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Theoretical thermal conductivity of a packed bed of crystalline spherical nanoparticles is reported. Thermal
conductivity is dominated by surface and constriction thermal resistances and surface energy of the nanopar-
ticles. Depending on the surface energy and size of the nanoparticles, thermal conductivity of the solid phase
can be smaller than the minimum thermal conductivity given by the Einstein limit. It is also shown that
depending on the surface energy and size of the nanoparticles, thermal conductivity of the nanoparticle bed can
be smaller than the thermal conductivity of air. The range of surface energies under which these conditions are
achievable for silicon-based nanoparticle beds is reported. Finally, it is shown that nanoconstrictions are more
efficient in reducing thermal conductivity than superlattices and nanowires.
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I. INTRODUCTION

The lowest possible thermal conductivity �k� of solids is
given by the Einstein limit �kE�,1 where the mean free path
�mfp� is assumed to be the same as half the wavelength of
the phonons. This model has been very successful in explain-
ing thermal conductivity of amorphous solids.1 For most sol-
ids at room temperature �T� or higher the dominant phonon
half wavelength is close to the lattice constant �b�. Therefore,
at higher TkE=1/3b�3�c�v�d�, where c is the frequency-
dependent heat capacity per unit volume, v the frequency-
dependent group velocity, and � is the frequency of phonons.
The last decade has seen enormous research in reducing the k
of crystalline semiconductor solids using nanostructures for
applications ranging from high-efficiency thermoelectric to
microsensors.2 Nanostructures investigated in the literature
can be broadly categorized into thin films, superlattices,
nanowires, and nanocomposites.2 These nanostructures have
very small k at room T; however, it is much higher than kE.
To achieve k as small as kE in crystalline nanostructures at
room T, the size of the nanostructure has to be approximately
as small as the lattice constant, which is not possible for the
nanostructures mentioned above.

In this paper we theoretically calculate k of different
nanoscale architecture: packed bed of spherical crystalline
nanoparticles �NPs� in the presence of air �Fig. 1�. We show
that depending on the size and the surface energy of the NPs,
it is possible to achieve k�kE for the solid phase due to
filtering of phonons at the interface of the two nanoparticles.
We also show that depending on the size and the surface
energy of the NPs, effective k of the solid phase and the gas
phase �air� combination can be smaller than k of the gas.
Technologies such as high-temperature energy storage tanks,
gas turbine engines, and space applications require insulation
with solidlike mechanical behavior3 but k as small as pos-
sible. The packed bed of spheres is also important in
technologies4 such as packed bed catalytic reactors, automo-
tive catalytic converters, and the thermal process of oil re-
covery. Knowledge of k is very important for these applica-
tions. Limited experimental work5 already indicates that it is
possible to make a packed bed of NPs.

II. THEORETICAL FORMULATION

Figure 1 shows a spherical nanoparticle bed �NB� ar-
ranged in simple cubic pattern. The top and bottom sub-
strates are not included in the thermal analysis. Due to the
periodicity of the NB, the thermal problem reduces to finding
the k of a unit cell. Figure 1�b� shows the top view of the unit
cell which is composed of a cylindrical region. The side view
shown in Fig. 1�c� shows that the cylindrical region. k of the
NB is given by kNB=� /4kcyl+ �1−� /4�kair, where kcyl is the

FIG. 1. �Color online� �a� Schematic of a packed bed of crystal-
line nanoparticles arranged in simple cubic pattern. �b� Top view of
unit cell to compute k. �c� Cylindrical geometry to calculate kcyl of
the cylinder formed by air and the nanoparticle.
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k of the cylinder shown in Fig. 1�c�. In writing this equation
we have assumed no reduction in k of air surrounding the
cylindrical region. This is possible if the boundary between
air and the spheres is specular. For a diffuse interface kair will
decrease. Therefore kNB in reality can be smaller. While cal-
culating kcyl, the size effects on kair are included by including
the thermal boundary resistance �Rb� between air and the
solid sphere. Figure 2 shows the cylindrical region in details.
Due to application of external pressure �P� and the presence
of adhesion, a small circular constriction forms between two
NPs.7 R and a are the radius of the particle and the constric-
tion, respectively.

