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The electronic spectrum of a two-dimensional square lattice in a perpendicular magnetic field has become
known as the Hofstadter butterfly [Hofstadter, Phys. Rev. B 14, 2239 (1976).]. We have calculated quasi-one-
dimensional analogs of the Hofstadter butterfly for carbon nanotubes (CNTSs). For the case of single-wall
CNTs, it is straightforward to implement magnetic fields parallel to the tube axis by means of zone folding in
the graphene reciprocal lattice. We have also studied perpendicular magnetic fields which, in contrast to the
parallel case, lead to a much richer, pseudofractal spectrum. Moreover, we have investigated magnetic fields
piercing double-wall CNTs and found strong signatures of interwall interaction in the resulting Hofstadter
butterfly spectrum, which can be understood with the help of a minimal model. Ubiquitous to all perpendicular
magnetic field spectra is the presence of cusp catastrophes at specific values of energy and magnetic field.
Resolving the density of states along the tube circumference allows recognition of the snake states already
predicted for nonuniform magnetic fields in the two-dimensional electron gas. An analytic model of the

magnetic spectrum of electrons on a cylindrical surface is used to explain some of the results.

DOLI: 10.1103/PhysRevB.74.165411

I. INTRODUCTION

The availability of new materials for nanoelectronic re-
search allows for a detailed test of the emergence of the
quantum physical nature of electrons, via transport or optical
measurements. Carbon nanotubes®>”’ (CNTs) are an example
of a very peculiar electronic material, due to the extreme
confinement of electrons on their 7-conjugated “walls”. In
these systems, many mesoscopic phenomena such as single-
electron charging,® and conductance quantization,” as well as
effects typical for semiconductor physics like s-like
excitons,'? can be observed already at room temperature.

Since the prediction of band structure effects of carbon
nanotubes in parallel external fields by Ajiki and Ando in
1993,!! it took only a few years until clear hallmarks of a
single quantum flux being tethered within a tube section
were found experimentally in optical'?> and transport!'3!4
measurements. For magnetic fields perpendicular to the CNT
axis, theoretical predictions were made shortly after, first us-
ing a perturbative approach around the Fermi energy,'> and
later also using a tight-binding model.'®!” Only recently, a
first experimentally accessible effect of perpendicular mag-
netic fields—anomalous magnetoconductance—was
predicted'® and observed.'® A very similar effect for strong
electric fields has also been found by numerical studies*® and
has yet to be confirmed experimentally. The use of magnetic
fields to further investigate the interplay between elastic
mean free path, phase coherent length, and electron-electron
interaction was also successfully adopted.?'~>?

From the purely theoretical perspective, carbon nanotubes
in strong perpendicular magnetic fields represent a very in-
teresting case of study. Closely related to graphene, their
energy spectrum shows strong similarities with that of the
two-dimensional (2D) honeycomb lattice,?*2° which again
forms a variation of the fractal butterflylike pattern discov-
ered by Hofstadter! in 1976 and studied intensely since that
time from various points of view.?’-3? Yet the quasi-1D na-
ture and the curvature of CNTs set their energy spectra
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clearly apart from the fractal and perfectly periodic images
obtained in 2D lattices.

In this paper, we will describe a method of computing and
visualizing the spectrum of carbon nanotubes (for a proto-
typical example see Fig. 1). This method will be demon-
strated on a number of single- and double-wall CNTs
(SWCNTs and DWCNTS) of different chirality and diameter.
The study of the local distribution of the spectral density will
shed some light on the relation between the spectrum of a
planar sheet of graphene and that of a CNT, strongly affected
by curvature and finite size. A closer look at the spectrum
will reveal the presence of cusp catastrophes, which are
closely related to the quenching of the Bloch state velocity,
induced by a magnetic field.

For magnetic fields parallel to the tube axis, the natural

unit is that of one flux quantum per tube cross section r’7
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FIG. 1. (Color online) Density of states of a (6,6) CNT in de-
pendence on an external magnetic field parallel (left) or perpendicu-
lar (right) to the tube axis. For every value of the magnetic field, the
DOS is unity normalized over energy. The units Bg)ztl)o/ r?a and
Bé:@O/Aplaquette (see text) are scaled such that the physical field
scale is the same for both segments of the plot.
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FIG. 2. (Color online) The structure of a CNT [here, a (3,3)-
CNT]: the hexagonal lattice of a graphene sheet is rolled up in such
a way that the chiral vector (n,m) becomes the circumference of the
resulting cylinder. Magnetic fields parallel to the tube axis pierce
the tube cross section r’ar, while perpendicular magnetic fields
pierce the wall made up from hexagonal plaquettes.

(see Fig. 2). For a general (n,m) CNT the tube radius can
be obtained with simple geometrical arguments 2mr
=\3m?+3n’+3mndcc, where doe=1.42 A denotes the
carbon-carbon distance. This immediately gives the parallel
magnetic field B'(') needed to pierce one flux quantum
®y=nh/e through an (n,m) CNT. For perpendicular magnetic
fields, the scale is ruled by the field necessary to enclose
a flux through a single benzene ring, the plaquette of
graphe_ne and carbon nanotubes of area Apquere
=3v3/4 d&.~5.24 A2 Because of this extremely small area
we obtain Bé=®O/Aplaquette=79 X 10° T, which is, of course,
out of experimental reach.?® It is straightforward to get the
relation between the parallel and perpendicular field scales as

D 237
By=—5>=——>—B¢. 1
0 rear m2+n2+mn 0 ( )

For a typical SWCNT with ~1 nm diameter, this gives a
value of By=~5X 103 T. It is thus understandable that multi-
wall CNTs (MWCNTSs) present a more interesting object for
magnetic field experiments: For a typical MWCNT with a
diameter of 20 nm, as a matter of fact, one can already ob-
serve the first Aharonov-Bohm oscillations accessible at
around 12 T parallel fields.!®> As shown in this work, how-
ever, even for perpendicular fields low-field signatures could
be visible within experimentally accessible field ranges if
one takes into account the external shell of a MWCNT.

