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We report on computer based simulations of multiple electrostatic resonances �ER� of two-dimensional
metamaterials with various shape including fractal structures, complex permittivity of the inclusion, and com-
position. Our model structures are made of inclusions of materials with the negative real part of the permittivity
in a dielectric host with positive permittivity. Remarkably, our simulations which are based on a finite-element
method without use of the dipole approximation indicate that in the vicinity of an intrinsic ER, i.e., indepen-
dent of the spectral material properties of the inclusion, the effective permittivity of the heterostructure depends
sensitively on the dielectric object shape, allowing its magnitude and sign to be tuned to any value. Two unique
features of the ER are found: these resonances become broader and weaker as the losses are increasing, and the
associated local fields of such resonances exhibit strong enhancements in small parts of the structure.
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In recent years there has been a focus on developing arti-
ficially fabricated structures that exhibit unique properties
not found in nature, e.g., metamaterials,1 photonic crystals
�PC� �Ref. 2�. Although several unusual characteristics have
already been envisioned and even demonstrated, several
questions remain pertaining to the response of these struc-
tures to an incident electromagnetic radiation. On the other
hand, interest has accelerated in the last few years in the
unique properties of electrostatic resonances �ER� as new
method to characterize the electromagnetic properties of pe-
riodic nanostructures �see, for example, Ref. 3, and refer-
ences therein�. These ER result in very strong and localized
electric fields. ER studies4 have drawn a lot of attention due
to their possible applications to subwavelength imaging,
negative refractive index optics, and plasmon-polariton cir-
cuits. In a recent work,4 Fredkin and Mayergoyz demon-
strated that the resonance values of � can be directly found
by computing the eigenvalues of a specific boundary integral
equation.

Consider a general two-dimensional �2D� two-phase sys-
tem which can be defined as a bounded domain in R2 of
surface � which has effective permittivity �, in which there
is no source charge. Solving the problem at hand means find-
ing expressions for the scalar potential V and electric field
E=−�V everywhere within the domain �. The occurrence
of ER is a common feature of inhomogeneous composite
materials. From the basic physics point of view, ER are de-
fined as eigenstates of the electric potential problem, i.e., find
nontrivial solutions V�r� of the Laplace partial differential
equation, � · ���r��V�r��=0 that vanish on the surface of the
composite, where ��r� and V�r� are the local permittivity and
potential inside �, respectively.7,8 Suppose for simplicity
that the mixed medium consists of two isotropic phases, each
of which is characterized by a scalar permittivity �i. An im-
portant example that we consider below is the periodic as-
semblage of constituent two embedded in a host of constitu-
ent one, with respective surface fraction �2 and 1-�2.

A distinction between intrinsic and extrinsic resonant be-
havior arises when the effects of geometry of the polarizable
inclusion and frequency dependent permittivity �2��� are
considered separately. For a given assemblage of inclusions,

the ER is intrinsic, i.e., independent of the model assumption
for the functional dependence ����, and is distinguished by
the extrinsic ER for which the appropriate frequency depen-
dent permittivity should be employed to find the resonance
modes. Until presently, the only known physical �extrinsic�
characterization of ER involved different kinds of functional
dependence of �2���, e.g., plasma permittivity with �2���
=1−�p

2 /�2 �Refs. 3 and 4�, and polaritonic behavior �2���
=����2−�LO

2 � / ��2−�TO
2 �, with �2�0 for �TO����LO.9

The main question surrounding the calculation of negative
values of � centers around the general physical properties of
intrinsic ER.

The motivation for this study comes from two points of
view. One is the early suggestion10 of Bergman and Milton
�BM� that a modal formalism permits to separate the effect
of the dielectric properties of the constituent materials from
the effect of the geometry of a two-component composite.
Appropriately, BM appreciated the fact that the effective
properties are given by an integral transform of a function
that depends only on the geometry of the composite and are
independent of the specific material properties of the
inclusions.10 However, this partial-differential eigenvalue
problem cannot be efficiently solved for irregular inclusion
shapes. In view of the simplicity and robustness of the
method both in 2D and three-dimensional �3D� complex ge-
ometries, a finite-element �FE� type of computation presents
itself as the natural tool for numerics. Another line of work,
initiated recently,5,6 made in relation to small 2D and 3D
objects of arbitrary shape showed that the polarization be-
havior possesses intrinsic properties which may be vital in
guiding the rational design of metamaterials and PC.

