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Classical Hall effect in scanning gate experiments
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Scanning gate experiments on a two-dimensional electron gas in the regime of the classical Hall effect are
presented. The Hall resistance is recorded while tuning the local potential by applying a voltage to the metallic
tip of a scanning force microscope. In diffusive samples and at zero magnetic field an intriguing Hall resistance
pattern arises that is attributed to tip-induced inhomogeneous current flow. Measurements at small, i.e., non-
quantizing, magnetic fields reveal an additional Hall resistance pattern due to the tip-induced inhomogeneous

electron density in the Hall cross. Deviations of the measurements on higher-mobility samples from expecta-
tions based on symmetry arguments are used to distinguish the diffusive from the mesoscopic transport regime.
Finite-element-method modeling for the diffusive regime and trajectory calculations for ballistic electrons

allow a concise interpretation of the measurements.
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I. INTRODUCTION

A macroscopically well-known system in solid state phys-
ics is a Hall bar defined on a GaAs/Al,Ga,_,As heterostruc-
ture incorporating a two-dimensional electron gas (2DEG).
Many topics of recent research and development are investi-
gated in Hall bar systems, e.g., the integer quantum Hall
effect,! including its importance in metrology as a resistance
standard,? the fractional quantum Hall effect,’ or the optimi-
zation of the geometry in local probe and magnetic field
sensors.*

One of the microscopic properties of this system is the
local potential landscape that determines the electron scatter-
ing and therefore the electrical resistance of the sample. In
this paper we focus on the question of what happens if this
potential is locally disturbed. What is the influence of a (per-
pendicular) magnetic field in this case? What effect does the
mean free path have?

An elegant experimental tool to investigate such questions
is a scanning probe microscope. The operation at cryogenic
temperatures, high magnetic fields, and in high vacuum
makes these experiments on 2DEGs a challenge, but recently
a number of results have been reported. Measurements in the
quantum Hall regime with a scanned single-electron
transistor,>® scanned potential microscopy,’ the Kelvin probe
techniques,® subsurface charge accumulation,>!! tunneling
between edge channels,'>!3 and with the scanning gate
technique'* have been performed. At zero and nonquantizing
magnetic fields scanning gate experiments have been re-
ported on quantum wires,’>!® on quantum point
contacts,'” 2% and very recently on quantum dots.>'~>

Here we report scanning gate experiments on Hall bars at
moderate magnetic fields concentrating on the Hall voltage
in order to gain a deeper understanding of the response to
local perturbations. Section II describes the technical details
of the experiments. In Secs. III A and III B results for zero
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and small magnetic fields are presented for a sample in the
diffusive regime, while in Sec. III C results on a sample with
a mean free path exceeding the Hall cross dimensions are
shown. In Sec. IV straightforward models are discussed.

II. MEASUREMENT SETUP AND SAMPLES

In a scanning gate experiment on a Hall bar the longitu-
dinal and the Hall resistances are measured by macroscopic
Ohmic contacts. The conductive tip of an atomic force mi-
croscope (AFM) is scanned across the surface with a dc volt-
age applied with respect to the sample, thereby acting as a
local gate that couples capacitively to the sample. Scans are
performed either in constant height or in z-feedback mode.
The tip-induced potential changes the local potential seen by
the conduction band electrons at a position defined by the tip.
The system’s response to this manipulation may lead to
changes in the measured quantities. These are recorded as a
function of tip position, which results in the so-called scan-
ning gate images. A scanning gate experiment can be viewed
as investigating a series of different samples, each with a
controlled inhomogeneity at the tip position. In the scanning
gate images shown in this paper the contours of the sample
geometry as extracted from a topography scan are overlaid
for orientation.

The experiments presented below were made with a
home-built scanning force microscope cooled to 7=1.9 K in
a *He cryostat. The microscope and the sample reside in a
vacuum beaker and magnetic fields up to 8 T can be applied.
The scan range is about 30X 30 um? at a temperature of
1.9 K. Piezoelectric quartz tuning forks?*?* were used on
resonance as force sensors, with a Ptlr tip attached to one
prong of the fork. The frequency readout is achieved by em-
ploying a phase-locked loop. The tip is connected to an ex-
ternal voltage source.

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.74.165426

BAUMGARTNER et al.

FIG. 1. Gray-scale image of a typical Hall bar from a topogra-
phy scan taken at a temperature of 1.9 K. The measurement setup
for the scanning gate experiments is shown schematically.