This paper is organized as follows. We first give defini-
tions, introduce the method of computation and visualization,
and point toward general features observable in quasi-1D
systems. In Sec. III, we then do a systematic study of
SWCNTs, including an analytic model and a detailed view of
the range of experimentally accessible fields. In Sec. IV, we
proceed with an analysis of the effects of the interwall inter-
action in DWCNTs on the magnetic spectrum and introduce
a minimal model, closing with a discussion of the results in
the last secion.
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II. DEFINITIONS, METHODS, AND OBSERVABLES

Lattice electrons in arbitrary external magnetic fields. All
numerical calculations in this work are based on a tight-
binding Hamiltonian of the form

H(B) = E SiC:'rci - 2 %j(B)ClTCj,
i (i)

where the indices denote the atomic orbitals. For the single-
orbital approximation used hereafter, these coincide with the
label of the atom so that H can be represented by means of
the matrix elements H',-J- between 7 orbitals centered on the
atom i and j at the posjition r; (r;) of the CNT molecular
network.

An external magnetic field is implemented using the
Peierls substitution:3* Based on the principle of minimal cou-
pling p—p—eA, the effect of a magnetic field B=rotA is
absorbed in the translation operator 7(R)=expy; (p—eA)-R.
In the tight-binding Hamiltonian, this is reflected by repre-
senting the hopping matrix elements y;=(¥,[H|V¥;) be-
tween two 7 orbitals W; and W; localized at sites r; and r; as

0Jr

v,/(B) = 7’?1‘ exp(i%f fdr .AB(r)). (2)

i

The bare hopping at zero magnetic field y?j acquires a com-
plex phase expressed as an integral along the bond direction
dij:r j—r i

With the CNTs oriented parallel to the z axis, it is advan-
tageous to choose a gauge in such a way that Ag is indepen-
dent of r,. This is provided, e.g., by

AB(r) = (Ovprll’ryBL)’ (3)

giving a magnetic field B=(B,,0,B;) with known compo-
nents perpendicular and parallel to the tube axis. Throughout
this work fields will be consider either perpendicular (B
=0) or parallel (B, =0) to the tube axis. Arbitrary angles are
of course possible as well, showing the expected crossover of
both regimes.

Having chosen a linear gauge further simplifies the inte-
gration in Eq. (2) to a product:

21 ri+r;
Yij = 7?,' eXP[i(}TOdij'AB(‘T>]~ (4)

In the presence of a perpendicular magnetic field, it is
thus necessary to consider the exact coordinates of the mo-
lecular structure at hand rather than—as sufficient for paral-
lel or vanishing magnetic fields—their simple topological
connectivity.

Density of states. For such an r,-independent gauge field,
the Hamiltonian of any quasi-1D periodic structure like a
CNT stays periodic in the presence of a magnetic field. This
allows the use of the Bloch theorem to derive the corre-
sponding band structure. As can be seen in Fig. 3, the band
structure is in general strongly distorted by an applied mag-
netic field. The density of states (DOS) can be determined
from the magnetic band structure E,(k,B) via
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FIG. 3. (Color online) Scheme to illustrate the physical meaning of the butterfly plots. An external magnetic field distorts the band
structure of a CNT in an intricate way. For any fixed magnetic field, the DOS and the transmission can be obtained directly from the band
structure. (a), (b), and (c) are sections of the two right panels of the DOS and transmission vs E and B | .
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where b is the band index and a=3dcc\m*+n’+mn/
gcd(3n,n—m) the length of the unit cell of an (n,m) CNT.
E,(k,B) is obtained by direct diagonalization of the CNT
Hamiltonian via the Bloch ansatz (see Appendix A). Since
we work in a basis of one orbital per atom, the number of
bands N, equals the number of atoms in the unit cell N
=4(n*>+m>+nm)/gcd(3n,n—m), growing with the diameter
and dependent on the helicity angle (deviation from the arm-
chair or zigzag configuration). The plot of the DOS directly
reflects the distortions of the band structure caused by the
magnetic field.

Alternatively, Green-function-based approaches allow one
to resolve the DOS within different atoms in the same unit
cell by introducing the local density of states

1
Proos, (E.B) = - = ImG, . (E.B), (6)

where g,i,,l_ is the space-diagonal component of the lattice
Green function matrix (see Appendix B)
G(E,B)=[E-H(B) +i0*]". (7

Of course by tracing the LDOS within the different atoms of
the same unit cell, one can restore the full DOS as
poos(E.B)= %]EripLDOSr_(E .B).

Butterfly plots. To ca’pture the continuous evolution of the
band structure with growing magnetic fields, it is very con-
venient to visualize the DOS in butterfly plots, as illustrated
in Fig. 3. The resemblance to the well-known Hofstadter
butterfly of 2D lattice electrons' becomes very clear for
CNTs of large diameter (see Fig. 7 below). A common fea-
ture to butterfly plots of all quasi-1D systems are the pro-
nounced band edges, caused by van Hove singularities in the
DOS.*

In Fig. 1, a (6,6) CNT Hofstadter butterfly is plotted as a
reference for further comparisons. For the parallel field, the
behavior is perfectly periodic for integer multiples of the flux
quantum ®,=h/e penetrating the tube cross section r27r.
Starting as a metallic CNT at B=0, the gap opens and closes
periodically.!!