With this in mind, the main goal in this paper is to report
the results of investigations on the intrinsic ER of negative-
permittivity media by using a procedure based on the FE
method and similar to that of Ref. 11, that allows for the
generation of data for inclusion shapes that are not amenable
to analytic methods. In the remainder of this paper, FE simu-
lations, as implemented in the Comsol multiphysics simula-
tion package,12 are used to show that by changing the com-
position of 2D structures, in the vicinity of an ER, � depends
sensitively on the complex permittivity �2 and on the assem-
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blage of inclusions allowing the magnitude and sign of � to
be tuned to any value. We hope that the structural character-
istics of ER can be used as a theoretical tool to classify wave
transport behavior in artificial structures �metamaterials and
PC� that exhibit a tunable electromagnetic response. An im-
portant point to emphasize is that, unlike the known func-
tional dependences mentioned above, the present results are
independent of �2���. It will be shown that these metamate-
rials can support localized electric field enhancement in
small parts of the structure. The distribution of the local elec-
tric field is of great fundamental and practical importance in
the study of heterogeneous material because: �i� the effective
permittivity is determined from lower moments of the local
field, and �ii� it is fundamental to understanding failure or
breakdown phenomena.

Current work within this research group focuses on the
use of various systematic and versatile procedures for calcu-
lating the effective �relative to the permittivity of a vacuum�
permittivity of mixed media based on numerical meth-
ods.11,13,14 The upper panel of Fig. 1 provides an illustration
of the equivalent parallel-plate capacitor. When there is an
adequate separation of scales between sizes of inclusion and
of the overall composite we can characterize the dielectric
behavior with an effective permittivity. The calculation of the
effective permittivity of composite structures proceeds as
follows. �1� The space is a unit square containing elementary

cells using a grid of points whose sharpness enables a good
approximation of the contour of the spatial domain �. The
space is filled with the desired arrangement, i.e., the permit-
tivities of the cells are set equal to �1 or �2 depending on
whether the cell is filled with phase 1 or phase 2, respec-
tively. �2� The local potential distribution inside � which has
no free charges or currents is given by the conservation of
electric displacement flux through the “surface” S.13 In our
case, the effective permittivity along the direction corre-
sponding to the applied field, i.e., �=�y, is found by integra-
tion via �S�1� �V

�n
�
1=�

V2−V1

L S, where V2−V1 denotes the differ-
ence of potential imposed in the y direction, L is the
composite thickness in the same direction, and S is the “sur-
face” of the unit cell perpendicular to the applied field. The
potential on the top face of the square, V2, is fixed at a value
of 1 V, while that on the bottom face, V1, is fixed at 0 V. �3�
It is worth observing that the fully automatic generation of
high quality meshes plays a crucial role in the finite element
analysis, influencing both ease of use and accuracy of a soft-
ware package. In the FE method, the domain can be dis-
cretized into a number of uniform or nonuniform finite-
elements that are connected via nodes. The change of V with
regard to spatial position is approximated within each ele-
ment by an interpolation function. The original boundary
value problem is then replaced with an equivalent integral
formulation. The interpolation functions are then substituted
into the integral equation, integrated, and combined with the
results from all other elements in the domain �. Then, the
results of this procedure are transformed into a matrix equa-
tion which is subsequently solved for V.

For simplicity, we will focus our discussion on 2D deter-
ministic two-phase heterostructures. In all cases, the simula-
tion cell � is a square of length L=1. As a side note, we do
point out that we verified that if one of the two dimensions of
the simulation box is significantly longer than the other one,
e.g., rectangular cell �1�2� instead of the unit square cell,
does not influence the permittivity and depolarization factor
values. Periodic boundary conditions are enforced in the x
direction for these structures. All data were obtained using
the FE element as implemented in the commercial finite-
element solver Comsol Multiphysics® and the procedure
sorted out � on a personal computer with a Pentium IV pro-
cessor �3 GHz�. The field calculation package Comsol Mul-
tiPhysics® permits the closely controlled generation of
finite-element meshes through the use of input files contain-
ing complete instructions for node-by-node and element-by-
element mesh specifications, along with imposition of the
boundary conditions on each side of the unit cell as dis-
played in the upper panel of Fig. 1. One basic question is as
follows: How can the number of nodes in the mesh affect the
quality of the obtained results? We tested coarse meshes with
meshes of increasing fineness and found that above a mesh
size of a few thousand elements the numerical results for the
permittivity were constant and reproducible. For the numeri-
cal solution we discretized the configuration investigated
here with a number of elements ranging between 5000 and
10 000, which means a linear system of equations with typi-
cally 20 000 unknowns has to be solved. We refer the reader
to Refs. 11 and 13 for full details on the merits and the
implementation of the algorithm.

