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Electron-phonon dephasing time due to the quasistatic scattering potential
in metallic glass CuZrAl
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We have measured the electron-phonon scattering time in the metallic glass CuZrAl between 0.37 and 16 K,
using the weak-localization magnetoresistance. The electron dephasing rate reveals a 72 temperature depen-
dence for almost two decades of temperature and is in good quantitative agreement with the theory considering
the interference of electron-phonon and elastic electron scattering mechanisms in the presence of quasielastic
scattering potential. In addition, this result demonstrates that the Pippard ineffectiveness condition for electron-
phonon scattering is not applicable to amorphous alloys that comprise atoms with considerably different atomic

masses.
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Recently, intense attention has been paid to the newly
found metallic glass CuZrAl in the study of metallic-glass
forming ability,' specific heat,” and resistivity.> Since amor-
phous alloys are typical disordered systems, it would be of
interest to investigate the quantum-interference (e.g., weak-
localization) transport in CuZrAl. Previous magnetotransport
experiments found that the electron dephasing rate in the
parent metallic glasses [CugyZryo (Ref. 4) and Cus;Zr,43 (Ref.
5)] revealed an approximate 7> temperature dependence, but
the results had not been fully explained, partly due to the
unavailability of an adequate electron-phonon (e-ph) interac-
tion theory for disordered conductors at that time. Theoreti-
cal studies of the e-ph interactions in disordered conductors
(where gl<1, with g being the wave number of thermal
phonons, and [ being the electron elastic mean free path) and
their applicability to experiments have long been a subject of
discussion.®™ Recently, Sergeev and Mitin'® have proposed
that the e-ph interactions are drastically modified by the pres-
ence of inelastic scattering from quasistatic electron scatter-
ers and compared their calculations with the conventional
results of Pippard,® Schmid,” and Rammer and Schmid.® (In
those conventional theories,® the impurities are taken to
always vibrate in phase with the deformed lattice atoms.)
Essentially, for a disordered conductor, the conventional
theory predicts a weakened e-ph scattering rate given by
T;[}M(Tgp)"(ql)mr‘l, while the Sergeev-Mitin theory pre-
dicts an enhanced scattering rate 7';[1OC(TSP)"(ql)‘1 o T2,
where (7'2p)‘1 o T3 is the e-ph scattering rate in the pure case.
Therefore, (7,)pippara/ (T5p)sergeer = (q1)* = 107* for g1=0.01
(which is pertinent to our case), strongly indicating that in-
terference of e-ph and elastic electron scattering mechanisms
in the presence of quasielastic scattering potential, as pro-
posed by Sergeev and Mitin, can dramatically change the
nature of the e-ph interaction. Taking Tgpz 100 ns for pure
Cu at 1 K,'" one obtains (7,,)sergeey=1 ns for gl/=0.01,
which is in good quantitative agreement with what we mea-
sured in the metallic glass CuZrAl (see below). In this case,
the atomic masses of Cu (63.5), Zr (91.2), and Al (27) are
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PACS number(s): 72.10.Di, 72.15.Cz, 72.15.Rn, 75.47.Np

distinctly different, and hence quasistatic electron scattering
should be significant, fully justifying the applicability of the
Sergeev-Mitin theory.

Ingots of four metallic glasses A1-2 (Cugg3Zr37,Al5),
A2-2 (Cusg¢Zrye9Alss), A3-2 (CusgsZr3s3Als), and A4-2
(Cusg 1Zr359Alg) were obtained by arc melting of a mixture
of high purity Cu (99.99 wt. %), Zr (99.9 wt. %), and Al
(99.99 wt. % ). Bulk metallic-glass rods with a diameter of
3 mm were then prepared by means of copper mould suction
casting. The glassy phase of the prepared samples was as-
sessed by examining their x-ray spectra recorded using a
rotating-anode x-ray generator (Cu ka, 50 kV, 120 mA) with
a graphite (002) monochromator. The XRD patterns of the
powdered samples all exhibited a single peak and confirmed
that all the samples were in a glassy state, Fig. 1.