The experiments were performed on two Hall bars of
width W=4.0 um and contact separation L=10 um, defined
on a Ga(Al)As heterostructures with the 2DEG 52 nm below
the sample surface. The structures were produced by stan-
dard photolithography techniques and wet chemical etching.
The longitudinal (U,) and transverse (U,) voltage drops were
measured with lock-in amplifiers at a frequency f,, of the
alternating current with rms amplitude /=100 nA. The setup
is shown schematically in Fig. 1 with the sample topography
imaged at base temperature. The measurement parameters
are given in Table L. Uy, is the applied voltage between the
AFM tip and the 2DEG, n is the electron sheet density, w is
the electron mobility, and ¢ is the mean free path. The latter
three quantities were extracted from low-field magnetoresis-
tance and Hall resistance data. If the tip-surface distance d is
given in the description, the scans were taken at constant
height. Otherwise the z feedback was running at constant
frequency shift Af..

The electron density in sample B was inhomogeneous as
high-field Shubnikov—de Haas minima did not reach zero in
the region of the quantum Hall effect. In contrast, samples A
and C behaved like standard homogeneous Hall bar samples
showing Shubnikov—de Haas oscillations and a well pro-
nounced quantum Hall effect at high fields.

III. EXPERIMENTS
A. Zero magnetic field

In Fig. 2 scanning gate images taken at zero magnetic
field are presented. The corresponding experimental param-
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FIG. 2. (Color online) (a) Ry, 1, (b) Ry 5, (¢) Ry 1, and (d) Ry, »
in a scanning gate experiment at B=0. The numbers in (d) identify
the corners of a Hall cross. The black lines are taken from a topog-
raphy scan and overlaid on the scanning gate images.

eters are those given in Table I in the first row. Figures 2(a)
and 2(b) show the longitudinal resistance measured at the
lower two voltage contacts (R, ;) and at the upper two con-
tacts (R,,,), respectively (cf. Fig. 1). One particular obser-
vation is that these two images are not exactly identical, i.e.,
the experiments allow one to distinguish the two pairs of
measurement contacts. Since the explanation of this effect in
the longitudinal resistance is essentially the same as that for
properties in images of the Hall resistance it will not be
discussed in more detail here.

The scanning gate images for the Hall resistances R,,
and R, , are depicted in Figs. 2(c) and 2(d), respectively. For
further discussion we label the corners of the Hall crosses
with numbers as introduced in Fig. 2(d). The images show
that the Hall resistance, which is zero in a homogeneous
sample, can be made nonzero by introducing an inhomoge-
neity in the sample. In contrast to the longitudinal resistance
the Hall resistance is influenced only near the respective Hall
cross area. A very distinct pattern is found: Around corners 1
and 3 [numbers refer to Fig. 2(d)] the AFM tip leads to a
positive Hall voltage, whereas in corners 2 and 4 the Hall
voltage is negative. One can observe two lines of symmetry
where the influence of the tip changes sign, namely along the
respective centers of the current and voltage leads. The in-
duced resistance changes are about =15 ().

We performed three additional cross-checks in the experi-
ment. (1) The sum of all the measured voltages on a path
around the Hall bar structure gives zero within the measure-
ment precision, as is expected from Kirchhoff’s laws. If the
Hall voltage in one Hall cross is not influenced when the tip
is positioned above the other Hall cross, it is, in principle,
necessary to measure only the two longitudinal resistances in

TABLE 1. Experimental details for the experiments.

Expt. Ugp (V) d or Afie fm (Hz) n (m=2) w (m?/Vs) € (um)
A -1.0 50 mHz 2234 3.3x%x 101 10 1.0
B -0.7 120 nm 680.9 5.0X 10" 9 1.0
C 0.0 120 nm 680.9 3.6X 1013 66 6.5
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FIG. 3. (Color online) (a) Raw data of the Hall resistance at
B=0. (b) The same data as in (a), but convoluted with a Gaussian
window function of width 30 nm.

order to determine the Hall voltage from their difference. (2)
Exchanging current and voltage contacts in the measurement
produces data that correspond exactly to the symmetry rela-
tions stated by Biittiker’® for a four-terminal measurement.
(3) The same general patterns were observed in other
cooldowns and on other samples of the same geometry. Of
particular interest is that they also occurred at the elevated
temperature of 7=56 K, where phonon scattering ensures
that the sample is in the diffusive regime.