FIG. 1. The higher panel shows the cartoon sketch of the unit
square cell in the �x ,y� plane of a typical 2D composite structure
containing the inclusion �shaded region�. The model space can
simulate a capacitor by applying a potential difference between the
top and bottom faces of the model space. The evaluation of the
effective permittivity, along the direction corresponding to the ap-
plied field, i.e., �=�y, requires that the conservation of the electric
displacement flux through the “surface” S has to be solved subject
to appropriate the relevant boundary conditions for the potential.
We fix V1=0 V and V2=1 V and assume that �V

�n =0 on the other
side faces. L and S have both been set to unity. The lower panel
contains the structural motif of the isolated inclusions: �a� split-ring
�SR�, �b� split-square �SS�, �c� split-triangle �ST�, �d� Sierpinski
square �3rd iteration�.
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While strictly valid only in a dc situation, in fact these
calculations can be extended to nonzero frequencies. Within
the quasistatic assumption �QA�, � acquires a nonzero imagi-
nary part and the real part may violate the dc requirement of
positivity for �. By quasistatic we imply that all inhomoge-
neity length scales should be small compared to the electro-
magnetic wavelength 	 of the radiation probing the system
and to the skin depth. We discuss two basic kinds of inho-
mogeneities: �i� square lattices of split-inclusions, and �ii�
square arrays of deterministic fractal inclusions. The inclu-
sions under consideration are shown in the lower panel of
Fig. 1. Observe that lattice arrays of conducting dual split-
ring resonators were used by Smith et al.1 first demonstration
of metamaterials with negative permittivity and magnetic
permeability.

First the general features observed in the simulations are
described. In Fig. 2�a� we display our numerically computed
values of � for a selection of 4�4 square arrays of lossless
inclusions. There are several remarkable features visible in
Fig. 2�a�. First of all, it is worth noting the asymmetry shape
of the ER peaks. Another important aspect about ER drawn

from this figure is the ordered progression of the ER when �
is plotted as function of �2; the surface fraction for the ER of
split-ring array �SRA� is six times smaller than that for the
DA. Note that the pair of peaks observed for split-inclusions
does not mean that the mode is doubly degenerated but is
related to the two separate parts of the double split-
inclusions. Auxiliary simulations �not shown� showed that
the ER peak is shifted when �2 is changed. For example,
choosing �2=−7 we found that ER occurs at �2=0.318 for

FIG. 2. �a� �Color online� The dependence of the effective per-
mittivity � of 4�4 square arrays of lossless split inclusions
��2=−6� in a host matrix ��1=1� as a function of the surface frac-
tion of inclusion. Split-inclusions considered are: the blue �black�
curves are for split-ring �SRA�, split-triangle �STA�, and split-
square �SSA�. For the purpose of comparison, we have also indi-
cated in red �gray� the case of square array of disks �DA�. The inset
shows an expanded view of the region around �2=0.1 for SRA. �b�
Electric field norm distribution of resonance mode for the 2D com-
posite structure composed of a 4�4 SSA. �2=0.217. The color bar
indicates the norm scale in Vm−1 unit.

FIG. 3. �Color online� Same as in Fig. 2 for lossy inclusions
��2=−6+0.1i�. The inset shows an expanded view of the region
from �2=0 to �2=0.5 for SRA, SSA, and STA. �a� Real part of �;
�b� imaginary part of �. �c� Electric field norm distribution of reso-
nance mode for the 2D composite structure composed of a 4�4
SSA. �2=0.217. The color bar indicates the norm scale in Vm−1

unit.
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split-square array �SSA�. In Fig. 2�b� we show the local elec-
tric field norm �E�r�� associated with the resonant mode
�2

�SSA�=0.217. This plot indicates that the strongest electric
field enhancements are found in small parts of the planar
composite.

Now we turn to the ER for the corresponding lossy struc-
tures. Comparing the ER with the lossless case, we see a
striking difference in the line shapes as illustrated in Figs.
3�a� and 3�b�: While for the lossless inclusion the ER is
narrow, for the lossy inclusion the ER is broadened and at-
tenuated. However, the ER for both lossless and lossy struc-
tures occur at the same surface fraction. Importantly, the ER
peaks display a significant symmetry in contrast with the
asymmetry which is clearly visible in Fig. 2�a�. It is interest-
ing to note that even small material losses can have a strong
impact on the ER characteristics. A larger imaginary part of
�2 causes a stronger broadening and a reduction of intensity
�not shown�. As shown in Fig. 3�c�, the electric field norm
map vs x and y shows a very different behavior from the
previous lossless case. In addition, the fourfold symmetry of

the map is evident from this figure. Comparing panels �b� in
Fig. 2 and �c� in Fig. 3, we conclude that the ER line broad-
ening for lossy inclusions is associated with a one order of
magnitude decrease of the electric field norm.