For perpendicular fields with their natural scale of one
flux quantum per graphene plaquette, the overall behavior is
not periodic. This can be understood due to the presence of
plaquettes at various angles toward the field, capturing dif-
ferent, in general incommensurate, fractions of the flux quan-
tum. However, a number of features from the underlying
graphene structure are still visible at the diameter-
independent scale of Bé.

Important to note is the difference in the behavior for
small fields: while the parallel field causes a linear Zeeman
split of the states with opposite angular momentum, small
perpendicular fields generally cause quadratic energy shifts.

All plots are of course symmetric in the magnetic field
sign, which is why only half butterfly plots are shown. Dif-
ferent is the case of the £— —E symmetry which is related to
the particle-hole symmetry. The latter is present in the
mr-orbital description of SWCNTs but is broken by the inter-
wall interaction in DWCNTs.

Transport observables in quasi-1D systems. As can also
be seen in Fig. 3, it is straightforward to apply the same
scheme not only to the density of states, but just as well to
other properties like the quantum mechanical transmission T
of a quasi-1D system. The latter is the dimensionless zero-
temperature conductance after the Landauer theory of phase-
coherent transport:3® G=GgT, where Gg=2¢/h is the con-
ductance quantum and inverse of the von Klitzing resistance.
The calculation of the transmission, which involves a renor-
malization procedure for the semi-infinite carbon nanotube
leads’” by means of the energy-dependent injection rates

I'; g and the Green function G projected on a finite nanotube
partition, can be cast into the Fisher and Lee formula’®

2¢? - -
= fTr{FLgngT}.
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f(6,6) graphene ribbon

f(11,0) gra‘phene ribbon

FIG. 4. (Color online) DOS in
a graphene ribbons of infinite
length and various widths and in-
ternal orientations, pierced per-
pendicularly by magnetic fields.
Each ribbon can be classified as

an unrolled CNT: The “chiral”

vectors refer to the SWOCNT
which, when unrolled, would re-
sult in the corresponding planar
ribbon. The density of states is
normalized to the number of at-
oms per unit cell to give a compa-
rable visual appearance.

Still, for a periodic structure—as is the case for the sys-
tems at hand—the quantum mechanical transmission is sim-
ply a band-counting algorithm, and as such contains less in-
formation than the band structure itself or the DOS. This is
very different from magnetotransport through finite CNTs:
Scattering at the contacts leads to resonant tunneling, result-
ing in spectroscopy of the electronic states of the finite
tube.’>*" This spectrum may show strong dependence on
magnetic fields, even in regions of flat bands,'® resulting in
quantum-dot-like physics.*!

Relation to 2D periodic structures. It is important to note
some similarities, but also some fundamental differences be-
tween the butterfly plots of quasi-1D structures and those in
the original work by Hofstadter! and later generalizations®*%
which handled 2D periodic structures. Starting out from an
analogous Hamiltonian and also using the Peierls substitu-
tion to implement the magnetic field, the most striking dif-
ference is that, for a 2D periodic structure, it is not possible
in general to choose a gauge in such a way that the resulting
Hamiltonian has the same translational symmetry as the un-
derlying system. For rational values of the magnetic flux per
unit cell, one can still find a larger effective unit cell but, for
irrational values, this is not possible at all, which ultimately
leads to the fractal structure of the energy spectrum found by
Hofstadter, similar to that displayed in the lower panel of
Fig. 7. In contrast, the quasi-1D structure of CNTs results in
a fixed number of bands, leading to a pseudofractal spec-
trum, with the recursion of self-similarity limited by the
transverse length cutoff of the system.

Graphene ribbons. Since the recent experimental success
in isolating single sheets of graphene,*>* the exotic Dirac-
like electronic structure has become the focus of several

0.4

B (By)

0.6 0.8 1.0

studies. Epitaxially grown graphene has been used to later-
ally confine electrons and determine coherence lengths
studying weak-localization effects in magnetotransport
measurements.** For understanding the relation between the
butterfly of a 2D graphene sheet and these quasi-1D carbon
nanotubes, it is instructive to take a look at graphene ribbons
as an intermediate step. An (n,m) graphene ribbon is simply
a planar “unrolled” (n,m) CNT, periodic in one dimension
and finite in the other. As in the original Hofstadter butterfly,’
the ribbon butterfly plots are periodic as a function of the
perpendicular magnetic field due to the equal flux piercing
any hexagonal plaquette forming the honeycomb lattice (see
Fig. 4). As the ribbon width increases the butterfly plots tend
to the Hofstadter butterfly of a graphene layer as visible in
the bottom panel of Fig. 7.

Cusp catastrophes. One striking detail ubiquitous in but-
terfly plots are the cusp catastrophes appearing at specific
positions of energy and magnetic fields (see Fig. 5). These
are points where, with changing magnetic field, some band is
continuously deformed from a strictly monotonic curve into
a band with two adjacent zero-group-velocity points. At the
exact point where this mathematical catastrophe happens,
both the first and the second derivatives of E(k) are zero. A
wave packet of this energy and momentum will have both its
velocity and its spreading suppressed leading to a special
kind of localization not unlike that of Landau levels.

