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We propose a simple approach to study the conductance through an array of N interacting quantum dots,
weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excita-
tions and a slave-boson representation in the saddle-point approximation, we calculated the conductance
through the system. Explicit results are presented for N=1 and N=3: a linear array and an isosceles triangle.
For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with
numerical renormalization group. In the case of the linear trimer for odd N, when the parameters are such that
electron-hole symmetry is induced, we obtain perfect conductance G0=2e2 /h. The validity of the approach is
discussed in detail.
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I. INTRODUCTION

Potential technological applications in electronic devices
have led to intense research in electronic transport in nanos-
cale systems. In particular, a quantum dot �QD� acts as a
single electron transistor and in addition, the many-body
physics of the “single impurity” Kondo effect has been
clearly observed in transport experiments.1–3 More recently a
system of two QD’s has been studied, which provides an
experimental realization of two Kondo “impurities” interact-
ing with a metallic host.4 Also, linear arrays of 15 QD’s have
been fabricated to investigate its electronic properties,5 and
the conductance through a linear trimer of QD’s has been
investigated in the Coulomb blockade regime.6 Systems of
coupled QD’s are also of interest because of their possible
application in quantum computation.7

Theoretically, the conductance through one QD at equilib-
rium has been clarified by different studies of the impurity
Anderson model, in particular those using the highly accu-
rate Wilson’s numerical renormalization group �NRG�.8–10

For moderate values of the Coulomb repulsion U, perturba-
tion theory in U �PTU� provided good results.11–15 In particu-
lar, an approach that interpolates between the second-order
results for the self-energy and the atomic limit11–13 provided
accurate results, as has been shown by direct comparison
with exact diagonalization in small rings.12 Renormalized16

and interpolative17 PTU have also been used in the nonequi-
librium case. At zero temperature, the method of exact di-
agonalization plus embedding �EDE� was successfully
used.18–20 This method is based on solving exactly some part
of the system, which includes all interactions, and embed-
ding it in the rest of the system. A detailed study of the
approximation and its range of validity was given by Chi-
appe and Verges.21 A brief description of the PTU, EDE, and
slave-boson approximation is contained in Ref. 22, where the
approaches are applied to describe scanning tunneling spec-
troscopy of different systems with magnetic impurities on Cu
or noble-metal �111� surfaces.

Transport through a system of two QD’s, one of them
coupled to two conducting leads, has been studied using
NRG.23,24 More recently NRG results for three25 and four26

QD’s on a line have been reported. These two works deduce

the phase shifts for even and odd parities from the effective
noninteracting Hamiltonian that describes the strong-
coupling fixed point. For Fermi liquids with inversion sym-
metry, the conductance can be expressed in terms of these
two phase shifts.27 In spite of these studies, for several QD’s
or systems with low symmetry, application of the NRG be-
comes impractical and one has to resort to other approximate
techniques. The EDE has been applied recently to several
problems involving more than one QD.28–30 In particular,
Büsser et al. studied the conductance through a linear array
of QD’s.28 Remarkably, they find that for an odd number N
of QD’s except N=1, the conductance G vanishes in the
electron-hole symmetric case �EHSC�. For N=1, G as a
function of gate voltage Vg reaches the maximum at the
EHSC with the ideal value G0=2e2 /h in agreement with pre-
vious studies.8–11,13,18,19 However, for N=3,5 , . . . the peak is
split in two by a deep minimum. This result is in contradic-
tion with previous results using PTU which predict ideal
conductance G=G0 at the EHSC.14 Therefore Büsser et al.
conclude that other many-body techniques should be used to
elucidate the issue.

The purpose of the present work is to present an analytical
approach to calculate the conductance through an interacting
region, weakly coupled to conducting leads. As an applica-
tion, we study the above-mentioned controversy. In particu-
lar, we consider an interacting region composed of a linear
array of an odd number N QD’s �extension to even N and
other geometry is straightforward�, connected to two nonin-
teracting leads by the same hopping V. We also study the
conductance for the case in which the interacting region con-
sists of an isosceles triangle of QD’s. To simplify the discus-
sion when the energy of states with different numbers of
particles are compared, we set the origin of one-particle en-
ergies at the Fermi level �F=0. In general, if the ground state
of the interacting part is quasidegenerate between a nonmag-
netic singlet and a magnetic doublet, and V is small com-
pared with the difference in energy with other states, neglect-
ing the latter the problem can be mapped into a one-impurity
Anderson model. As stated above, this model is well under-
stood. This mapping has been used to calculate the conduc-
tance through a ring described by the ionic Hubbard model,
which should detect a topological phase transition.31 In the
Kondo regime, where the magnetic ground state lies well
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below the other states, it might be necessary to retain other
states with even total spin for an accurate description.32 As in
these problems, we assume that the ground state of the inter-
acting part is a doublet for an odd number of particles. In
particular, the Hubbard model used to represent a linear array
of N QD’s has a doublet ground state in the EHSC for odd N.
We retain this doublet and all singlet states which hybridize
with it to map the problem into a generalized one-impurity
Anderson model. The validity of the mapping is discussed in
detail in Sec. IV. The resulting model is solved using a slave-
boson representation in the saddle-point approximation. Ex-
plicit calculations are presented for N=1, a linear trimer and
an isosceles triangle. The main result is independent of odd
N for a linear array of QD’s: we obtain ideal conductance in
the EHSC. This agrees with recent results obtained using
alternative techniques.25,26,33 The isosceles trimer is of inter-
est because of the effects of magnetic frustration and peculiar
electronic structure.32,34–38 In this case the electron-hole
symmetry is lost and this fact is reflected in an asymmetric
line shape for the conductance. Despite this fact, the unitary
limit is reached when Vg favors a magnetic doublet ground
state.