For the size of the nanoparticles considered in the study
we found that contribution of the thermal transport in the
bulk of the solid and the gas is negligible compared to the
interface thermal resistances, i.e., thermal transport is prima-
rily ballistic in nature. Therefore, in this paper only the bal-
listic component is included in the analysis. As shown in Fig.
1�c�, there are two parallel paths for heat transfer: �i� solid-
to-solid through the air and �ii� solid-to-solid through the
constriction formed by the two spheres. For a� l, where l is
the mfp of phonons, the constriction resistance ��c� is mod-
eled using Maxwell’s formula,4,6 �Maxwell=1/2ka. For NB, a
will be very small. In the other limit of a �l, phonon trans-
port through the constriction will be ballistic. The heat trans-
fer rate, Q, in the ballistic limit can be written as

Q =
1
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3
�

�=0

�=�m �
�=0
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where A is the area of the constriction, �m the maximum
frequency, v the phonon group velocity, D the density of
states/volume, and � is the transmissivity of phonons. The
summation indicates three polarizations of phonons. For
small differences in T on two sides, the ballistic constriction
resistance, �b, is given by
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Equation �2� assumes bulk phonon dispersion of three-
dimensional solid. Due to the small size of the NPs the dis-
persion relation can deviate from bulk phonon dispersion.2

The dispersion relation will deviate from bulk dispersion if
the NP size is comparable to the dominant wavelength �D�
of the thermally excited phonons. D can be written as2

	�D=2�	v /D=kbT. Change in the phonon dispersion from
the bulk can be estimated based on solving the wave equa-
tion in a freestanding NP in air. Calculations have been per-
formed for silicon �Si� based NB. Since the mass density of
air�mass density of Si, the appropriate boundary condition
is a stress-free surface. Nakayama et al.8 considered this case
to calculate Rb between NP and liquid helium at T�1 K.
They showed that for R /D�0.5, Rb obtained from the so-
lution of the wave equation with stress-free boundary condi-
tion reduced to Rb given by assuming bulk dispersion. Simi-
larly Nakamura et al.8 showed that Rb between NPs
�diameter: 7 nm–40 nm, T: 5 K–200 K� and polyethylene
could be well described by assuming bulk phonon disper-
sion. At room T, D of Si is �1 nm.2 Considering this bulk
phonon dispersion has been assumed as calculations have
been performed for NP diameter �5 nm.

Although R�D, a can be comparable to D �a�R�,
leading to diffraction effects. � can be obtained by solving
the wave equation through the circular aperture formed by
the constriction assuming stress-free boundary conditions at
the NP/air interface. For a�R, � can be obtained by consid-
ering a plane screen �with stress-free boundary� separating
the two half spaces and using spheroidal wave functions.9 In
the geometrical scattering, i.e., for a�D, �=the ratio of the
projected area of the constriction in the direction of the inci-
dent wave and the real area of the constriction, i.e., �
=cos �. For this case Eq. �2� gives

1/�b = 1/4��
3
�

�=0

�=�m

c���d��A . �3�

For T� Debye T, Eq. �3� reduces

1/�b = A 
 �2/30 
 �kb
4/	3���L

−2 + 2�T
−2�T3, �4�

where �L and �T are the longitudinal and transverse phonon
velocity. Schwab et al.2 measured the conductance of silicon
nitride catenoidal nanowire at very low T. The minimum
cross-sectional area of their catenoidal nanowire was
60 nm
200 nm. Minimum area in the catenoidal wire acts
like a constriction to heat flow. Figure 3 shows the
comparison10 between Eq. �4� and their data using A
=60 nm
200 nm. Equation �4� matches very well with data
for T�0.8 K. For T�0.8 K the conductance reduces to the
universal quantized conductance �g0=�2kb