III. SINGLE-WALL CARBON NANOTUBES

For SWCNTs we consider only the radial p orbitals—
forming the most electronically relevant 7 bands—and only
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FIG. 5. (Color online) Cusp catastrophes are ubiquitous in but-
terfly plots. The band structure at magnetic fields below, at, and
above the critical magnetic field shows the smooth transition from a
strictly monotone band into a third-order parabolic band with
changing magnetic field.

interactions between nearest neighbors, setting 'yg: Y%
=2.66 eV. This has been shown to be an excellent approxi-
mation in explaining electronic structural and transport prop-
erties of SWCNTs.5” The on-site energy ;=g is constant
for all atoms and defines the Fermi energy Ep=¢, of a neu-
tral CNT. Ignoring an offset in the energy, we can simply
choose g;=0. Zeeman splitting could also easily be included
in this calculation as gg=+gugB/2 and would result visually
in an overlay of two butterfly plots sheared against each
other linearly with growing magnetic fields. The intensity of
this effect at the critical plaquette field scale is gupBpaquete
=9.1 eV.

The special case of parallel magnetic fields: Shortcut via
the zone-folding method. As an alternative to calculating the
electronic bands of a SWCNT via the procedure described
above, one could calculate the spectrum of graphene and
then apply periodic boundary conditions in the angular direc-
tion of the CNT (zone folding). For magnetic fields parallel
to the tube axis, this method is still applicable: the phase
gathered by an electron moving on a closed loop around the
tube circumference can simply be included in the boundary
conditions. This results in a shift of the allowed discretized
quasimomenta in the reciprocal space. For perpendicular
magnetic fields, however, this method breaks down and one
has to consider the full geometry of the CNT.

A. Structural properties

Chirality dependence. Several features can be found when
comparing the magnetic spectra of tubes with different
chiralities though similar diameter (see Figs. 1 and 6). (i) The
behavior of the gap around the charge neutrality point E
=EF is very helicity dependent: a parallel magnetic field al-
ways opens and closes the gap periodically as a consequence
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FIG. 6. (Color online) Two semiconducting SWCNTs of similar
diameter as the (6,6) CNT in Fig. 1. The band gap oscillates irregu-
larly with increasing perpendicular field. The large unit cell of the
the chiral (6,5) tube leads to bands with low dispersion as soon as
the rotational symmetry is broken by the perpendicular magnetic
field.

of the integer number of fluxes per nanotube cross section.
This phenomenon is independent of whether the tube is me-
tallic or semiconducting at B=0. In contrast, for perpendicu-
lar fields there are distinctions. Armchair CNTs stay strictly
metallic for any perpendicular field, as can be understood
from supersymmetry arguments.*> On the other hand, the
gaps of the two semiconducting CNTs in Fig. 6 do open and
close in an aperiodic, though oscillatory, pattern. The gap
closes to zero in single points of specific values of B, and
opens again. Closer observations of a larger set of CNTs
reveal that this also happens for semimetallic tubes like the
(3n, 0) zigzag CNTs. The precise opening and closing pattern
carries an intrinsic complexity; its statistical behavior, how-
ever, seems to depend mostly on the number of atoms in the
unit cell. (i) Another general effect of the large unit cell in
the (6, 5) CNT is that in this chiral tube with its large number
of plaquettes at different angles towards the field, the high
symmetry of the original system is broken down very effi-
ciently by the magnetic field, resulting in a larger number of
bands of very low dispersion. The magnetic field effectively
localizes the electrons in nonpropagating Landau-like states.

Diameter dependence. Figure 7 shows the evolution to-
ward the graphene Hofstadter butterfly of the magnetic spec-
trum of armchair CNTs as a function of their diameter. The
(200,200) SWCNT has a diameter of 27 nm, comparable to
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FIG. 7. (Color online) Comparing different diameters: the large
(200,200) CNT bears strong resemblance to the Hofstadter butterfly
of graphene (Ref. 25) combined with the curvature effects (details
in text). The straight lines at the lower left corner of the graphene
butterfly (bottom panel) indicate the Landau states obtained from an
effective mass continuum theory [see Eq. (8)]. The parabolic lines
near Er in the same plot indicate the relativistic Landau levels ob-
tained from the Dirac-like dispersion of graphene [see Eq. (9)].
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the external shell of a typical MWCNT, and is thus of great
interest. The overlaid visual effect—resembling watercolors
“flowing” toward the right hand side—can also be under-
stood by a simple picture. For large enough diameters, the
CNT consists of regions of nearly flat graphene, each at a
different angle toward the magnetic field, thereby experienc-
ing a different normal component of the magnetic field, as
visible in the inset of the middle panel of Fig. 7. Since the
DOS is an average over the LDOSs at the different unit cell
atoms, one ends up with a sum of different graphene Hofs-
tadter butterflies, stretched to different effective fields, the
stretch being minimal where the magnetic field is normal to
the tube wall and maximal where it is tangential. Overlaying
these differently stretched graphene butterflies results in the
“flowing” appearance of the butterfly of large diameter tubes.

At the lower and upper energy edges, one can clearly see
the emergence of linear Landau levels and the characteristic
fractal structure of the graphene butterfly is unmistakenly
visible at the same scale of the magnetic field. In fact near
the top and bottom of the graphene 7 energy band (of width
2W=67y=16 eV), electrons have an effective mass of m"
=2h%/3 ydéczo.%me, leading to a cyclotron frequency
o(B,)=eB/m", so one could write

1
E=*% Wiﬁw(B)<n+§> (8)
with n=0,1,2,..., which fits nicely with the numerical re-
sults (as indicated by the straight lines in the bottom panel of

Fig. 7).