The paper is organized as follows. In Sec. II, we describe
the model, the mapping to one effective site, and the slave-
boson formalism for the resulting effective model. The re-
sults for the conductance are contained in Sec. III. Section IV
summarizes our results and discusses our findings in relation
to previous works. Some details of the calculations are left to
the Appendixes.

II. MODEL AND APPROXIMATIONS

A. Model

For the sake of clarity in the presentation, we consider a
linear array of an odd number N of QD’s coupled to the left
and to the right to metallic leads, and take N=3 unless oth-
erwise stated. The changes for any other array of QD’s are
obvious. The system is represented in Fig. 1. The dots are
equivalent and their on-site energy Ed=−eVg is controlled by
the gate potential Vg. The leads are described by noninteract-
ing half infinite chains.

The Hamiltonian is

H = Hl + Hd + Hmix. �1�

Hl represents the noninteracting leads

Hl = �
i=−2,�

−�

�− tci,�
† ci−1,� + H.c.� + �

i=2,�

�

�− tci,�
† ci+1,� + H.c.� .

�2�

Hd describes the central region containing the dots, each with
an on-site repulsion U,

Hd = �
i=−1,�

1

�Edci,�
† ci,� + Uni,↑ni,↓�

− �
�

�t��c−1,�
† c0,� + c0,�

† c1,�� + H.c.� . �3�

Finally the term Hmix, that couples the interacting part of the
system with the conducting leads, has the form

Hmix = V��
�

�c−1,�
† c−2,� + c1,�

† c2,�� + H.c.� . �4�

We take the Fermi energy �F=0, in such a way that the leads
are half filled. If in addition Vg is such that Ed=−U /2, the
Hamiltonian �for a linear array of QD’s� is invariant under an
electron-hole transformation ci,�

† → �−1�ici,�. In addition, for
any value of Vg, the system is invariant under inversion
ci,�

† →c−i,�
† �for odd N�.

B. Mapping of the interacting region to an effective site

We assume that the state of lowest energy of the interact-
ing part of the system for a certain odd number of particles of
interest is a doublet. This is certainly true for the ground state
of Eq. �3� in the EHSC. Hmix mixes this doublet with other
states with N−1 and N+1 particles. For small enough V,
Hmix can be eliminated through a canonical transformation,
and the model can be mapped to a single impurity Kondo
system,32 which is well understood. However, as Vg varies,
the state of minimum energy in the sector of either N−1 or
N+1 particles becomes quasidegenerate with the ground
state and finally crosses it, rendering the canonical transfor-
mation invalid. Near the quasidegeneracy the model can be
mapped into a one-impurity Anderson model.31 Here we gen-
eralize previous approaches31,32 and map the system into a
generalized Anderson model, retaining the lowest doublet in
the subspace of N particles, and all singlet states in the sub-
spaces with N±1 �see Fig. 2�. For simplicity we neglect the
triplet states, but as we will show this does not modify our
conclusions. The neglect of excited doublets is the most se-
rious and its effect is discussed in Sec. IV.

The eigenstates of Hd are classified according to its parity
��= ± �, total spin S, and its projection Sz. We will denote
these eigenstates as �� j,p

�n�	, where n is the number of particles,

FIG. 1. Scheme of the studied system.

FIG. 2. Scheme of the low-lying states of Hd for N=3. The
dashed lines denote states truncated in the approximation. Dashed
arrows represent processes of order V4, which are neglected. Only
processes of order V2 are retained.
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j orders the states according to increasing energy, and p is a
short label for the other quantum numbers ��, S, and Sz�. The
corresponding energies are denoted by Ej,p

�n�.
To represent the truncated Hamiltonian, we will use a

slave-boson formalism. This is convenient in our case in
which, in addition to the truncation, we perform a saddle-
point approximation to the slave-boson formalism. However,
the slave-boson representation is independent of the method
of solution chosen, and has been used, for example, in exact
diagonalization of finite clusters including triplet states.39

C. Formalism of slave bosons

As stated before, for the sake of clarity we will refer to
the case of the linear chain. We represent the many-body
states of Hd using a slave-boson representation that respects
electron-hole symmetry. This symmetry is important for the
description of the conductance through a linear array, as dis-
cussed in the Introduction. Basically, this representation can
be described as a generalization of that used by Kotliar and
Ruckenstein for the Hubbard model40 to include several
“empty” e and “doubly occupied” d bosons. Specifically, we
introduce the boson operators ej,�, dj,�, and s� and the Fer-
mionic ones f�, to map the states of the effective site describ-
ing the interacting part as

�� j,�
�2�	 → ej,�

† �0	 ,

��0,−,�
�3� 	 → f�

†s�
† �0	 ,

�� j,�
�4�	 → dj,�

† f↑
†f↓

†�0	 , �5�

with the following constraints:

�
j,�

ej,�
† ej,� + �

�

s�
†s� + �

j,�
dj,�

† dj,� = 1 , �6�

f�
† f� = s�

†s� + �
j,�

dj,�
† dj,�. �7�

We point out here that for a linear trimer, the ground state
��0,−,�

�3� 	 of the interacting part Hd is odd under inversion. This
implies that one has to choose one of the operators f�, s�

even and the other odd under inversion. Otherwise the in-
variance under inversion would be violated.