2T /3h� of a one-
dimensional mesoscopic conductor due to severe deviation in
phonon dispersion from the bulk dispersion. D for silicon
nitride at T=0.8 K is 432 nm, which is much larger than the
size of the minimum cross section. This shows that assuming

FIG. 2. Details of the geometry and the thermal problem to
calculate kcyl for the cylindrical geometry of Fig. 1�c� made of
nanoparticle and air.
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bulk dispersion is a good assumption for most of the tem-
perature range and particularly for room T. In the limit of
a�D, � can be calculated from the Rayleigh formula.9 In
the Rayleigh limit, �Ray=8/ �27�2���a /v�4�cos ��2 for a cir-
cular constriction, which leads to

1/�b = 128/1215 
 �3a6�kb
8/	7��vL

−6 + 2vT
−6�T7 �5�

for T�Debye T. Equation �5� is the conductance of a very
small abrupt constriction formed between two three-
dimensional bodies assuming bulk phonon dispersion. Equa-
tion �5� shows that at very low T, �b is proportional to a−6,
which makes �b very large compared to that given by Eq. �4�
or the Maxwell formula. We found that room T, �b is very
well described by Eq. �3�.

Rb at the air-solid interface is important for the NPs. Rb,
expressed in the units of impedance for the air-solid inter-
face, can be written as4

Rb,air = 2	�2 − ��/�
	2/�� + 1�
	�1/��C���
lair, �6�

where � is the accommodation coefficient, lair the mfp of air
molecules, � the ratio of specific heats, � the viscosity of the
gas, and C� is the specific heat of air at constant volume. �
depends on the acoustic properties of the solid and the gas.11

� for air4 is typically 0.9. In engineering literature4 the same
phenomenon at the gas-solid interface is referred to as
temperature-jump-distance �TJD� or temperature slip length
due to ballistic transport of air molecules in small geom-
etries. Dharmadurai11 showed that treating the problem from
the point of view of Rb based on an acoustic mismatch model
or TJD are equivalent. At ambient conditions, Rb,air=4.9

10−6 K m2 W−1. It can be shown that TJD=Rb,air
kair
=128 nm �Kapitza length� at ambient conditions. Expressed
in terms of conductance, Gb,air�0.25 MW m−2 K−1. At room
T, G of the solid-solid11 interface is �100 MW m−2 K−1 and
liquid-solid interface is �10 MW m−2 K−1. G for the liquid-
solid interface is one order of magnitude smaller than the
solid-solid interface due to larger mismatch in acoustic prop-
erties. Similarly, G of the solid-air interface is one order of
magnitude smaller than the solid-liquid interface due to
larger mismatch in acoustic properties as compared to the

solid-liquid interface. The contribution of radiation heat
transfer between the two spheres is also assessed. Due to the
closeness of the NPs, the wavelength of the photons can be
comparable to the air-gap thickness, making the near-field
effects important.12 An upper-bound estimate12 for the near
field can be made for dielectrics such as intrinsic Si by using
Grad=4n2�T3
2�R2, where n is the refractive index of Si
and � is the Stefan-Boltzmann constant. The effect of radia-
tion was found to be negligible.

The effective thermal resistance of the solid-air combina-
tion is given by

1/�cyl = �R2/�2Rb,air� + 1/�b = �R2kcyl/�2R� , �7�

which using Eq. �3� leads to

kcyl = R/Rb,air + 0.5a2/R�
3
� c�v�d� . �8�

In Eq. �8� the first term is the contribution of air and second
term is the contribution of solid.