For resistance and magnetoresistance measurements, the
rods were cut into small slices and sanded. The slices have
widths of about 1 mm and thicknesses of around 0.5 mm.
Electrical contacts of fine Pt wires were glued by silver paint
and then baked at 100 °C on a hot plate for 1 h. Magnetore-
sistances were measured in an Oxford Heliox *He fridge
equipped with a superconducting magnet. Resistances from
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FIG. 1. XRD data for four CuZrAl metallic glasses: Al-2,
A2-2, A3-2, and A4-2, as indicated.
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FIG. 2. Normalized resistivity as a function of temperature for
samples A1-2 and A2-2, as indicated. Insets (a) and (b) show the
low temperature data in expanded scales. Note that in inset (b) the
axis label is on the right-hand side.

0.37 up to 300 K were measured in the same *He fridge and
a standard “He insert. Four-probe measurements were made
by using a Linear Research LR400 resistance bridge operat-
ing at 16 Hz and at low enough excitation currents to avoid
Joule heating. In this paper the results of two representative
samples, A1-2 and A2-2, are presented.

In zero magnetic field, the resistance of the samples in-
creases as the temperature is lowered from 300 to 1 K. Be-
low 1 K, superconducting onsets were observed in both
samples. Figure 2 shows a plot of the variations of the resis-
tance with temperature for the two samples. The onsets of
the superconducting temperature, 7., are 0.83 and 0.76 K for
A1-2 and A2-2, respectively. From 300 to 4 K, the increases
in the resistivity are about 2.1% (A1-2) and 2.8% (A2-2).
From 220 to 40 K, and from 9 to 1 K, the resistivities show
a \T dependence. From about 30 to 15 K the temperature
dependence is essentially linear. The overall temperature be-
havior of the resistance is similar to that found in
(Cusg ¢Zr369)1_,Al,, with x=0-0.20.3 These features are
typical and in line with the electrical-transport behavior of
amorphous metals when electron-electron interaction and/or
quantum-interference effects are the dominant contributions
to resistivities.!>!3

To determine the electron diffusion constant, D, the spe-
cific heat was measured on sample A2—-2 at low tempera-
tures and the electronic contribution Y7 was obtained, with
y=2.83 mJ/mol K2. From the expression yI'=7k:N(0)T/3
and the Einstein relation 1/p=De?N(0), where N(0) is the
electronic density of states at the Fermi level, D may be
evaluated. According to Li ef al.,’ the temperature depen-
dence of specific heat is almost the same for the CuZrAl
metallic glasses with various Al atomic contents from 4% to
10%. In our samples the difference of Al content is only
1 at. %, the atomic contents of Cu and Zr differ by even less
than 1%. Thus, it is justified to assume that these two
samples have basically identical values of y and therefore
N(0). We have also used the measured p(4 K) to compute the
values of D and found similar results. The values of D to-
gether with values of relevant parameters for our samples are
listed in Table 1.

The values of kgl (kg is the Fermi wave number) may be
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TABLE 1. Values of relevant parameters for samples A1-2 and
A2-2. The values of diffusion constant D were determined from
low-temperature specific heat measurements. p is in w{) cm.

p(300K) p(4K) D (em?/s) ki 7, (107
A1-2 190 194 0.46 1.19 2.6
A2-2 211 214 0.41 1.06 1.6

determined from the expression kpl=3mD/h (m is the free-
electron mass) and are listed in Table I. Taking the Fermi
energy Ep=1.3 eV for the CusyZrs, amorphous alloy,'* and
using the average value of kpl~1.13, we obtain [=~1.9 A in
our samples. This size of / is common in amorphous alloys
and is comparable with the atomic spacing of the materials.