Around the Fermi energy, the Dirac-like dispersion of
graphene leads to the so-called relativistic Landau levels,*047
following

E= tvp\2nheB | 9)

with n=0,1,2,... and the Fermi velocity vp=3ydcc/2%.
These levels, which can be clearly observed in the Hofstadter
butterfly of graphene (left edge in the bottom panel of Fig.
7), are also responsible for the recently observed anomalous
quantum Hall effect of graphene.*?*3

Snake states. The view of the total DOS of a large
SWCNT as the sum of different contributions from the re-
gions at various angles around the tube circumference can be
confirmed by taking a look at the LDOS at individual atom
positions. As can be seen in Fig. 8, the LDOS at =0, where
the magnetic field pierces the wall perpendicularly, re-
sembles very much the butterfly of the planar graphene
sheet. The electrons here show very low dispersion, similar
to Landau levels. At #=m/2, on the other hand, the magnetic
field is tangential to the CNT wall and therefore has far less
effect on the electron dispersion. An understanding of the
electronic states in these regions can be gained by consider-
ing classical electrons confined to the surface of a cylinder:
As the effective magnetic field (the projection of the field
onto the tube normal) changes sign at 6=1/2, the curvature
of an electron trajectory will also switch orientation each
time the electron crosses this “equator” line, leading to a
snakelike movement of the electron.*>*8
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FIG. 8. (Color online) Decomposition of the density of states into the contributions of particular atoms (identified by their angle ® toward
the magnetic field direction). A plaquette at angle 6 captures a flux of B 1A plaguette €08 0. The region at ®=0 experiences a perpendicular field
piercing the tube wall, very much as in the plain graphene sheet (Fig. 7). The regions at ®=1/2 experiences a field tangential to the tube
wall, leading to a much smaller flux per plaquette, resulting in a stretched impression of the butterfly. The DOS butterfly over the whole CNT
unit cell is an overlay of these and many intermediate pictures. In the angle-resolved plot for B=0.2 Bé one can see a smooth transition
between a region with Landau levels and a region with normal band dispersion. For the stronger field, the systems goes through two

oscillations along the angle.

B. Analytical model

In order to shed some light of intuition on our results, we
may consider the physics of a structureless hollow cylinder, a
tubule, in a perpendicular magnetic field. (Similar systems in
parallel magnetic fields have been studied before.**?) This
system bears some similarity to a “Hall bar”, with the crucial
difference that it does not have borders that could carry edge
states. Instead, it has two flanks where the magnetic field is
tangential to the tube and therefore the radial component of
the magnetic field—which is the effective field experienced
by electrons confined to the cylinder surface—vanishes. To
understand where charges do accumulate, we consider this
system in cylindrical coordinates (6,z) at fixed radius r. By
Eq. (3), a perpendicular magnetic field leads to a gauge field

A(60) =B, rsin fe,
in cylindrical coordinates. With this, the Hamiltonian of an
electron restricted to the tube surface becomes
H= %p§+ L(pZ — B, rsin 0)?
2mr 2m

which can be viewed as that of an electron in 2D with peri-
odic boundaries in a nonuniform magnetic field.>'>? A simi-

lar system—a 2D strip ranging over [-L/2,L/2] in the y
direction and infinite in the z direction, placed in a linearly
varying magnetic field B=B,ye —was first studied in 1992
by Miiller,*® who identified two new classes of states: one at
finite magnetic field propagating perpendicularly to the field
gradient direction with looping trajectory and low velocity,
the other around the line B=0, propagating in the opposite
direction at higher velocity with a snakelike trajectory. To
solve our system, we can exploit the z invariance and do an
ansatz for the wave function: W(6,z) = (6)e™*. Our prob-
lem reduces to that of a particle in one dimension with a
k,-dependent potential:

1
H, =——=p2+V, (0),
k, 2mr2p'9 kz()

1
Vi (0)= ﬂ(hkz —eB, rsin 6)°. (10)

For |fk|<|eB |, this potential has two minima at 6,
=1r/2+arccos(fk./eB, r). A harmonic approximation at ei-
ther of these minima yields the approximate Hamiltonian
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chontinuum (9)

energy

‘/lattice ( 9)

“‘0

- —7T‘/2 0 0 /2 T

FIG. 9. (Color online) Analytical solution of the continuum
model. Top panel: the k,-dependent effective potential of free elec-
trons confined to a continuum cylinder in a magnetic field perpen-
dicular to the tube. Middle panel: first three eigenstates of the har-
monic approximation to the above potential for various k,
(highlighted wave functions correspond to the selected potentials in
the first panel). Each wave function is shifted to the corresponding
energy. Superimposed are the lines followed by the extrema of the
wave functions. The same pattern can be found in the top left panel
of Fig. 8, where the maxima of the DOS show the maxima of the
various energy eigenstates. Bottom panel: The k_-dependent effec-
tive potential of a discretized tube showing a large number of
minima. States located in narrow minima have higher energy, so the
low-energy spectrum is mainly determined by the widest potential
minima.

2
Lo LB, 1? = (k)10 Oni)?

H, =——
T om? T om

with the spectrum
h m————
E, (k) = m—r\"(eBlr)2 — (hk,)*(n+1/2).

