 ;T�

=lim�̃→0�
�̃−2k̃F

q̃max,�−2kFdq̃ Im �(�̃ ,��̃�−2kF
�q̃� ;2
). As tempera-

ture is decreased, q̃max,k becomes large. In Fig. 2, Ik�� ;T� and
J�−2kF

�2
 ;T� are shown as a function of �q̃max,k��q̃max,k

−k�(=��̃k�q̃max,k�). For small �q̃max,k, Ik�� ;T� and
J�−2kF

�2
 ;T� depend on �q̃max,k. The results indicate that the
temperature dependence appears not only in the power-law
factors but also in their coefficients. For �q̃max,k�0.4, on the
other hand, Ik�� ;T� and J�−2kF

�2
 ;T� take constants, which
depend only on �. Since � �=2g or 1/2g� has solely field
dependence, I2kF

�2g ;T�, I��1/2g ;T�, and J�−2kF
�2
 ;T� are

independent of temperature. In this case therefore the tem-
perature dependence of 1/T1 appears solely in the power-
law behavior as
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In Fig. 3, we show the g dependences of I2kF
�2g�, I��1/2g�,

and J�−2kF
�2
�. The corresponding factor 1 /4� of the first

term in Eq. �9� is negligibly small in this scale. We find that
for g�1/2 the factor �2�kBT /�v�1/2g−1 in the third term in
Eq. �9� shows divergence and its factor I��1/2g� becomes
the largest, while for g�1/2 the factor �2�kBT /�v�2g−1 in
the second term shows divergence and its factor I2kF

�2g� be-
comes the largest. The results are universal and hold irre-
spective of the model. Features of the model emerge in the
field dependences of g, v, and C’s in the expression �9�.

If we assume that the hyperfine interaction is isotropic
and Fzz�0�
Fzz�2kF�
F����
F���−2kF� as usual, the
factors parenthesized by �¯� of the four terms in Eq. �9�
have almost the same values in a given magnetic field. Since
the temperature dependence of 1 /T1 is measured in a fixed
magnetic field, the factors other than those concerning the
power law of T in Eq. �9� can be regarded as constants.

III. DISCUSSION

We now discuss the divergence behavior of 1 /T1 in con-
nection with theoretical results obtained so far for some 1D
gapped spin systems in magnetic fields. By making use of
field-theoretical and numerical techniques, the field depen-
dence of g was successfully obtained in several models. It
was verified that g�1/2 is satisfied in the TLL regime of the
S=1 isotropic1,12,13 and anisotropic2 spin chains, the S=1/2
bond-alternating spin chain,3,14 the S=1/2 two-leg spin
ladder,6,8,9,11 and the S=1 bond-alternating spin chain.16 In
these models, the transverse staggered spin correlation is
dominant in Hc1�H�Hc2. Therefore the divergence behav-
ior of the NMR relaxation rate is fitted well with 1/T1
=A�T1/2g−1.

On the other hand, in the S=1/2 bond-alternating spin
chain with a next-nearest-neighbor interaction, the region
where g�1/2 is satisfied emerges around the half field be-
tween Hc1 and Hc2.5,14,15 In other fields, g�1/2 is satisfied.
Such a feature is caused by the change in the dominant spin
correlation in magnetic fields: Around H
�Hc1+Hc2� /2 the
longitudinal 2kF spin correlation is dominant, while in other
fields the transverse staggered spin correlation is dominant.14

In this system, accordingly, the divergence behavior of 1 /T1
around H
�Hc1+Hc2� /2 is fitted well with 1/T1=AzzT2g−1

or 1 /T1=A�T1/2g−1+AzzT2g−1. In other region of magnetic
fields, in particular H
Hc1 and Hc2, 1 /T1=A�T1/2g−1 is ad-
equate.

FIG. 2. The integrated values of Ik�� ;T� and J�−2kF
�2
 ;T� as a

function of �q̃max,k��q̃max−k�, where k=2kF ,�, and �−2kF and
2
=�+1/�−2.

FIG. 3. The g dependence of I2kF
�2g�, I��1/2g�, and J�−2kF

�2
�,
where 2
=2g+1/2g−2.

BRIEF REPORTS PHYSICAL REVIEW B 74, 172410 �2006�

172410-3



As mentioned above, a criterion for the appearance of the
temperature dependence only in the power-law divergence of
1/T1 is evaluated to be �q̃max,k�0.4. We compare the tem-
perature region derived from this criterion with that observed
in the experiments. In the Haldane-gap compound
�CH3�4NNi�NO2�3, the divergence of 1 /T1 was observed in
0.6�T�2 K.18 According to the numerical calculation, the
dispersion curve of the S=1 Heisenberg model in a small
magnetization region is described well as ��q�
2J�sin q�.
The coupling constant is evaluated to be J=12 K.18 We esti-
mate approximately that the linear dispersion curve may hold
in the low-energy region as 0	�	0.2�2J
4.8 K. Apply-
ing 4.8 K into the criterion 0.4��q̃max,��=��̃��q̃max,���
=4.8 K/4�T, we evaluate the temperature region for the di-
vergence of 1 /T1 as T�0.95 K. This temperature region
overlaps with that observed in the experiments. Therefore the
field dependence of the divergence exponent can be well
analyzed in this compound.

In F5PNN, the divergence of 1 /T1 was observed in
0.2�T�1 K.19 From the numerical calculation, the disper-
sion curve of the corresponding model is described as
��q�
0.9J�sin q� in a small magnetization region. The cou-

pling constant is evaluated as J=5.6 K.23 In the same way,
the temperature region for the linear dispersion curve is ap-
proximately estimated as 0	�	0.2�0.9J
1 K, leading to
the power-law divergence region as T�0.2 K. This tempera-
ture region lies below that observed in the experiments. To
develop more precise evaluation of the divergence exponent,
measurements of 1 /T1 in lower temperatures are necessary.

In summary, we have investigated the NMR relaxation
rate of quantum spin chains in magnetic fields. The field and
temperature dependences of the power-law divergence of
1 /T1 have been evaluated in the TLL regime. On the basis of
the results, experimental results for some typical gapped spin
chains in magnetic fields have been discussed. We hope that
the present analyses are useful to investigate the TLL nature
of quantum spin chains in magnetic fields via the field de-
pendence of the power-law divergence of 1 /T1.
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