In this representation, the Hamiltonian can be written as

H = Hl + Hf + Hmix + Hboson + Hconstr, �8�

where Hl is the same as before �Eq. �2��. Hf describes the
energy of the fermions at the effective site,

Hf = E�3��
�

f�
† f�, �9�

where E�3�
E0,−,�
�3� is the energy of the lowest doublet in the

subspace of three particles �we keep N=3 in this section for
simplicity�. Similarly for the bosons at the effective site

Hboson = �
j,�

Ej,�
�2�ej,�

† ej,� + �
j,�

�Ej,�
�4� − 2E�3��dj,�

† dj,�. �10�

The energy of the boson s� has been chosen at zero. Note
that the above choice ensures the correct energy for each
state of the effective site:

P0HP0ej,�
† �0	 = Ej,�

�2�ej,�
† �0	 ,

P1HP1f�
†s�

† �0	 = E�3�f�
†s�

† �0	 ,

P2HP2dj,�
† f↑

†f↓
†�0	 = ��Ej,�

�4� − 2E�3�� + 2E�3��dj,�
† f↑

†f↓
†�0	 ,

�11�

where we have used the projectors Pi over the subspace with
i fermions, or n= i+2 �n= i−1+N in general� particles in the
interacting region.

Defining for convenience electron operators with well de-
fined parity under inversion

c�i�,±,� =
ci,� ± c−i,�

�2
, �12�

the term Hmix in this representation becomes

Hmix = �2V� �
2,�,�

f�
†c−�,��s�

†�
j

� j,�ej,�� + �
j

� j,�dj,�
† �s�̄�

+ H.c.� , �13�

where

� j,� = ��0,�g,�
�3� �c1,��.�g�,�

† �� j,�
�2�	 , �14�

� j,� = �� j,�
�4��c1,��.�g�,�

† ��0,�g,�̄
�3� 	 , �15�

where �g is the parity of the ground state for N particles. For
the linear array, � j,� and � j,� take the same values as a con-
sequence of the electron-hole symmetry for a particular Vg
�as mentioned above� and the fact that both matrix elements
turn out to be independent of Vg.

The constraints are incorporated in the Hamiltonian intro-
ducing Lagrange multipliers 	� and 	�, corresponding to
Eqs. �6� and �7�,

Hconstr = 	��
j,�

ej,�
† ej,� + �

�

s�
†s� + �

j,�
dj,�

† dj,� − 1�
+ �

�

	� f�
† f� − s�

†s� − �
j,�

dj,�
† dj,�� . �16�

In the functional integral formalism, the fermions can be
integrated out as in the Hubbard model,40 and the partition
function becomes

Z =� �
j,�

�Dej,���
j,�

�Ddj,���
�

�Ds��d	�d	�


exp�− �
0

�

d�S̃���� , �17�

where the effective action is
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S̃��� = �
j,�

�ej,�
* ��� + Ej,�

�2� + 	��ej,�� + �
�

�s�
*��� + E�3� + 	�

− 	��s�� + �
j,�

�dj,�
* ��� + Ej,�

�4� − 2E�3� + 	� − �
�

	��dj,��
− 	� + �

�,�
Tr ln M�,�, �18�

and the nonzero matrix elements M�,� �for N=3� are

�M�,��i,l = �
��� − ��i,l − t�i,l+1 + l+1,j� if i,l � 2,

��� − � + E�3� − 	�� if i = l = 0,

V�,� if �i = 0;l = 2�
or �i = 2;l = 0�

�
where

V�,� = �2V�s�
*�

j

� j,�ej,�� + �
j

� j,�dj,�
* �s�̄� . �19�

Up to now, the only approximation made was the trunca-
tion for N�1 of the Hilbert space, to a set of relevant low-
energy states of the interacting part Hd. For N=1, the formal-
ism introduced in this subsection is just a change of
representation of the original Hamiltonian.

To solve the problem we used the saddle-point approxi-
mation to evaluate the partition function. The Bosonic fields
are replaced by real constant numbers that minimize the ac-
tion. The details are left for Appendix A.

III. RESULTS FOR THE CONDUCTANCE

In the slave-boson mean-field approximation that we are
using, the many-body problem is reduced to a noninteracting
one with one “impurity” and only one channel of conduction,
with renormalized hybridization �see Eq. �19��. Then we can
use the two-terminal Landauer equation41 obtaining

G =
2e2

h
� d�−

�f���
��

��t����2, �20�

where f��� is the Fermi function and t��� is the transmit-
tance through the effective site

t��� = ��0�V−2V2�Gf f���� = 2��0�V+
2 − V−

2�Gf f���� ,

�21�

Gf f���� is the retarded Green’s function of the fermion f
with spin � �see Appendix A�, and V±2= �V+±V−� /�2 is the
coupling between the effective site and �for N=3� the site
with subscript ±2. At zero temperature from the above equa-
tions one gets

G =
2e2

h
�2��0�V+

2 − V−
2��2�Gf f���=0

2 . �22�

A. Conductance for N=1

We first discuss the case of the conductance through one
QD, and we compare the results with those obtained with
NRG �Ref. 8� for different values of �, which is the half

width at half maximum of the resonant level in the noninter-
acting case. In our problem �=2��0V2, where �0=1/ �2�t�
is the unperturbed density of states at the Fermi energy for
one spin and one of the leads, and the factor 2 adds the
contribution of both leads.