In the macroscopic treatment of packed beds, a is given
by Hertzian contact analysis,4 which leads to a
= �0.75FR* /E*�1/3, where F is the force, R*=R1R2 / �R1+R2�,
where R1 and R2 are the radius of the two spheres and
E*−1= �1−�1

2� /E1+ �1−�2
2� /E2, where E is the Young’s modu-

lus and v is the Poisson’s ratio. If the pressure applied at the
top substrate is P, then the force on each sphere is F
=�R2P, leading to a= �0.375�P /E*�1/3R. For small particles,
microscopic adhesive surface forces play a very dominant
role. a, including the surface force, is modeled using the
well-known JKR theory.7 The effective force is given by
Fef f =F+3��R*+�6��R*F+ �3��R*�2, where � is the work
of adhesion per unit area. � is given by13 �=�1+�2−�12,
where �1 and �2 are the surface energy per unit area of
materials 1 and 2, and �12 is the interface energy per unit
area. If two materials are the same then �=2�1. In the ab-
sence of external force, a solely due to adhesion is given by
a0= �1.125�� /E*�1/3R2/3.

III. RESULTS AND DISCUSSION

The calculations have been performed for Si-based NB.
Before discussing the results, the range of �1 of Si is briefly
discussed. For a detailed discussion readers are referred to
the book by Q.-Y. Tong and U. Gösele.13 �1 is a strong func-
tion of surface treatment, surface contaminant, absorbed lay-
ers of other molecules such as water, and the annealing
�bonding� temperature. �=2�1 is the same as the fracture
energy for monolithic material such as single-crystal Si. �1
for clean Si is of the order of 1000 mJ m−2.13 For a surface
exposed to the ambient, �1 can drop significantly because the
surface may absorb species from the ambient. �1 for an ex-
posed surface is also a strong function of the bonding �an-
nealing� temperature. Depending on the surface treatment
and annealing temperature, the range of �1 of Si observed in
the literature is 1 mJ m−2−1000 mJ m−2.13 The upper limit
corresponds to clean Si or contaminated-chemically treated
Si at very high annealing temperatures, and the lower limit
corresponds to hydrophobic Si at low temperatures. There-

FIG. 3. Comparison between experimental data by Schwab et
al.2 on the conductance of a catenoidal wire and a three-
dimensional constriction conductance given by Eq. �6�. Minimum
cross-sectional area of the wire behaves like a constriction. Phonon
dispersion changes from bulk only for wire dimension�D. D at
T=0.8 K is 432 nm.
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fore calculations have been performed for �1 ranging from
1 mJ m−2−1000 mJ m−2 in the paper to clearly identify the
regime where k of the NB can be smaller than k of air.

Figure 4 shows k of Si-based NB at room T. �b from Eq.
�3� is calculated using experimental phonon dispersion.14

Data15 indicates that E of nanostructured Si is the same as
bulk E. Therefore E is assumed to be the same as E of bulk
Si.16 k is calculated for P=0 and 6.9
105 Pa �100 PSI�.
Note that if adhesion force is neglected, then for P=0, a
=0. Figure 4 shows that effective thermal conductivity of the
nanoparticle bed �kNB� is very low for both very low and
very high surface energy. The main reason that kNB is very
small is that for NPs, �b is very large. The impact of Rb
between air and the NP is also very large. With increasing
NP size, the impact of �b and Rb,air decreases, leading to an
increase in kNB. Figure 4 also shows that depending on the
surface energy, kNB can be lower than k of air. To achieve k
smaller than k of air, the surface energy of NPs has to be
relatively small ��1�10 mJ m−2 or lower�. For Si, this is
possible only with surface treatment and low-temperature
bonding.13 However, even for surface energy as high as
500 mJ m−2, kNB is comparable to k of typical polymers
��0.2–0.3 W m−1 K−1, Ref. 17�, i.e., a packed bed of crys-
talline nanoparticles has k the same as k of polymers. Figure
4 also shows that for �1 as high as 1000 mJ m−2 �correspond-
ing to �=fracture energy� k is still very small.