B. Finite magnetic fields

Scanning gate experiments at small, i.e., nonquantizing
magnetic fields perpendicular to the sample plane were per-
formed in experiment B (Table I). The original data are fil-
tered for the presented images by convolution with a Gauss-
ian window of about 30 nm width. The effect of this
procedure is demonstrated in Fig. 3 for the zero-field data.
The reason for the filtering is that the induced change in the
resistance was much weaker than in the other experiments.
Nevertheless, the zero-field features in this measurement se-
ries are similar to those discussed before.

Scanning gate images at finite magnetic fields are pre-
sented in Fig. 4. The figures from (a) to (f) have been taken
at positive fields; in (g) and (h) the field polarity is reversed.

At B=25 mT the two positive peaks occurring at corners
1 and 3 in Fig. 2(c) [numbering in Fig. 4(h)] have merged
across the center of the Hall cross. The minima at the other
corners are still visible in Fig. 4(a). A similar situation is
given for B=50 mT, though the features at the corners are
less prominent. At B=75 mT the two minima are clearly
weaker and the former maxima can not be distinguished any
longer. Instead, a global maximum is found near the center
of the Hall cross, a little displaced to corner 3. Any minima
or maxima at the corners have vanished at B=100 mT,
though the maximum signal difference is still of the same
order of magnitude. In this image one finds a maximum elon-
gated along the diagonal from corner 1 to 3 with a smooth
drop outside the Hall cross area. Up to this field, the maxi-
mum changes introduced by the AFM tip are always around
3Q. At B=250 mT, and more clearly at B=375 mT, the area
of changed resistance gets smaller and more localized around
corner 4. The amplitude of this feature increases approxi-
mately linearly with magnetic field.

We compare the images taken at positive magnetic fields
to measurements at reversed magnetic fields. A selection of
images is shown in Figs. 4(g) and 4(h). At B=-50 mT the
negative peaks of the zero field feature are connected along
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B=-250 mT

FIG. 4. (Color online) Filtered data of scanning gate experi-
ments at small magnetic fields. The corner numbering is given in

(h).

the other diagonal of the Hall cross. Then the positive peaks
disappear completely between B=—50 mT and B=-250 mT
and a global minimum near the center forms. At the higher
field the pattern of changed resistance gets localized at cor-
ner 3 instead of corner 4, in contrast to positive fields. Some
crucial images were repeated after many scans in order to
make sure that the influence of the scanning procedure on the
observed features was negligible.
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FIG. 5. (Color online) Filtered scanning gate images at
B=300 mT for a series of tip-sample voltages as indicated and at a
tip-sample distance d=300 nm (experiment B).
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In similar experiments with the tip 300 nm above the
sample surface and at a fixed magnetic field of B=300 mT,
scans with different tip-sample voltages were performed. A
selection of data are presented in Fig. 5. With U,=-1.5V
the Hall resistance increases when the tip approaches the
Hall cross center, while it decreases for Ug,=+1.0 V. Be-
tween these voltages the maximum signal gets weaker and
disappears at U,~0.3 V. This finding allows one to esti-
mate the work function difference between the Ptlr tip and
the heterostructure. Similar numbers have already been re-
ported in the literature.?>?’

C. Ballistic transport regime

Figure 6 shows a series of scanning gate images at small
magnetic fields taken in experiment C described in Table I.
The main difference from the previous measurements in the
diffusive regime is that the mean free path of the electrons is
estimated to be 6.6 wm, which exceeds the Hall cross dimen-
sions. At zero magnetic field the Hall resistance is reduced
by the AFM tip at corners 2 and 4. At the other corners the
resistance is generally enhanced. However, in contrast to the
previous measurements, a lot of additional Hall resistance
changes are produced within the Hall cross, which do not
exhibit the symmetry found in the diffusive regime. The
maximum changes in resistance are about 1(), i.e., much
smaller than in the previous measurements. We attribute this
to the less invasive tip voltage chosen for these measure-
ments.

Results for positive magnetic fields are shown in Figs.
6(b) and 6(c). At B=50 mT the resistance pattern has already

-169.8
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-170.8

166.6

,;4
B=-100 mT

B =100 mT

FIG. 6. (Color online) Scanning gate experiments at small mag-
netic fields on a ballistic Hall cross. A pattern as in the diffusive
structure is still visible, but new structures appear. The images are
filtered as discussed in the text.
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significantly changed. At B=100 mT the dips at corners 2
and 4 are less pronounced and the Hall cross center is domi-
nated by the positive resistance changes. At negative fields,
as shown in Figs. 6(d) and 6(e), the minima of corners 2 and
4 become connected and the Hall cross center is dominated
by a negative induced Hall resistance at B=—100 mT.