The results for one dot are shown in Fig. 3. The ideal
conductance for Ed=−U /2 indicates the formation of a vir-
tual bound state �Kondo effect� at T=0. As can be seen from
the inversion symmetry of the figure around Ed=−U /2, the
solutions of the saddle-point equations reflect the electron-
hole symmetry of the formalism. A very good agreement
between our results and those of NRG for � /�U=0.01 �the
strongly interacting case� is observed. This is in part due to
the fact that in the EHSC, where analytical results can be
obtained �see Appendix B�, the formalism reproduces the
correct exponential dependence of the width of the resonance
in the spectral density of states , which roughly coincides
with the Kondo temperature TK. However, the shape of the
resonance is Lorentzian in the mean-field approximation,
while the correct result in the Kondo regime is42

�d���� =
1

��
Re ��� + i�/i , �23�

where �1.55TK.10

The good agreement between the slave-boson mean-field
approximation and NRG deteriorates as smaller values of U
are considered and is lost in the noninteracting limit. Kotliar
and Ruckenstein proposed a remedy to this problem, replac-
ing some operators entering Hmix in Eq. �13� by other ones
�containing some suitable chosen roots� which coincide with
the previous ones when the constraints are imposed exactly
on each site, and at the same time reproduce in the saddle-
point approximation the correct results for the noninteracting
case.40 Unfortunately, we find that this method does not work
in the whole range of � /�U, giving an overestimated Kondo
temperature in the strongly interacting limit. In contrast, as

FIG. 3. Conductance vs Ed /U ratio, for different values of
� /�U. Lines indicate the results of the present slave-boson �SB�
approach, and the square points have been obtained with NRG �Ref.
8�.
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mentioned above, the formalism so far presented gives the
correct dependence of TK on the parameters in this limit �see
Appendix B�.

Since we are mainly interested in the limit of strong cor-
relations, the results shown in Fig. 3 are encouraging. For
small or moderate values of U one can use PTU.11,13,14,16 In
spite of this good agreement, the conductance falls to zero
abruptly at some value of Ed. This is an artifact of the saddle-
point approximation, reported before in other
problems,13,31,43 for example in the conductance through
rings of quantum dots.31 Beyond some value of the gate volt-
age Vg, the impurity decouples from the rest of the chain.

The decrease in the conductance out of the EHSC is due
to the reduction of the density of states at the Fermi level, as
the system approaches the intermediate valence regime.
Technically, in the saddle-point approximation as Ed in-
creases, the magnitude of boson e also increases �the charge
in the dot decreases�. This causes the magnitude of the boson
s to decrease and the resonance in f-electron density of states
must be shifted to higher frequencies in order to decrease the
nf occupation, according to the constraint Eq. �7�. This
causes a reduction in the value of �Gf f�� at the Fermi level,
and a reduction in the conductance �see Eq. �20��. In a simi-
lar fashion, when the dot is charged, the value of the boson d
increases, the value of nf approaches 1, and the resonance in
the density of states must be shifted to lower frequencies,
producing an analogous decrease in the conductance.

For the simple case of conduction through one dot, the
expression of the conductance can be written as11,41

G =
2e2

h
� d�−

�f

��
����d���� . �24�

At very low temperatures �T�TK�, the system is a Fermi
liquid. Therefore the Friedel’s sum rule �FSR� �Ref. 44� must
hold. For the case in which the hybridization V and the un-
perturbed density of conduction states �0 do not depend on
energy, the FSR takes the form

�d��0� =
sin2���nd�	�

��
, �25�

giving a conductance equal to

G =
2e2

h
sin2���nd�	� , �26�

where �nd�	 is the total charge per spin in the dot.
It can be shown �see Appendix B� that the saddle-point

approximation verifies the FSR, since the real problem is
mapped into an effective noninteracting one whose ground
state is a Fermi sea.

B. Conductance for N=3: Linear trimer

The results for conductance through three QD’s using the
saddle-point approximation described in Appendix A are
shown in Fig. 4. Results for one QD for the same parameters
are also shown for comparison.

On a qualitative level, the results for three QD’s are simi-
lar to those of one QD near the EHSC. In particular, the

conductance equals the ideal one G0 in the EHSC, decreases
as the amount of charge fluctuations increases, and finally
becomes very small when the ground state of the interacting
region becomes nonmagnetic. The reduction of the region in
which the conductance is near the ideal one is reduced in the
three-dot case, and one expects further reduction as the odd
number of dots N increases. This is due to the fact that as N
increases, the energy of singlets with N±1 particles become
nearer that of the ground-state doublet with N particles. As a
consequence, the interval of gate voltage Vg between both
intermediate valence regimes �when the energy of one singlet
coincides with that of the doublet� is reduced.