In the course of analyzing the polarization properties of
perforated 2D structures, the authors6,11 developed a deter-
ministic fractal modeling for shape functional of voided
structures. Figure 4�a� shows the result of � calculation for
4�4 square array of Sierpisnki squares. The main features
of this plot are the asymmetry of the ER peaks and the shift
of the ER towards lower surface fraction as the iteration
number of the structure is increased. Recently, it was re-
ported that the p̃��2 dependence of � provides us with a
simple means to rationalize the dielectric behavior as the
number of iteration of the fractal pattern changes, where the
reduced perimeter is p̃= P

K , with P and K being the perimeter
and the surface area of the fractal pattern, respectively.6 Most
notable was our observation that the � vs p̃��2 of these
structures can be modeled according to the similarity trans-
formation �0�p̃0

��20�=�n�s�n��p̃n
��2n��, where �n is the per-

mittivity for iteration number n and

s�n� = 5„8n/2/4�3n� + 8n
…

for a Siepinski square. As indicated by this similarity trans-
formation, the behavior of the permittivity vs iteration num-
ber of the fractal structure can be used to obtain a single
master curve. This inference is confirmed on the graph of the
lower inset of Fig. 4�a�, where the collapse of data in a single
graph indicates that the similarity transformation holds quite
well at least for the first three iterations. The highest ER
surface fraction, �2�0.7, corresponds to the primitive
square �iteration zero� for the Sierpinski square. By compar-
ing the real and imaginary parts of �, calculated in the same
condition, we also found that with increasing the inclusion
losses, the ER is significantly broadened and attenuated �not
shown�.

We now turn to a discussion of two main points. As for
the first point, our FE simulations establish that the depen-
dence ���2� cannot be understood by considering a dipolar
description, e.g., Maxwell Garnett, since the dipolar approxi-
mation7,15 is only valid if the unit cell 
	 and if the exciting
field is homogeneous across the dimensions of the inclusion.
Obviously, the strong spatial fluctuations of the local-field
seen in Figs. 2�b�, 3�c�, and 4�b� imply that the latter require-
ment is violated. In that case the depolarizing factor is modi-
fied by the presence of structurally induced multipoles.7,11,16

As for the second point addressed in this paper, the FE simu-
lations were motivated by the fact that evaluation of intrinsic
ER does not require that we know �2���, insofar as the con-
tinuum QA is valid. Aside from a few general considerations
given above, this function depends in detail upon the modes
carrying electromagnetic energy. However, except for some-
what simple artificial materials, this function cannot be easily
determined analytically. This issue is particularly relevant to
nanophases for which �2 is a local complex function of fre-
quency which may strongly differ from its bulk value.

To summarize, we have developed a numerical descrip-
tion of ER of metamaterials of complex shapes. They illus-

FIG. 4. �a� �Color online� The dependence of the effective per-
mittivity � of square arrays of fractal �Sierpinski square� lossless
inclusions ��2=−6� in a host matrix ��1=1� as a function of the
surface fraction of inclusion. The colors and numbers denote the
different iterations of the fractal inclusion. The upper inset shows
the same data as in �a� but now they are plotted as a function of
p̃��2. The lower inset shows the data collapse using the similarity
transformation; �b� Electric field norm distribution of resonance
mode for the 2D composite structure composed of a 4�4 Sierpin-
ski square. �The parameters are �2=0.484, third iteration.� The
color bar indicates the norm scale in Vm−1 unit.
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trate the statement that the ER which is an intrinsic property
of object shapes displays a rich variety of behavior that pro-
vide a fertile ground for characterizing the interaction of a
polarizable negative-permittivity medium with an incident
electromagnetic radiation. Our simulations provide a possi-
bility for detailed investigation of the interplay between the
spatial pattern and the distribution of the local electric field,
i.e., fluctuations of the local field. It turns out that, indepen-
dent of exact form of the functional �2���, intrinsic ER lies
within a narrow range of surface fraction, whereas lossy in-
clusions show a much broader ER. The method proves to be

of sufficient generality in that it allows for estimations of ER
arising from the interaction of dielectric objects possessing
polarizabilities of arbitrary electric multipole moment order,
offering an alternate calculational approach than the BM for-
mulation.
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