IV. DISCUSSION

A. General symmetry considerations

The model system considered here is an ideal Hall cross
defined on an ideal homogeneous 2DEG as shown in Fig.
7(a). Both voltage leads have the same width, which can
differ from that of the current leads. The basic symmetry
operations for this geometry in real space are the 180° rota-
tions about the x, y, and z axes. A homogeneous magnetic
field B is applied orthogonal to the sample and an originally
homogeneous current density based on diffusive electron
motion is assumed. In addition, a scatterer, e.g., an AFM-tip-
induced potential, is introduced at an arbitrary position (x,y)
within the cross. The scatterer is assumed to have at least the
symmetry of the Hall cross, i.e., only its position is important
to the experiment and not its orientation. The transverse volt-
age U,(x,y,B,I) then depends on the position of the scatterer
(x,y), on the magnetic field B and on the current I. For
example a 180° rotation of the entire measurement setup
about the x axis does not change the measured voltage. If the
voltage contacts are interchanged, which inverses the sign of
the signal, one recovers the original setup, but with reversed
magnetic field and the scatterer positioned at (x,—y). This
and similar arguments using the other symmetry operations
of the Hall cross and the fact, that in the linear transport
regime the measured voltages are inversed upon inversion of
the current direction, lead to the following expressions:

U,(x,—y,-B,I)=-U,(x,y,B.I), (1)
Uy(-x,y,—B,I)=-U,(x,y,B.I), (2)
Uy(=x,-y,B,I)=U,(x,y,B.1). (3)

Equation (3) follows from the other two, but it is written
down here because it connects measurements at different

FIG. 7. (Color online) (a) Schematic current distribution in a
Hall cross geometry with a locally changed electron density. The
path used for the integration in the text is indicated as a white line
from point A to B. (b) FEM simulation of a Hall cross with a
depleted disk simulating the AFM tip. The color scale indicates the
strength of the electrical potential and visualizes for example the
change in the Hall voltage.
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points at the same magnetic field. In a Hall cross with four
leads of equal width this corresponds to a mirror symmetry
along the diagonals.

At B=0 these equations reduce to

Uy(-x’_ y) == Uy(x’y) = Uy(_ -x’y) = Uv(_ X,— y) (4)

These relations can be compared directly with the mea-
surements shown in Figs. 2(c) and 2(d). For instance, the
alternating pattern of resistance changes for a path around
the Hall cross and the two lines of symmetry found in the
experiments are nicely reproduced.

What are the conditions for the validity of these equa-
tions? If there is no scatterer at all one recovers the relation
for an ideal Hall cross R,,(B)=—R,,(~B), which can also be
deduced from the four-terminal relation of Biittiker.2® The
latter also holds for a diffusive Hall cross, i.e., when the
elastic mean free path is much smaller than the Hall cross
dimensions. In this case the result corresponds to the On-
sager relations. We note that in a ballistic Hall cross Egs.
(1)—(3) are also expected to hold, because it can be regarded
as a homogeneous system with perfect symmetry. Only if the
sample is in a quasiballistic or mesoscopic regime, where
only few scatterers are present within the Hall cross, are
these relations no longer valid.

B. Drude model at zero magnetic field

We now take the observation of the characteristic zero-
field pattern at elevated temperatures, where electron-phonon
scattering ensures that the sample is in the diffusive regime,
as motivation for a model beyond the above symmetry con-
siderations. In a semiclassical Drude model we assume the
existence of a local, spatially varying resistivity tensor. The
effect of the AFM tip is approximated by a circular region
inside the Hall cross where the 2DEG is fully depleted. Due
to this geometry the current density in the Hall bar is locally
changed compared to the case without the tip perturbation as
shown schematically in Fig. 7(a) for the tip residing at the
lower left corner of the Hall cross.