When Vg is moved further from the EHSC, an important
difference between N=1 and odd N�1 is that in the latter
case, magnetic states with N±2 particles become accessible,
a new Kondo effect takes place, and another plateau with
near ideal conductivity appears. For N�3 this pattern with
regions of nearly ideal or zero conductivity can be repeated
several times. In general, including even N, there should be
plateaus when the gate voltage favors an odd number of par-
ticles. In particular, for N=2 the conductance in a similar
system has been calculated using NRG and displays two pla-
teaus, corresponding to one and three particles in the inter-
acting region.24 While we have limited our calculations to
odd N and gate voltages such that either N or N±1 particles
are favored, it is straightforward to extend the formalism to
other cases, as long as the hybridization V of the interacting
region with the rest of the system is small enough. The al-
lowed magnitude of V for the validity of the formalism is
discussed in the next section.

We have verified numerically that Eq. �26� also holds for
three dots. The formalism is identical for other odd N. There-
fore near the EHSC the situation for different odd N are
qualitatively similar in that they show a local Fermi-liquid
behavior, ideal conductance at the EHSC, and the expected
electron-hole symmetry. This is at variance with the results
of Büsser et al.28 who find vanishing conductance at the
EHSC, but are consistent with those of Oguri,14 and recent
studies for N=3,25,33 who also obtain ideal conductance at
the EHSC. Note that the parameters with V=0.3t used in Fig.
4 correspond to one set of parameters used in Fig. 2�f� of
Ref. 28.

FIG. 4. Conductance vs Vg /U ratio, for different values of
� /�U. Innermost curves correspond to the conductance through
three QD’s. The one QD conductance is also shown for comparison.
Parameters are U= t, t�=0.5t, and the hybridization V is 0.25t, 0.3t,
0.4t, and 0.5t for increasing values of � /�U.
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C. Conductance for N=3: Isosceles triangle

In this section, we consider a system with the geometry
schematically depicted if Fig. 5. Two regimes in parameter
space were analized, namely t�� t� and t�� t�, where t� is
the new hopping term connecting dot 1 and −1. These re-
gimes correspond to the conductance through the two pos-
sible “isosceles triangles.” In the case t�= t� �equilateral tri-
angle�, the subspace with n=3 has a doubly degenerate
ground state, with states belonging to the even and odd sub-
space, respectively. This can be understood by recalling that
the symmetry group of the equilateral triangle in two dimen-
sions �C3v� has one two-dimensional irreducible representa-
tion. As will be discussed in detail in Sec. IV, the present
formalism is not valid at this point of parameter space, since
we assumed a nondegenerate ground state. Since experimen-
tally is very hard to reach such a regime, we believe that this
is not a serious constraint of the method. Starting with the
linear chain �t�=0�, we recall that the ground state of the n
=3 subspace is an odd S=1/2 doublet. Switching on adia-
batically the hopping t�, the energy of the excited even dou-
blet begins to fall, and after crossing the degeneracy point
t�= t�, the even doublet takes over and the formalism is valid
again.

Besides these features, we expect the development of a
plateau in the conductance at the ideal value in a certain
region of Ed /U, due to the fact that the problem still can be
mapped into an effective S=1/2 Anderson impurity coupled
to conducting leads.

In Fig. 6 we show the results for the conductance through
the isosceles triangle. For simplicity we have set parameters
V=0.45t, t�=0.5t, and U= t, so that the first result �t�=0� is

one of the curves of Fig. 4. As t� is increased, the curves are
approximately rigidly shifted to lower values of Ed /U. This
feature can be correlated with properties of the isolated tri-
mer. In order to gain physical insight, we define the follow-
ing functions of the isolated trimer:

�23�Ed,t�,t�,U� = Eg
�2��Ed,t�,t�,U� − Eg

�3��Ed,t�,t�,U� ,

�43�Ed,t�,t�,U� = Eg
�4��Ed,t�,t�,U� − Eg

�3��Ed,t�,t�,U� ,

which are the differences in energy between ground states
belonging to subspaces with different particle numbers. Fix-
ing t�, t�, and U, we define Ed

2,3 and Ed
4,3 as the values of Ed

which render �23�Ed , t� , t� ,U�=0 and �43�Ed , t� , t� ,U�=0,
respectively. These values correspond to an intermediate va-
lence regime of the effective Anderson model, and are re-
lated to the crossover regions in the dependence of the con-
ductance G with gate voltage, where G falls down from its
ideal value at the plateau to zero. This is due to charge fluc-
tuations and the consequent disappearance of the Kondo ef-
fect. Following the evolution of the points Ed

2,3 and Ed
4,3 as a

function of t� �see Fig. 7�, the evolution of the conductance
curves in Fig. 6 can be explained easily: the conductance is
related to the low-energy physics of the isolated trimer. For
example, for t�=0 �t�=0.4t�, the first value of Ed /U for
which G=G0 /2 in Fig. 6 is near −0.8 �−1.2�, the value for
which the number of particles in the ground state of the
isolated trimer changes from 4 to 3 �see Fig. 7�. As is already
clear from Fig. 4, the width of the crossover regions in-
creases with V, since the effective hybridization V�,� is pro-
portional to it and therefore the widths of intermediate va-
lence regimes increase accordingly.