From this dispersion relation, we can directly retrieve the
group velocity

o (n+ 1/2)hk,

(eB 1) - (ik,)* (1)

Un(kz) ==
mr

The wave functions in the harmonic potential are located
around the minima 6,;,, so for low energies we can say in
reverse that at each angle 6 we find predominantly electrons
with the longitudinal wave vector k,(6)=(eB r/f)sin 6.
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Placing this into Eq. (11), we can retrieve an expression for
the velocity of electrons moving at certain angles:

h
v,(0) == —(n+1/2)tan 6.
mr

Now, the divergency at §=+ /2 originates from the fact that
the harmonic approximation breaks down when the two
minima of V, (#) meet at this angle. Apart from this, how-
ever, one can see clearly the angular separation of electrons
moving in both directions and the localization in Landau-like
states at =0 and 6=, where the magnetic field pierces the
tube wall normally (see Fig. 9).

Such a continuum model can only be expected to hold for
the CNTs at low magnetic fields with B | Ajj,querte < Pp. As it
turns out, some of the effects visible at higher fields can be
understood qualitatively by studying a model of intermediate
complexity: a square lattice cylindrical tube of lattice con-
stant a. Coming from the continuum model and following
Ref. 53, we can replace the continuous coordinates by inte-
ger indices: (am,an):=(r#,z). Using a tight-binding model
with on-site energy €, and hopping parameter 7, the Hamil-
tonian acts on a wave function in the following way:

H\P(m,n) = SO\I,(m,n) - VO(W(m—l,n) + \I,(m+1,n))
- 'YO(e_iqa(m)“P(m,n—l) + eiqp(m)‘y(m,nﬂ))

. _ma

B ..
—sin"" originates from

where the phase factor ¢(m)=
the Peierls substitution Eq. (2). As in the continuum, the
invariance in the z direction can be exploited, now using a
Bloch ansatz due to the discreteness of the system:

2ma
O,

) _ eikzanw
(m,n) = m-

This leads to a finite Hamiltonian for any fixed k,
el[-wla,mla):

szlrlfm == yO(wm—l + (/fm+]) + sz(m) 'r//m’

s — .

raB, . ma)
0 r

Vi(m)=eq—2v cos(kza -2

The most significant difference to the effective potential of
the continuum model Eq. (10) is the replacement of the
square law by a cosine one. This has the effect that the po-
tential does not grow indefinitely for large magnetic fields,
but instead oscillates, forming several minima at various
angles 6, as seen in Fig. 9. In combination with the discreti-
zation of the angle, this potential leads to the formation of a
complex pattern in the angular dependence of the density of
states, as it can be observed is the LDOS at high magnetic
fields also displayed in Fig. 8.

To capture more details in a model, an appropriate step
would be the implementation of the correct dispersion at the
Fermi energy: The characteristic cones at the Fermi points of
graphene can be approximated by a Dirac-like Hamiltonian.
For a detailed study of the magnetic spectrum of Dirac-
electrons on a cylindrical surface, see Refs. 45 and 54.
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FIG. 10. (Color online) Zoom into the butterfly of two different
armchair SWCNTs. The scales, including the color scale, are cho-
sen according to the scaling law given in the text to produce com-
parable representations of the data. The tubes correspond to diam-
eters of 2.7 nm (top) and 27 nm (bottom). The inset in the bottom
panel illustrates the shape of the peak at the Fermi level. The white
lines crossing the plot in the upper panel are caused by small
avoided crossings in the band structure.

C. Experimentally accessible perpendicular magnetic fields

In recent experiments, optical transitions in CNTs were
studied in magnetic fields up to 75 T.3> New experiments are
in preparation to go up to 200 T and even 2—3 kT.%

In perpendicular fields of this magnitude, as displayed in
Fig. 10, the first onset of the band structure distortions can be
seen clearly in large CNTs, comparable with the outer shell
of typical MWCNTSs, measuring up to tens of nm in diameter.

In particular the plots show very clearly the rapidly
changing van Hove singularities, resembling those of Fig. 1
for a (6,6) CNT, but at much lower magnetic field scale.
Moreover, the E=Eg graphene state, which is due to the pe-
culiar distortion of the Dirac-like linear dispersion into a
strongly nonlinear one,'® emerges at lower fields with in-
creasing diameters.

Most notable is the scaling law that can be found in the
butterfly plot of large tubes at low fields near the Fermi en-
ergy: For two different armchair CNTs with the chiral vec-
tors (m,m) and (m',m') it can be expressed as

PHYSICAL REVIEW B 74, 165411 (2006)

(6,6)@(11,11) DWCNT without intershell interaction

E-E, (eV)

E-E, (eV)

FIG. 11. (Color online) Butterfly plot of a (6,6)@(11,11) double-
wall CNT. In the upper panel, the interwall interaction is switched
off, resulting in an overlay of the butterflies of two independent
SWCNTs. In the lower panel, the interwall interaction gives rise to
a number of new features (see text for details).

m' m _ m?

pos,,, ., (E-B) = —ppos,,, mr)<_!E’ _,23> :
, m m\m' m
This scaling is followed approximately already for small
CNTs and becomes very precise for large diameters, con-
verging toward a DOS that is reproducible from a model of
Dirac electrons on a continuum cylinder.*’ The peak at the
Fermi energy also follows this scaling law. Within the region
of scaling, the maximum of the peak at E=FEy grows expo-
nentially with the magnetic field while its integral grows
linearly.

It is important to note that the scaling is not an effect of
the curvature, but of the discretization of the transversal mo-
mentum, since it can be observed in graphene ribbons as
well.