The transverse voltage can be found by integrating the
electric field along any path from point B on one side of the
Hall bar to point A straight across on the other side:

A
Uy=¢A—q)B=—f E-ds. (5)
B

Points A and B need to lie well inside the contacts to
ensure that they measure the appropriate potential. The
above expression can be further evaluated by introducing a
local coordinate system whose x axis always points along the
chosen path (ds=dx, dy=0). One can always choose a path
first running parallel to the current density, from B to C and
then orthogonal from C to A, as shown in Fig. 7(a). If the
local resistivity tensor p is well defined the parallel part
picks up a voltage drop originating from the longitudinal
resistivity and the orthogonal part collects a potential differ-
ence due to the off-diagonal elements:

C A
Uy=- J Prafxdx — J Paylydx. (6)
B C
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At zero magnetic field the classical Hall resistivity py,
:5 is zero; hence the integral from C to A vanishes. Only
the path from B to C gives a nonzero contribution, which is
negative because p,,>>0 and the path runs parallel to the
local current density. The same line of reasoning applied to
the case where the tip is in other quadrants of the Hall cross
produces the changes of the zero-field Hall resistance ob-
served in Figs. 2(c) and 2(d).

Numerical results can be gained for example by using the
finite-element method (FEM). An example is presented in
Fig. 7(b), where the different colors on the top and bottom
contacts illustrate the potential difference leading to the non-
zero transverse voltage. Similar calculations for the tip resid-
ing near the other corners and on the symmetry lines of the
Hall cross reproduce at least qualitatively the experimental
results shown in Figs. 2(c) and 2(d), with the tip radius being
the only free parameter.

C. Drude model at finite magnetic fields

In a finite but nonquantizing magnetic field and with a
completely depleted disk as the model for the tip, the second
term in Eq. (6) adds the same tip-position-independent Hall
voltage as in the unperturbed sample to the tip-position-
dependent contribution of p,,. In the experiments, however, a
resistance change in the center of the Hall cross is observed
in addition to the predicted superposition, if a magnetic field
is applied (cf. Fig. 4). An extension of the above model is
therefore necessary to account for the experimental results.

Following Ref. 28 we start from the continuity equation

-

V. J(x,¥)=0 and use the concept of a local conductivity ten-

sor o(x,y) in Ohm’s law j= oE. This leads to the differential
equation

V.-(o-VO)=0 (7)

for the electrostatic potential defined by E=—V®. This equa-
tion determines @, if appropriate boundary conditions are
specified. We choose the current density component j, =0
normal to mesa edges and at the edges of the simulated re-
gion far in the voltage contacts. Along the Hall bar axis (x
direction) we apply the boundary condition j,=I/W=const
(W is the width of the Hall bar and I is the total applied
current) on boundaries running in the y direction across the
Hall bar. For the determination of the local conductivity ten-
sor we assume the mobility u to be position independent and
estimate the local electron density in the 2DEG n(x,y)

=#[EF—¢()C, y)], where ¢(x,y) is a circular hard wall po-
tential of constant height ¢, < Eg. This results in a circular
region of reduced electron density n;#(EF— ¢,) under the
tip and a local conductivity which is reduced accordingly.
The problem stated above is solved numerically for non-
zero magnetic fields using the finite-element method. Results
are shown in Fig. 8. For the tip residing in the center of the
Hall cross, as shown in Fig. 8(a), the axis of the Hall bar in
the x direction is no longer a symmetry axis of the current
distribution (strong red lines), in contrast to the case where
the tip fully depletes the electron gas. Also shown are equi-
potential lines that exhibit a nearly dipolar shape that gets
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FIG. 8. (Color online) (a) FEM calculation for typical param-
eters with a disk of finite electron density as model for the tip. In
contrast to the depleted disk a current is allowed to flow through
this area (strong red lines) and the electric potential (weak lines)
gets tilted. (b) Simulated line scan along a Hall cross axis as indi-
cated in the inset. The Hall resistance shows a maximum if the tip
resides in the center of the cross.

tilted by the magnetic field. The dependence of the Hall re-
sistance Ry, on the tip position is shown in Fig. 8(b) for the
tip being moved along the line indicated in the inset. The
curve shows a maximum in the center of the Hall cross. Both
findings, the tilted dipole that leads to a finite Hall resistance
and the maximum of R,, in the center of the Hall cross,
match the experiments very well. It is interesting to note that
a similar qualitative behavior, i.e., dipole-like-induced charge
at the tip and dependence of the Hall resistance on the posi-
tion of the tip, was also found in the case where the potential
tip is replaced by a magnetic field inhomogeneity.?’ In addi-
tion similar spatial distributions of the Hall resistance were
found with enhancements of the Hall resistance near oppo-
site corners of the Hall bar for such a magnetic tip.>°

