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We present a unified treatment of Zitterbewegung phenomena for a wide class of systems including spin-
tronic, graphene, and superconducting systems. We derive an explicit expression for the time dependence of the
position operator of the quasiparticles which can be decomposed into a mean part and an oscillatory term. The
latter corresponds to the Zitterbewegung. To apply our result for different systems, one needs to use only vector
algebra instead of the more complicated operator algebra.
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The Zitterbewegung �ZB� was first regarded as a relativ-
istic effect rooted in the Dirac equation and related to a
“trembling” or oscillatory motion of the center of a free wave
packet.1,2 The ZB is caused by the interference between the
positive and negative energy states in the wave packet; the
characteristic frequency of this motion is determined by the
gap between the two states. It was believed that the experi-
mental observation of the effect is impossible since one
would confine the electron to a scale of the Compton wave-
length � /m0c, where m0 is the bare mass of the electron.2

However, the ZB is not a strictly relativistic effect: It can
appear even for a nonrelativistic particle moving in a crystal3

or for quasiparticles governed by the Bogoliubov–de Gennes
equations in superconductors.4

Most recently, Schliemann et al.5,6 predicted the ZB in
spintronic systems where the experimental observation of the
effect is more realistic due to the much smaller frequency
of the oscillatory motion. In these semiconductor
nanostructures7 spin-orbit coupling generates an oscillatory
motion of the wave packet. The semiclassical time evolution
of holes was investigated numerically for the Luttinger
Hamiltonian by Jiang et al.8 The relation between the ZB and
the spin transverse force was studied by Shen.9 In a numeri-
cal work, Lee and Bruder observed an oscillatory behavior in
the charge and spin densities of quantum wires with Rashba
and Dresselhaus types of spin-orbit coupling.10 With a spin-
polarized electron injected into a waveguide, Nikolić et al.11

found an oscillatory motion of the wave packet numerically,
and the ZB pattern was also predicted numerically by Brush-
eim and Xu.12 Similarly, Zawadzki studied the ZB in narrow
gap semiconductors,13 in single-wall semiconducting carbon
nanotubes,14 and in crystals using the nearly-free electron
approximation,15 which is essentially the same as the two-
band model in Ref. 3.

Two-dimensional carbon sheets, known as graphene, have
been studied theoretically16,17 for many decades, since their
band structure, a gapless Dirac-type spectrum, is unique.18

However, the experimental consequences of such a relativis-
tic electron dynamics were observed only recently in Hall
conductivity measurements.19,20 In bilayer graphene a more
peculiar behavior of the Hall effect was observed
experimentally,21 and explained in terms of the chiral Hamil-
tonian first derived by McChann and Fal’ko.22 Both in single
and bilayer graphene the appearance of the oscillatory mo-
tion of the electron related to the ZB was pointed out by

Katsnelson.23 Most recently, Tworzydło et al. associated the
shot noise with the interference of electron-hole pairs at the
Dirac point in graphene.24 As an experimental observation of
the ZB Trauzettel et al. proposed measuring the photon-
assisted electron transport in graphene.25

In this work, we present a unified description of the ZB in
the systems mentioned above. Our approach makes it pos-
sible to calculate with simple algebra �without using operator
algebra� the time dependence of the position operator of the
particle for a wide class of systems. We also easily verify the
results first obtained by Schliemann et al.5,6 for spintronic
systems. Our result directly shows that the ZB is not neces-
sarily a relativistic effect but it is related to the coupling
between the components of the eigenstates of the system.
This phenomenon is thus the direct consequence of the pseu-
dospin degree of freedom.

The time dependence of the position operator in the
Heisenberg picture is given by r�t�=eiHt/�r�0�e−iHt/�, where
H is the Hamiltonian of the system. To calculate the operator
r�t� one can work with the eigenstates of H. However, a
further insight into the nature of the ZB can be gained by
solving the equations of motion. We start with a quite general
form of the Hamiltonian that is suitable to describe spin-
tronic, graphene, and superconducting systems:

H = ��p�1 + �TS , �1�

where the system is characterized by the one-particle energy
dispersion ��p� and the effective magnetic field ��p�
coupled to the spin S. Here we assume that ��p� and ��p�
are differentiable functions of the momentum p= �px , py , pz�.
Here T stands for the transpose of a vector, while 1 is the unit
matrix in spin space, which will be omitted hereafter. In the
absence of an electrostatic potential V�r�, the momentum p
and, consequently, ��p� are constants of motion. In Table I
we listed a few systems �together with the effective magnetic
field ��p�� that are currently intensely studied in spintronics
and in the research of graphene and superconductors.