IV. DOUBLE-WALL CARBON NANOTUBES

While SWCNTs and MWCNTs have been studied in-
tensely over the past 15 years, it has only recently become
possible to produce DWCNTs of high purity and quality,’’-8
fueling the interest in details about the interwall interaction.
Previous studies have shown an interesting interplay between
magnetic fields parallel to the DWCNT axis and the interwall
interaction near the Fermi energy.”® A minimal Hamiltonian
of a DWCNT can be set up as
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B (/%5
o B@/e) ) , .

Spectrum of isolated unitcell of [9,24] DW-squaretube

. 05
B. (2/(*5™)

FIG. 12. (Color online) Upper panel: Spectrum of a system of
two concentric atomic rings. Atom spacing and coupling inside each
ring are taken from graphene. The distance or between the rings as
well as the the parametrization of the coupling between the rings
follow those given in the text for DWCNTSs. The sketch displays the
prevalent links between the shells. Even though the geometry is
irregular, the area of circular paths is very near to integer multiples
of dccor/2, leading to a clear periodicity of the modulation in the
spectrum. Lower panel: An isolated unit cell of a DWCNT with the
same radii as the planar double ring of the upper panel. This system
has smallest closed loops at an angle against the magnetic field,
resulting in an effective smallest area of dccdr/4 and leading to a
doubling of the period. Furthermore, the system has two atoms in
the rotational periodic cell, leading to two interlaced modulations.

H=2, 7ij(B)CjCj+ > 7;']'(3)0;(%
(i) (i)
by defining the intrawall interaction as described for
SWCNTs. For the interwall interaction, we can fix the hop-
ping coefficients as

d.—
yi(B) = B cos ¥ exp(%)

2m (it
X exp I(DOd” AB< > ) ,
where B=1,/8, a=3.34 A, 5=0.45 A, and ¥; and d;; stand
for the angle and the absolute distance between the two
orbitals {(i,;)) centered at positions r; and r; belonging to
two different shells.0%¢!

As a representative example, the butterfly of a
(6,6)@(11,11) DWCNT is displayed in Fig. 11. For the par-
allel magnetic field, the interwall interaction gives rise to
features at two levels: looking at individual bands, one can
observe van Hove singularities crossing and sometimes
avoid a crossing. The complex rules whether a crossing is
avoided are not obvious from studying the butterfly plot only,
but can be deduced by looking at the band structure and
taking into account the various symmetries of the system. At
larger scale in the butterfly plot, one finds a modulation of
the pattern crossing from E=Eg—-8 eV at Bj=0 to E=Eg
+8 eV at B,~45B).

To understand this phenomenon, we have studied a single
unit cell in a magnetic field perpendicular to the plane of the
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resulting concentric ring (Fig. 12). The spectrum shows a
periodic behavior of the modulation with a period Bj"™"
=@/ (dccOrinerwan/4) relating to the area of the minimal cir-
cular path between both walls. This period and the shape of
the modulation are independent of the diameter of the
DWCNT. A physical explanation for this modulation is as
follows. Like the interaction in a two-atomic molecule, split-
ting two atomic orbitals into a bonding and an antibonding
molecular orbital, the interwall interaction may also hybrid-
ize SWCNT states of the same energy into bonding and an-
tibonding DWCNT states. However, the system has an ap-
proximate rotational symmetry, so the interwall interaction
may only hybridize states of the same angular momentum.

At zero magnetic field, the angular momentum of the
states at the bottom of the spectrum is zero in both shells.
This allows hybridization, causing a split in the hybrid spec-
trum. At the upper end of the spectrum, the angular momen-
tum does not match, prohibiting a hybridization. This is the
cause for the strong electron-hole asymmetry visible in
DWCNT butterfly plots.

By switching on a parallel magnetic field, the effective
angular momentum is shifted by the Aharonov-Bohm phase
gathered on a circular path around the tube. This shift de-
pends on the cross section of the path, so it is different for
the two shells. Therefore, the energy at which both angular
momenta match depends on the magnetic field, causing the
splitting region to travel over the energy range, which leads
to the visible modulation in the parallel field butterfly plots.

For a simplified model—a double-wall square lattice
tube—the modulation does follow a single cosine-shaped
curve, as shown in the upper panel of Fig. 12. In comparison,
the DWCNT shows an additional complexity: the underlying
honeycomb lattice of graphene has a unit cell containing two
atoms, resulting in two intertwined cosine curves, the second
just becoming visible at the edge of Fig. 11.

For fields perpendicular to the axis of a DWCNT, the only
large-scale effect caused by the interwall interaction observ-
able in the butterfly plot is the hybridization-induced split-
ting already described for zero field. With growing field, this
effect disappears, and the plot shows no remarkable global
patterns.

V. CONCLUSIONS

The magnetic spectrum of two-dimensional infinite lattice
electrons gives rise to the well-known Hofstadter butterfly. In
this paper, we have shown that quasi-one-dimensional lattice
electrons exhibit a spectrum which does resemble the fractal
structure of the Hofstadter butterfly but with a finite cutoff
due to the transversal confinement. We have calculated such
pseudofractals for carbon nanotubes, a material at the focus
of many nanoelectronic studies also in relation to the pres-
ence of external magnetic fields. We have calculated the den-
sity of states (butterfly plots) of several single wall carbon
nanotubes and we could show (i) the strong dependence of
the magnetic spectrum on the underlying chiral indices; (ii)
the emergence of the graphene Hofstadter butterfly at in-
creasing nanotube diameter. In particular, perpendicular
fields induce an aperiodic and pseudofractal magnetic spec-
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trum. Periodic structures have been obtained for graphene
ribbons, demonstrating that the aperiodicity of the perpen-
dicular field butterfly plots is due to the incommensurability
of the magnetic flux captured by elementary (hexagon)
plaquettes of a CNT oriented at different angles towards the
external field.