From Eq. �8�, the contribution of solid phase is given by

ksolid = 1/2�
3
� c�v�d��a 
 a/R . �9�

Physical interpretation of Eq. �9� is that for an abrupt nano-
constriction, mfp�a; however number of phonons crossing

the interface is reduced by a /R, i.e., filtering of phonons
takes place. For geometries such as nanowires, thin films,
and superlattices, a=R, i.e., a /R=1. Therefore a nanocon-
striction is more efficient in reducing k than nanowires, thin
films, and superlattices. Equation �9� shows that the effective
mfp of nanoconstriction is �a2 /R, which for pure Hertzian
contact leads to l� �P /E*�2/3R, and for pure adhesive contact,
l� �� /E*�2/3R1/3. Figure 5 shows ksolid for various values of
�1. Using experimental phonon dispersion,14 the Einstein
conductivity �kE� 0.3 W m−1 K−1. It is to be noted that this
value is lower than that predicted by using the Debye model1

because we have used the experimentally measured phonon
dispersion, which leads to smaller group velocity and heat
capacity of acoustic phonons at room T as compared to the
Debye model.2 Using the Debye model, kE�1 W m−1 K−1,1

which is much closer to the experimental data on amorphous
Si.1 Figure 5 shows that depending on the surface energy and
size of the NP, ksolid is smaller than kE. Even for �1 as high as
1000 mJ m−2 �corresponding to �=fracture energy�, ksolid can
be smaller than kE, however, only for very small NPs�
�20 nm�. Although ksolid is higher than kE for most of the
range of NP sizes considered for larger values of �1, it is still
smaller than k of amorphous Si ��1 W m−1 K−1�,1 which
means that by using crystalline NPs it is possible to achieve
k smaller than the k of amorphous phase.

From Eq. �9�, ksolid /kE=1.5�a /b��a /R�. As long as a2 /R
�b /1.5, ksolid�kE. a2 /R for purely adhesive contact is given
by

a2/R = �1.125��/E*�2/3R1/3 �10�

Equation �10� shows that a2 /R is a stronger function of the
surface energy than the size of the NP. Therefore reduction in
the surface energy leads to larger reduction in ksolid as com-
pared to the reduction in the size of the NPs. The key to
reduce a2 /R is to significantly reduce the surface energy and

FIG. 4. Thermal conductivity of NB as a function of nanopar-
ticle size, surface energy, and external pressure. k is a strong func-
tion of nanoparticle size and surface energy. Effect of pressure de-
pends on the surface energy �filled circles: P=0; unfilled circles:
P=6.9
109 Pa�. At high surface energy the constriction size is
dominated by the adhesion forces for smaller particles. Therefore
pressure does not impact k much for large surface energy, whereas
for small surface energy external pressure has large impact. �See
text for details.�

FIG. 5. Thermal conductivity of the solid phase as a function of
nanoparticle size and surface energy for P=0. ksolid is a strong
function of nanoparticle size and surface energy. For �1 as high as
1000 mJ m−2, which corresponds to �=fracture energy of Si �pos-
sible for very clean Si�, it is possible to achieve ksolid�kE, however,
only for very small NP. For �1 as high as 500 mJ m−2, ksolid�kE can
be achieved for relatively larger NPs. �See text for details�.
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the size of the NPs. Reduction in surface energy can be
achieved via surface treatment and using low-temperature
bonding.13

IV. CONCLUSION

We have shown that with proper combination of NP size
and surface energy, it is possible to achieve k in crystalline
solids below the Einstein limit and lower than the k of the
amorphous phase due to phonon filtering at the interface.
Depending on the surface energy and size of the NPs, the
effective k of a packed bed of NPs and gas can be smaller
than k of the gas. To achieve this, low surface energy is
required which can be achieved by chemically treating the
surface and employing low-temperature bonding. This offers
a great flexibility in designing materials. A packed bed of

NPs will behave like a solid from a mechanical point of
view; however, effective k can be smaller than k of the gas,
making NB an excellent candidate for highly effective insu-
lators. NB can also be potentially used as high-performance
thermoelectric due to enormous decrease in k. In this study
we have considered the same nanoparticles; however, dis-
similar nanoparticles can decrease k further due to reflection
of the phonons because of mismatch in the acoustic proper-
ties, which will be explored later.
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