It should be emphasized that although in Table I the
Hamiltonian for all systems is given in terms of the Pauli
matrices corresponding to a spin S= 1

2 , in our general consid-
eration, the spin operator S in Eq. �1� can represent a quasi-
particle with an arbitrary spin S�

1
2 .
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The equations of motion of the position operator r�t� and
the spin operator S�t� in the Heisenberg picture for the
Hamiltonian �1� read

d

dt
r�t� =

i

�
�H,r� =

d��p�
dp

+ KS�t� , �2a�

d

dt
S�t� =

i

�
�H,S� = ��p� � S�t� , �2b�

where

Kik = −
i

�
�xi,�k�p�� =

��k

�pi
. �2c�

Note that Eqs. �2� are coupled equations of all three compo-
nents of S�t� and r�t�. However, in the case of two-

dimensional systems only the x and y components of r�t� are
involved in Eq. �2a�.

It is clear from Eq. �2b� that the spin vector S�t� precesses
around the vector �. The solution of Eq. �2b� with the initial
condition S�0�=S0 can be written as

S�t� = �n � n + �I − n � n� cos �t + sin �t n � � S0, �3�

where I is the 3�3 unit matrix, �=�n, n is a unit vector,
�2=�T�, and n �n denotes the outer or direct product, i.e.,
�n �n�ik=nink. Here the operator S0 on the right-hand side is
in the Schrödinger picture, i.e., it is time independent. One
can show that the usual commutation relations still hold:
�Si�t� ,Sj�t��= i��ijkSk�t�.

Inserting Eq. �3� into Eq. �2a� and solving the differential
equation one finds

TABLE I. The Hamiltonian of different systems can be expressed as in Eq. �1�. Here D is the dimension of the system, p±= px± ipy,
�±=�x± i�y, and the spin operator is S= �� /2��, where �= ��x ,�y ,�z� is the set of Pauli matrices. For Cooper pairs we assume �for
simplicity� that the pair potential � is real and independent of r, and that the energy is measured from the Fermi energy EF. In the last row,
�p=�2k2 / �2m�, where p=�k, q is fixed, and Vq is the Fourier transform of the periodic potential treated as a perturbation in the crystal. Here
Re�·� and Im�·� are the real and imaginary parts of the argument. More details of these systems can be found in the references listed in the
last column.

System D H � ��p� References

Rashba-Dresselhaus 2 p2

2m
+

	

�
�px�y − py�x�+




�
�py�y − px�x� 2

�2 �−	py −
px

	px+
py

0 � p2

2m
5,6,7,26

Heavy holes in a quantum well 2 p2

2m
+ i

	̃

2�3 �p−
3�+− p+

3�−� 2	̃

�4 �py�3px
2− py

2�

px�3py
2− px

2�

0
� p2

2m
6,26,27

Bulk Dresselhaus 3 �D

�3 ��xpx�py
2− pz

2�+�ypy�pz
2− px

2�+�zpz�px
2− py

2�� 2�D

�4 �px�py
2− pz

2�

py�pz
2− px

2�

pz�px
2− py

2� � 0 7,26

Single-layer graphene 2 v�px�x+ py�y� 2v
� �px

py

0 � 0 16,17,19,20,23

Bilayer graphene 2 1

2m � p+
2 + p−

2

2
�x−

p−
2 − p+

2

2i
�y� 1

m� �px
2− py

2

2pxpy

0
� 0 21–23

Cooper pairs 3 � p2

2m
−EF��z+��x

2

� � �

0

px
2+ py

2+ pz
2

2m
−EF � 0 4,28

Nearly free electrons 3
H= ��k+q Vq

Vq
* �k

� � Re�Vq�

−Im�Vq�

1

2
��k+q−�k� � 1

2
��k+q+�k�

3,15
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r�t� = r0 +
1

�
K�n � S0� +

d��p�
dp

t + �Kn��n · S0�t

+
sin �t

�
K�I − n � n�S0 −

cos �t

�
K�n � S0� , �4�

with the initial condition r�0�=r0. This is our central result.
The interpretation of the different terms in Eq. �4� is as fol-
lows. The ZB stems from the oscillatory terms �cosine and
sine terms�. In contrast to the usual dynamics �first and third
terms�, two new terms appear in the nonoscillatory part: The
transverse displacement, which is independent of time �sec-
ond term�, and a term that corresponds to a particle motion
with constant anomalous velocity �fourth term�. In addition
to the oscillatory part, these two terms in r�t� are inherent of
the ZB. The anomalous velocity plays a crucial role in the
anomalous and spin Hall effects in semiconductors.29

To evaluate the time-dependent position operator r�t�
within a Gaussian wave packet, one can follow, e.g., the
calculation presented in Refs. 5 and 6.