The magnetoresistances of the samples are positive be-
tween 0.37 and 16 K (not shown). In order to apply the
weak-localization theoretical predictions, we need to exam-
ine the value of kgl. Strictly speaking, the weak-localization
theory is formulated for the condition kp/>1. However,
Howson and Gallagher!? have shown that, in amorphous al-
loys, the criterion can be relaxed to be kp/>1. We have
analyzed the magnetoresistance data with the three-
dimensional weak-localization theoretical predictions, taking
into account strong spin-orbit scattering and superconducting
fluctuation contributions.'>!® The details of the least-squares
fitting procedure has been discussed previously.!” The super-
conducting fluctuation contribution to the magnetoresistance
corresponding to the Maki-Thompson term is represented by
an adjusting parameter called the Larkin’s electron-electron
attraction strength B.'° Our fitted value of B for sample
A1-2 is comparatively higher than that for sample A2-2. This
is because the 7, is higher in A1-2 than in A2-2. From Lar-
kin’s expression' of B=B(T/T,) (the solid curve in Fig. 3),
we determine the 7, of A1-2 to be 0.20+0.02 K. For sample
A2-2, it is difficult to determine the magnitude of 7, from the
fitted B values. However, we may compare the onset of the
superconducting transition for the two samples and estimate
that the 7. of A2-2 should be around 0.13+0.02 K, which is
well below our lowest temperature of measurement.

The electron dephasing time can be calculated from the
fitting parameter B,=fi/4eD7, defined in the weak-
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FIG. 3. Electron-phonon coupling strength B(7/T,) as a func-
tion of temperature for samples A1-2 and A2-2. The solid curve is
the Larkin’s prediction (Ref. 16) of B with a T,=0.20 K.
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FIG. 4. Dephasing rate as a function of temperature for samples
A1-2 (a) and A2-2 (b). The straight lines are the theoretical predic-
tions of Eq. (1) with the parameter k=0.3 (dashed line), 0.48 (solid
line) and 0.8 (dotted line) (see text). Note that in (a) and (b) the 7';1
axis has identical scales.

localization theory.!>!> The results of our measured 7,' are
presented in Fig. 4 in double logarithmic scales. Close in-
spection shows that, below about 1 K, the dephasing rate in
the sample A1-2 [Fig. 4(a)] reveals a somewhat “leveling-
oft” behavior, reflecting stronger superconducting fluctuation
contributions due to a higher 7, in this sample, as compared
with that in the sample A2-2 where 7';1 decreases monotoni-
cally with decreasing temperature all the way down to
0.37 K. Analogous leveling-off behavior in T;l has been
found in superconducting materials at temperatures just
above 7.7 Most notably, we see that in the whole tem-
perature range the dephasing rate reveals a linear dependence
on T in the double logarithmic scales, with a slope of 2, as
indicated by the straight lines in Figs. 4(a) and 4(b). That is,
7';1 o« T2. Such a quadratic temperature dependence of the in-
elastic dephasing rate can be ascribed to the e-ph scattering
in the presence of disorder. The e-ph scattering time in dis-
ordered metals containing both “vibrating” and “quasistatic”
impurities has recently been calculated by Sergeev and
Mitin,'? and is given by

L_M&(l 3_k_>
T,  ShA(hkp)?v; 2 v
37 (ksT)? By ( v?)
+———( -k 1+2k— |, 1
2(hkp)* v]( ) v} )