The results for t�� t� are shown in Fig. 8. The asymmetry
in the curves is more evident, and again the plot can be
understood by following the evolution of Ed

2,3 and Ed
4,3 �see

Fig. 9�. When t�� t�, the low-energy physics of the system
resembles that of a singlet formed by the two QD’s con-
nected by t� plus an additional QD on the top. In this situa-
tion, there is a considerable decrease in the effective hybrid-
ization V�,� �see Eq. �19��. This is directly reflected in that
the Kondo temperature is much lower than before, rendering
the convergence of the numerical method difficult. For that
reason, in those calculations we have set V=1.0t in order to

FIG. 5. Scheme of the triangular arrangement.

FIG. 6. Results for the conductance through the isosceles tri-
angle for the case t�� t�. Parameters are t�=0.5t, U= t, and V
=0.45t.

FIG. 7. Evolution of the degeneracy points as a function of t� for
the isolated trimer. Parameters t and U are those of Fig. 6.
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have a larger Kondo temperature. The validity of the formal-
ism is only slightly affected, despite the fact that V is com-
parable to other energy scales �t ,U�. The main reason for this
is the high values of t�, which ensure a large difference be-
tween the ground-state energy and that of the excited odd
doublet for n=3. Another reason is the small effective hy-
bridization. Other details on the validity of the approxima-
tion will be given in the next section. As a final comment, we
mention that the results obtained for these geometries are
consistent with those obtained with the FSR �Eq. �26�� for
the effective Anderson model.

IV. DISCUSSION

We have presented an effective site approach to study the
conductance through an arrangement of N QD’s, diagonaliz-
ing exactly the part of the Hamiltonian describing the inter-
acting region and retaining the most relevant states which
describe the low-energy charge excitations. As discussed be-
low, the approach is valid when the hybridization V of the
interacting region with the rest of the system is small. The
advantage of this mapping is that the physics of one impurity
is rather well understood, and several good approximations
can be used. Recently a mapping to an effective Kondo
model with one “impurity� has been successfully used to
interpret the dependence of geometry of spectroscopic ex-
periments for a Cr trimer on Au�111�,32 and to calculate the
conductance through a dimer connected at one site to two

conducting leads.24 In the latter case, NRG results are avail-
able and are in excellent agreement with those of the effec-
tive model for small or moderate V.24

For small V, the effective site approach can also be used
when the the interacting region is side coupled to a conduct-
ing lead and the current does not necessarily flow through
the interacting region. An example of this system is a trimer
coupled to one site of a conducting lead.45 In this case, the
model is mapped to an effective site side coupled to a con-
ducting lead,11,13,18,19 instead of embedded in the lead.

We have introduced a slave-boson representation for the
description of the effective Hamiltonian, and used the
saddle-point approximation to calculate the conductance
through the effective site. The results obtained in the strongly
interacting regime for N=1 were found to be in very good
agreement with NRG calculations. For a linear array of an
odd number of QD’s, our results near the EHSC are qualita-
tively similar. In particular, we obtain perfect conductance at
the EHSC. Since this result might seem controversial at
present, we discuss in detail the approximations involved in
our treatment, particularly in relation to this result.

The crucial approximation is to retain only the lowest
doublet of the magnetic configuration, neglecting the excited
ones �see Fig. 2�. This approximation scheme is only valid as
far as the excited levels have a negligible contribution to the
many-body ground state. The hybridization V induces a
second-order matrix element Mg↔e

eff between the ground state
of the magnetic configuration in the interacting region and
excited states for the same number of particles. In particular,
for the linear trimer, while the ground state for three particles
is an odd doublet, the most relevant excited state for three
particles is an even doublet. If the approximation is valid, the
effective matrix element should be smaller than the differ-
ence between the energy of these states

�Ee
�3� − Eg

�3�� � Mg↔e
eff , �27�

where

Mg↔e
eff = �

j,�,n=2,4

1

2
� ��g

�3��Hmix�� j,�
�n�	�� j,�

�n��Hmix��e
�3�	

Ej,�
�n� − Eg

�3�

+
��e

�3��Hmix�� j,�
�n�	�� j,�

�n��Hmix��g
�3�	

Ej,�
�n� − Ee

�3� � �28�

is the effective matrix element between the ground state
��g

�3�	 and an excited state ��e
�3�	. To estimate this matrix ele-

ment in the case of the linear trimer, for simplicity, we have
restricted the sum above to the lowest states with two and
four particles in the EHSC. The simplified expression is

�Ee
�3� − Eg

�3�� � V2�3g,2g�2g,3e 1

Eg
�2� − Eg

�3� +
1

Eg
�2� − Ee

�3�� ,

�29�

with �a,b being the generalization of Eq. �15� for any pair of
states �a	 and �b	. For the parameters used in Fig. 4, the
largest value of Mg↔e

eff / �Ee
�3�−Eg

�3�� is 0.16 for � /�U=4.0

10−2.

FIG. 8. Results for the conductance through the isosceles tri-
angle for the case t�� t�. Parameters are the same as in Fig. 6.

FIG. 9. Same as Fig. 7 for the case t�� t�. The different evolu-
tion of the degeneracy points as a function of t� explains the asym-
metry of the conductance in Fig. 8.
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In the case of the isosceles triangle the above criterion is
taken at the value of Vg which renders Eg

�2�=Eg
�4�. For the

parameters in Fig. 6, the largest value of Mg↔e
eff / �Ee

�3�−Eg
�3�� is

3.3
10−2 for � /�U=3.2
10−2; and for Fig. 8, the corre-
sponding value is 0.29 for � /�U=1.6
10−1. Thus we con-
clude that this set of parameters is quite consistent with the
approximation.