We are now in a position to apply our results to the sys-
tems listed in Table I. Using Eqs. �2c� and �4�, some simple
algebra yields the same results as given by Eqs. �7� and �8� in
Ref. 6 for the Rashba-Dresselhaus system. Similarly, it is
easy to verify the results Eqs. �41� and �42� in Ref. 6 for
systems of heavy holes in a quantum well.30

The current operator in graphene systems splits into three
terms of which the last one can be associated with the ZB
phenomenon.23 Our general approach can also be applied to
graphene layers to find the time evolution of the position
operator r�t�. We now present explicit results for the position
operator r�t� from which the trembling �oscillatory� motion
of the electron in graphene systems is clearly seen. For
single-layer and bilayer graphene, the explicit formulas for
x�t� and y�t� can again be easily obtained using Table I and
Eqs. �2c� and �4�. The results for single-layer graphene are

x�t� = x0 + v�xt +
py

p2

�

2
�z�1 − cos�2pv

�
t	


+
py

p3

�

2
�px�y − py�x��2pv

�
t − sin�2pv

�
t	
 , �5a�

y�t� = y0 + v�yt −
px

p2

�

2
�z�1 − cos�2pv

�
t	


−
px

p3

�

2
�px�y − py�x��2pv

�
t − sin�2pv

�
t	
 , �5b�

and for bilayer graphene

x�t� = x0 +
px�x + py�y

m
t +

py

p2��z�1 − cos �t�

−
py�G

p4 ��t − sin �t� , �6a�

y�t� = y0 +
− py�x + px�y

m
t −

px

p2��z�1 − cos �t�

+
px�G

p4 ��t − sin �t� , �6b�

�G = ��2pxpy�x − �px
2 − py

2��y�, � =
p2

�m
. �6c�

Here �i are the Pauli matrices and p2= px
2+ py

2.
Similarly, using the Hamiltonian for Cooper pairs given in

Table I, the following results are obtained:

r�t� = r0 +
p

m
�xt +

p

m
�C ��t − sin �t�

+
p

m

�

E2�p�
�

2
�y�1 − cos �t� , �7a�

E�p� =�� p2

2m
− EF	2

+ �2, � =
2E�p�

�
, �7b�

�C =
�

2

�

E3�p��� p2

2m
− EF	�x − ��z
 . �7c�

Here p2= px
2+ py

2+ pz
2. One can show that these results agree

with those presented in Ref. 4.
Similarly, some simple algebra yields the same results as

in Refs. 3 and 15 for nearly free electrons listed in Table I
�except that the off-diagonal elements are swapped in the
latter reference�. For bulk Dresselhaus systems �third row in
Table I� the calculation is again straightforward but the re-
sults are rather cumbersome and not presented here.

Discussion. As mentioned above, the position operator
r�t� in Eq. �4� is decomposed into a mean part and an
oscillatory term. If one derives the position operator r�t�
directly from r�t�=eiHt/�r�0�e−iHt/� then such a decomposi-
tion can only be obtained using the Foldy-Wouthuysen
transformation.4,31 In this transformation the operator r�t� is
calculated in the basis of the eigenstates of Hamiltonian �1�.
It can be shown that for S= 1

2 �with Pauli matrices� the
eigenenergies E±�k� and the eigenstates ±�r�= ��±eik·r are
given by

E±�k� = ���k� ±
�

2
����k�� , �8a�

��+ =�cos
�

2
e−i�/2

sin
�

2
ei�/2 �, ��− =�− sin

�

2
e−i�/2

cos
�

2
ei�/2 � ,

�8b�

where � and � are the spherical polar angles of the vector
���k� in k space, and �a� is the magnitude of vector a.
However, for S�

1
2 , the Foldy-Wouthuysen transformation is

more complicated. The advantage of our approach is that it
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leads directly to the desired decomposition of the position
operator r�t�.

For pure Rashba coupling and for single-layer graphene
the ZB can be interpreted as a consequence of the conserva-
tion of the total angular momentum Jz=Lz+Sz, where
L=r�p is the orbital angular momentum �see Ref. 6�. How-
ever, in general, Jz is not a constant of motion, i.e., �H ,J�
=��S−p�KS�0. As can be readily seen, this is the case,
for example, for Rashba-Dresselhaus systems where 	�0
and 
�0, or for heavy holes in a quantum well.

Finally, it should be mentioned that the ZB is related to
the nontrivial behavior of the conductivity of single and bi-
layer graphenes23 since the velocity operator �2a� does not
commute with the Hamiltonian �1�. The peculiar behavior of
the spin Hall effect may also be related to the ZB.9
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