By studying the angle-resolved electronic structure of a
SWCNT one can observe the emergence of snake states al-
ready predicted for nonuniform magnetic fields in a Hall
bar.*® In our case, we have been able to devise an analytical
model for the states at the top and the bottom of the energy
spectrum by means of an effective mass approximation. In
this latter case a continuum theory can capture the striping of
the wave function along the region of the tube with zero
normal field. Inversely, near the Fermi level, one cannot by-
pass the Dirac neutrino nature of the electronic states. We
have interpreted the wave function striping by writing a
Harper equation® for square lattice electrons with a cylindri-
cal geometry.

While the effects of parallel fields are of comparably
simple nature in SWCNTs (being an expression of the
Aharonov-Bohm oscillations due to a rigid shift of the
graphene band structure sampled via the zone-folding
method), this is not the case for DWCNTSs. The electron-hole
symmetry of 7 bands in SWCNTs is broken once two shells
are put in interaction. The resulting hybridization of inner
and outer states could be clearly understood by means of two
interacting Aharonov-Bohm rings.

Experimentally relevant effects have been calculated for
SWCNTs of diameter of typical external shells in MWCNTs.
There, underlying multifractal structure like that of Hofs-
tadter can be observed already at a few tens of tesla, and an
outstanding scaling law for the DOS at low magnetic fields
near the Fermi energy has been given. The latter applies also
to graphene ribbons and is intrinsically related to the mass-
less dispersion at the charge neutrality point.

This study, though systematic, could not include very in-
teresting issues which also deserve careful investigation,
such as the effects of disorder on the butterfly plots of
SWCNTs. Disordered SWCNTs can be thought in fact a
model for the external shell of MWCNTs. More atomistically
one could study the influence of the interwall interaction of
the structure of large diameter DWCNTs (also reasonable
models for MWCNTs).%3
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APPENDIX A: HISTOGRAM METHOD

A histogram method is the simplest method to get the
magnetic spectrum of a quasi-1D system. It is also very ef-
ficient if the complete energy range has to be calculated.
Starting from a periodic Hamiltonian of the form:

H| H, H,

Al
H, H, H, (aD)

one can use Bloch theorem to get an effective Hamiltonian:
Heff(k) = HO + eikaHl + E_ikuH}-

where a is the length of the unit cell. Numerically scanning
the 1D Brillouin zone —7 <k<7 with a uniform distribu-
tion, one can now diagonalize the finite matrix Hy(k) for
each value k. The resulting eigenvalues from this diagonal-
ization are counted in a linear histogram over the full energy
range and normalized to the total number of states. Depend-
ing on the resolution of the k£ sampling, this histogram will
become an arbitrarily good approximation to the density of
states. Figures 1, 6, and 7 (CNT panels), 4 and 11 were
calculated using this method.

The calculation of the data in Fig. 10 was heavily opti-
mized by using an adaptive k sampling in combination with
a linear interpolation to reduce the number of diagonaliza-
tions in regions of smooth band structure and increase the
precision at band edges.

APPENDIX B: GREEN FUNCTION METHOD

Another, more flexible method is that using Green func-
tions: The bulk Green function G(E) of the infinite CNT can
be calculated very efficiently by the following method.®*

The periodic Hamiltonian in Eq. (A1) is used as the start-
ing point of a recursive decimation scheme:

HY(E) = H,,
HY(E)=H,,

HY(E)=H].

With each recursion, the length of the effective unit cell is
now doubled by decimating out every second cell:

H(E) = HY(E) + HY) ¥ HU) + H{Y " H),
HE(E) = HY) Y™ HY),

H;(E) = Hig Y Y.

where Y =(E +ir]—H(()"))‘1 and 7 is a small positive numeri-
cal value, chosen smaller than the desired energy resolution
but large enough to provide fast convergence and numerical
stability.
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Convergence is reached for n=n' if ||ng )(E)||+||Hf)"1)
X (E)|| < € for some matrix norm ||| and some small cutoff e.
We can then retrieve the bulk Green function from the con-

!
verged H; as

Gouk(E) = (E+in-HJ )™

With the original Hamiltonian (Al) expressed in a
m-orbital tight-binding basis, the resulting Green function
Gpuik 18 @ matrix in the same atomic basis of one unit cell.
Therefore, the local density of states in each atom is directly
given by

proos ()=~ — Im[G(E),]

summing up to the pDOS(E)zzipLDOSi(E)~ In the same run,
the surface Green functions QSL/ R(E) can be used to calculate
the transmission through the system using the Fisher-Lee
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relation®® with a single unit cell selected as conductor, as
shown in Fig. 3.

The Green function method and the histogram method
both give numerical approximations to the same mathemati-
cal quantity, but their numerical errors are very different:
while the former method tends to give fluctuations that show
up as grainy structure in flat areas of the butterfly plot, the
latter suffers from sampling problems around van Hove sin-
gularities. Both errors have to be countered with very high
resolution scanning and down sampling of the data. The data
presented in the figures of this article typically took several
hours to weeks of computation time on standard PCs [In-
tel(R) Pentium(R) 4, 3 GHz].

The work presented here was done using the following
Open Source® (R) software: Python as programming
language,®® NumPy (Refs. 67 and 68) and SciPy (Ref. 69)
for numerical computations, PyTables for data storage and
handling,”® matplotlib for data visualization,”! inkscape for
figure preparation,’> and TeXmacs for authoring.”?
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