Quantitative details of our results are also affected by two
other approximations related with our slave-boson treatment:
�i� the neglect of the triplet states in the subspaces of N±1
particles in the interacting region, and �ii� the fact that the
saddle point chooses the most convenient solution between
those with definite parity in these subspaces: either ej+=dj+
=0 or ej−=dj−=0 for all j. However, in the Kondo regime of
most interest, the model reduces to a one-impurity Kondo
model, and for the linear trimer, both approximations slightly
modify the Kondo temperature and in opposite directions.32

Therefore our conclusions are not affected. In particular, the
system remains a Fermi liquid with ideal conductance in the
EHSC. For other problems and larger V, the effects of the
triplets can be important near the singlet-triplet degeneracy.46

As argued before,14 if the system is a Fermi liquid, its
properties at low energy are expected to be the same as those
of a noninteracting system, and therefore one expects non-
zero conductance in the EHSC. Then, the possibility of van-
ishing conductance in this case seems to be related with the
breakdown of the Fermi liquid. For a trimer �N=3� with C3v
symmetry, a non-Fermi-liquid ground state results as a con-
sequence of the degeneracy between odd and even doublets
in the ground state of the interacting region.37,38 In this case,
although Eq. �22� suggests a vanishing conductance, our ap-
proach breaks down because Eq. �27� is not satisfied. How-
ever, the geometry of the system is incompatible with “trian-
gular� C3v symmetry, and even a very small deviation of this
symmetry restores Fermi-liquid behavior.32,37 Therefore the
most likely explanation of the result of Büsser et al.28 of
vanishing conductance in the EHSC for odd N�1 seems to
be a failure of the embedding procedure for N�2, in spite of
its success when only one QD is involved.18–21 Recently, the
case N=3 has been studied by NRG,25 and by Monte Carlo
and variational techniques.33 These results agree with ours
for small V.

Note added in proof. Recently, we became aware of ex-
perimental work on triple dots.48 In this work the authors
have mapped out the stability diagram of a triple dot system
in the few-electron regime.
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APPENDIX A: SADDLE-POINT APPROXIMATION

This is a mean-field approximation in which the problem

reduces to minimize the effective free energy F̃ as a function

of the numbers ej,�, dj,�, and s�. From Sec. II C, F̃ is given
by

F̃ = F̃boson + Ffermion, �A1�

where

F̃boson = �
j,�

��Ej,�
�2� + 	��ej,�

2 � + �
�

��E�3� + 	� − 	��s�
2�

+ �
�,j,�

��Ej,�
�4� − 2E�3� + 	� − 2	��dj,�

2 � − 	�, �A2�

and

Ffermion = �
�

−
1

�
�

−�

�

ln�1 + e−���−��������d� , �A3�

where ����� is the total fermion density of states given by

����� = −
1

�
Im TrG���� , �A4�

where the matrix G���� contains the retarded Green func-
tions of the Fermionic effective problem.

It is convenient to separate the Fermionic free energy into
a part Ffermion

0 corresponding to the system without the effec-
tive site or “impurity� �and therefore independent of the
Bosonic variables� and the rest, which represents the effect
of the impurity on Ffermion

Ffermion = Ffermion
0 + �Ffermion. �A5�

The same separation can be made for the density of states.
Using the relation43

��� =
1

�
Im

�

��
ln Gf f���� �A6�

the change in free energy after adding the effective site be-
comes

�Ffermion = − �
�

1

�
�

−�

�

ln�1

+ e−���−���
1

�
Im

�

��
ln Gf f����d� , �A7�

where Gf f� is the Green’s function of the fermions f at the
effective site. Since the effective Fermionic problem is non-
interacting, Gf f� can be calculated easily using equations of
motion.22 The result is

Gf f���� = lim
�→0�� + i� − � − E�3� − 	�

− �
�

��V�,��2g2,�,������−1
, �A8�

where g2,�,���� is the unperturbed Green’s function �without
the effective site� at site 2 with parity � and spin �.

Integrating by parts in Eq. �A7� and taking �=0, one
obtains

��Ffermion�T=0 = �Efermion = − �
�

1

�
Im �

−�

0

ln Gf f����d� .

�A9�
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Minimizing the effective free energy, one obtains the fol-
lowing equations:

0 =
�F̃

�ej,�
,

0 = ej,��	� + Ej,�
�2��

− �
�

�2Vs�

�
Im�V�,�� j,��

−�

0

d�g2,�,����Gf f����� ,

�A10�

0 =
�F̃

�dj,�
,

0 = dj,�	� + Ej,�
�2� − 2E�3� − �

�

	��
− �

�

�2Vs�

�
Im�V�,�� j,��

−�

0

d�g2,�,����Gf f����� ,

�A11�

0 =
�F̃

�s�

,

0 = s��	� − 	�� −
�2V

�
Im��

j,�
�V�,��� j,�ej,�

+ � j,�dj,���
−�

0

d�g2,�,����Gf f������ , �A12�

0 =
�F̃

�	�
,

0 = �
j,�

ej,�
2 + 2s2 + �

j,�
dj,�

2 − 1, �A13�

0 =
�F̃

�	�

,

0 = −
Im

�
�

−�

0

d�Gf f���� − s�
2 − �

j,�
dj,�

2 . �A14�

Since one does not expect breaking of SU�2� symmetry
we take s↑=s↓=s and 	↑=	↓=	. For small V we can take a
constant unperturbed density of states with its value at the
Fermi energy �0=1/ �2�t�.11 This simplifies the calculations
and does not affect our conclusions,