Inversion of the tip-sample voltage with respect to the
corresponding work function difference can be seen as an
inversion of the sign of the tip-induced potential. Additional
FEM simulations show that in this case the current is de-
flected into the tip potential region, which leads to a reduced
Hall voltage. At large enough magnetic fields the mechanism
of deflecting the current from the measurement contacts,
leading to the zero-field pattern, can be neglected and only
the effect of nonzero current density in regions of altered
electron density is relevant. Because this induced potential
drop across the sample is measured by the voltage contacts,
the width of the feature is dominated by the width of the
voltage contacts. The experiments presented in Fig. 5 there-
fore remind of the effect of an ordinary top gate, except for
the reduction of the influence away from the measurement
leads.

D. Mesoscopic transport

We discuss the data taken in the ballistic regime by com-
paring to model calculations for a perfect Hall cross with
square area w X w. This calculation has been made along the
lines of Refs. 31 and 32 and is based on the Landauer-
Biittiker formula for linear electrical transport where the
transition matrix elements are calculated using the billiard
model.’* The tip-induced potential was assumed to be of
Gaussian shape with width d and amplitude V,,. For the re-
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FIG. 9. (Color online) Result of the simulation of a scanning
gate image on a ballistic Hall cross assuming a Gaussian tip-
induced potential. Shown are calculated scanning gate images for
B=50 (top left), ==50 (top right), =100 (bottom left) and =
—100 mT (bottom right).

sults shown in Fig. 9 we have used the experimental Fermi
energy Eg=13 meV. We have further chosen V,/ Eg=0.5 and
d/w=0.25. Images are shown for positive and negative mag-
netic fields of two different magnitudes, namely, B
=50 mT (top row) and 100 mT (bottom row). It is strik-
ing that at B=+50 mT these simulations show enhanced (re-
duced) Hall resistance at opposing corners of the Hall cross,
similar to the measurements in the diffusive case at zero field
(Fig. 3). At B=+100 mT the structure has developed into a
single maximum (minimum) in the center of the Hall cross
similar to the diffusive results in Fig. 4. This similarity to the
diffusive case may be surprising at first sight, but it can be
seen as a natural result of the symmetry relations Egs.
(1)—(3) which hold also for a perfectly clean sample with
perfect geometry.

The additional speckles observed in the experiments with
a sample with a larger mean free path (Fig. 6) have to be
attributed therefore to few individual scattering centers in-
side the Hall cross. The symmetry of the structure must be
broken and the symmetry relations are therefore violated.
The details of the potential within the Hall cross strongly
affect the measurement outcome in this mesoscopic regime.

E. Spatial resolution in the experiments

More detailed comparisons of the experiments with FEM
simulations in the diffusive regime give disk radii of about
500 to 750 nm, depending on the model. Generally, the reso-
lution of our experiments depends on the regime the sample
is in: in the diffusive regime individual scattering events are
irrelevant and the length scale given by the electrostatics
between tip, sample and the electrical contacts determine the
characteristic features. A direct comparison to calculated
resolutions reported in the literature®* for metallic tip above
metal planes leads to an uncharacteristic large tip radius.
This might be due to the fact that the induced potential per-
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turbation depends on the applied tip voltage and that the
electron density in the 2DEG is not a constant, consistent
with the model in Sec. IV C. In the quasiballistic regime (and
in the quantum Hall effect regime discussed elsewhere), in-
dividual scattering centers become dominant and small
changes in the tip-scatterer distance can cause large changes
in the recorded resistances. The resolution in these cases can
be considerably better than the radius of the tip-induced po-
tential variation. Similar findings are reported in the litera-
ture for scanning gate experiments on quantum point
contacts.'® The numerical simulations discussed above for
the diffusive and the ballistic regimes both exhibit a smear-
ing of the observed structures, but the overall picture remains
as discussed.

V. CONCLUSION

Scanning gate measurements on a Hall cross have been
presented in the regime of the classical Hall effect. The real-
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space patterns of induced resistance changes are manifesta-
tions of the symmetry properties of such a Hall system. The
detailed behavior in the diffusive regime has been shown to
be compatible with models based on a local conductivity
tensor. Scanning gate experiments on a sample with a larger
mean free path was found to show quasi-ballistic transport
due to individual scatterers inside the Hall cross. We antici-
pate that experiments on smaller Hall bars or quantum wires
will lead to the observation of coherent conductance fluctua-
tions in real space and as a function of magnetic field.
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