where B,=(§EF)2N(O)/2pmv,2, and p,, is the mass density.
v;=4660 m/s and v,=2120 m/s are, respectively, the longi-
tudinal and transverse sound velocities.” k=1-1/L (where L
is the electron mean free path with respect to the quasistatic
potential) is a parameter representing the relative part of the
vibrating potential to the total potential. From specific heat
measurement, we obtain  N(0)=1.2 states/(eV atom).
This value is comparable with the value N(0)
=1.6 states/(eV atom) calculated for the CusyZrs, metallic
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glass.' In our experiment, /=1.9 A and 8,=0.028. The the-
oretical prediction with these material parameters and a value
of k=0.48 gives T;;=(3.4>< 10°7*+1.34 X 10°7?%) s~!, where
T is in Kelvin. This prediction is presented by the straight
solid lines in Figs. 4(a) and 4(b).”° A good gquantitative
agreement between our experiment and the theoretical pre-
dictions is clearly seen. Therefore, it is obvious that the T2
term in Eq. (1) is in dominance in the metallic glass CuZrAl,
implying the total 7;11 is essentially determined by the cou-
pling of electrons with transverse phonons while the cou-
pling of electrons with longitudinal phonons is negligibly
weak.!? Sergeev and Mitin have pointed out that for the e-ph
scattering in the intermediate-disorder regime of g/=1, a
seemingly 7% dependence of 7,) may be observed.”!*?! In
our case, the value g,l=kgTl/hv,~0.012T (g, is the wave
number of transverse thermal phonons), i.e., ¢,/<<1 and the
e-ph scattering is in the dirty limit. It should be noted that
our measured 7> dependence is robust and persists for almost
two decades of temperature. A T? dependence of T;l in the
dirty limit has recently been found in polycrystalline TiAl,>
TiAlSn,? AuPd,** and VAI (Ref. 25) alloys, and Au-doped
In,05_, films? over a somewhat limited temperature range,
where no satisfactory quantitative comparison between the
theory and experiment was achieved. In the case of the
In,O5_,: Au films, the added Au atoms played the role of the
quasistatic electron scatterers. On the other hand, a T be-
havior manifesting the 7,, subject to the Pippard ineffective-
ness condition (i.e., long wavelength phonons are ineffective
in scattering short mean-free-path electrons®) has very re-
cently been observed in elemental Cu,”’ Au,”” Hf,”® and Ti
(Ref. 28) thin films at very low temperatures below hundreds
mK.

There are two more free parameters in the weak-
localization theory: the spin-orbit scattering time, 7,,, and the
spin-spin scattering time, 7. In this study, we found that TS_]
is negligibly small in our samples. This is in consistence with
the theoretical understanding that the Maki-Thompson super-
conducting fluctuation contribution would be suppressed in
the presence of spin-spin interaction. The values of T;OI in our
samples are on the order of 10!! s~! (see Table I). At the high
temperatures of our measurement, the values of 7, are com-
parable with T;pl. At the low temperatures of our measure-
ment, they are 2 to 3 orders of magnitude larger than 7';;.
This is the reason why the magnetoresistances are always
positive in our case. (The Maki-Thompson superconducting
fluctuation term also contributes a positive magnetoresis-
tance.)

We should like to compare our data with previous works
on similar materials. In the film metallic glasses CugyZryg
studied by Poon et al.* and Cus;Zr,; studied by Bieri et al.,’
the temperature dependent inelastic electron scattering rates
were extracted from weak-localization magnetoresistance.
Poon et al. obtained an inelastic rate 7' =~ 10°7%2 s, while
Bieri et al. reported an T;f varied approximately as 7% above
4 K. Since the electrical-transport parameters in these two
experiments are comparable with the parameters in our bulk
metallic glasses, we suspect that the inelastic rate 7';11 found
in Refs. 4 and 5 may be safely ascribed to the e-ph scattering
rate and satisfactorily explained by Eq. (1).

In conclusion, we have measured the magnetoresistance
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of the newly found metallic glass CuZrAl and extracted the
electron dephasing time. This work demonstrates that the
Pippard ineffectiveness condition for e-ph scattering is not
applicable to amorphous alloys that comprise atoms with
considerably different atomic masses. Our result shows the
fast e-ph dephasing rate with 7> temperature dependence,
which corresponds to the interference of e-ph and elastic
electron scattering mechanisms in the presence of quasistatic
scattering potential. Moreover, our results are in good quan-
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titative agreement with the Sergeev-Mitin interference theory
of the e-ph interaction in disordered conductors.
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