g2,���� = − i��0��D − ���� , �A15�

where 2D�0=1 �D=�t�.
For N=3, there are 15 independent variables. However,

with a little algebra the number of independent variables can
be reduced to 4. Using Eq. �A10�, we can relate all boson

numbers ej,� in terms of one of them. We choose e0,� corre-
sponding to the ground state of N−1 particles:

ej,� =
� j,�

�0,�
E0,�

�2� + 	�

Ej,�
�2� + 	�

�e0,�, = Rj,�
�2�e0,�, �A16�

where we have defined

Rj,�
�2� 


� j,�

�0,�
E0,�

�2� + 	�

Ej,�
�2� + 	�

� . �A17�

Similarly, using Eqs. �A10� and �A11� all dj,� can also be
related to e0,� giving

dj,� =
� j,�

�0,�
 E0,�

�2� + 	�

Ej,�
�4� + 	� − 2E�3� − 2	

�e0,�, = Rj,�
�4�e0,�,

�A18�

where

Rj,�
�4� 


� j,�

�0,�
 E0,�

�2� + 	�

Ej,�
�4� + 	� − 2E�3� − 2	

� . �A19�

Using these relations in Eq. �A10�, we can write

0 = e0,���	� + E0,�
�2�� − 2V2s2�0�0,���

j

�Rj,�
�2�

+ Rj,�
�4��� j,��ln� �E�3� + 	�2 + 2

�E�3� + 	 + W�2 + 2�� , �A20�

where =��0��V−�2+ �V+�2�. Equation �A14� takes the form

0 =
1

2��j,� e0,�
2 ��Rj,�

�2��2 − �Rj,�
�4��2�� −

1

�
tan−1�E�3� + 	


� .

�A21�

Finally Eq. �A12� becomes

0 = 1 +

V2�0��
�
��

j

e0,�� j,�
�0��Rj,�

�2� + Rj,�
�4���2�

	� − 	


ln �E�3� + 	�2 + 2

�E�3� + 	 + W�2 + 2� . �A22�

In practice, Eq. �A13� has been used to express s in terms
of the other Bosonic variables and Lagrange multipliers. This
leads to a system of four coupled nonlinear equations with
the unknowns �e0,+ ,e0,− ,	 ,	��, which was solved numeri-
cally. In addition, one of the e0,� should vanish to satisfy both
Eqs. �A20�. In the case of the linear trimer, e0,−=0. To facili-
tate the numerical solution, we started solving the equations
in the EHSC, for which ej,�=dj,�, and then 	=E�3�, as can be
easily seen from Eqs. �A10� and �A11�. After the solution in
this case was obtained, the resulting values were used as a
starting guess for a slightly modified Vg and the process was
repeated until the whole range of gate voltages of interest
was covered.
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APPENDIX B: ANALYTICAL RESULTS FOR ONE DOT

If the interacting system is composed of only one dot, in
the absence of a magnetic field B, the change in the effective
free energy in the saddle-point approximation depends on
two independent variables and the problem is simplified con-
siderably.

For B=0, s↑=s↓=s. Eliminating e from the constraint e2

+2s2+d2=1 �see Eq. �6��, the change in the effective free
energy can be written as

�F̃1D = F̃boson
1D + �Ffermion

1D ,

F̃boson
1D = − 2	s2 + �U − 2	�d2,

�Ffermion
1D = −

2

�
Im �

−�

0

ln Gf f�
1D ���d� , �B1�

with

Gf f�
1D ��� = �� − �Ed + 	� + i�−1, �B2�

where the half width of the resonance is

 = �s2�d + e�2. �B3�

As in Ref. 47, 	 can be expressed in terms of s and d using

s2 + d2 = �nf�	 = −
1

�
Im �

−�

0

Gf f�
1D =

1

�
tan−1 

Ed + 
� ,

�B4�

giving

	�s,d� =


tan���s2 + d2��
− Ed. �B5�

The two-terminal Landauer formula at T=0 gives

G =
2e2

h
2�Gf f�

1D ��=0
2 =

2e2

h
sin2���nf�	� , �B6�

where in the second equality, Eqs. �B2� and �B5� were used.
Thus Eq. �26� is verified.

Replacing Eqs. �B2� and �B5� in Eq. �B1� the change in
free energy becomes

�F̃1D = Ud2 + 2Ed�s2 + d2� +
1

�
�ln� �2 + 2

�D + ��2 + 2� − 2�D

+ ��arctan 

D + �
�� , �B7�

where �= cot���s2+d2��. In the EHSC, e2=d2=1/2−s2,
and the energy depends on only one variable s, which can be
obtained by minimization. In the Kondo limit of large U,
d2→0, the resulting transcendental equation can be simpli-
fied giving

d2 �
D

4�
exp− �U

4�
� ,

and using Eq. �B3�

TK �  �
D

2
exp− �U

4�
� , �B8�

which has the correct exponential dependence. If instead, the
mean-field approach of Ref. 40 is used �including some suit-
able roots to reproduce the noninteracting case�, an addi-
tional factor 4 appears in the denominator of the exponent in
Eq. �B8�.
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