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Friction force microscopy �FFM� is commonly used for micro-, nano-, and atomic-scale topographic and
friction �lateral� force imaging of surfaces. The experimental-obtained topographic and friction force images
are closely correlated to the cantilever dynamics since in FFM, the normal and lateral forces between the
cantilever tip and sample surface are measured from the cantilever flexural and twist angles. To understand the
cantilever dynamics under tip-surface interaction and its effects on the measured topographic and friction force
maps, efficacious models that can accurately simulate the cantilever behavior in operating conditions of FFM
are essential. In this paper, a three-dimensional �3D� finite element �FE� beam model is employed to simulate
the atomic-scale topographic and friction force profiling process in FFM. The tip-sample interaction forces are
modeled as the interatomic forces between the tip and sample surface. It is identified that the topographic and
lateral force maps obtained in FFM experiments are the combined results of the real spatial distributions of 3D
tip-sample interatomic forces and cantilever dynamics. The experimental-obtained hexagonal �full atomic
structure� and trigonal �atomic resolution of every other atom� topographic images of graphite surfaces are
reproduced in simulations with different combinations of cantilever geometries, applied normal loads, and scan
directions. Based on the simulated results, the methods to realize the observation of the full atomic structure of
graphite are discussed.
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I. INTRODUCTION

Atomic force microscopy �AFM� is commonly used for
micro-, nano-, and atomic-scale surface imaging. Atomic-
scale topographic imaging has been carried out by research-
ers on highly oriented pyrolytic graphite �HOPG� and other
samples. Binnig et al.1 successfully observed the hexagonal
structure of graphite surface �see Fig. 1�a��. In their experi-
ment, a cantilever without tip was scanned over the graphite
surface with its corner touching the surface to obtain the
topographic images. Marti et al.2 also obtained the full hex-
agonal topographic image of graphite surface covered with
paraffin oil using a diamond epoxied to one of the four cross
points of four platinum wires. However, many others3,4 could
only show the trigonal lattice of three peaks with a distance
of about 0.246 nm in their experimentally-obtained topo-
graphic images, i.e., so called “atomic resolution of every
other atom” �refer to Fig. 1�b��.

The possible reasons for the “atomic resolution of every
other atom” in topographic maps of graphite have been stud-
ied by researchers. Some believe that it is due to the asym-
metric atomic structure of graphite lattices, i.e., the existence
of two different types of atoms. Whereas the tip-surface
forces calculated using interatomic potential have showed
that the force difference for the two types of atoms is very
small and both of them should be visible.5,6 It is generally
recognized that stick-slip will occur if a soft AFM cantilever
is scanned over a surface with large lateral forces, or equiva-
lently, under large applied normal loads.7–10 The occurrence
of stick-slip tip motion has been considered to be the reason
for the measurement of topography images of every other
atom.11 With different combinations of cantilever lateral
stiffnesses and normal loads, simulations on AFM cantilever

behavior in measurements should be able to obtain the hex-
agonal �full atomic structure� or trigonal �resolution of every
other atom� topography maps as obtained in the experiments.
However, this has not yet been demonstrated in the previous
numerical simulations considering cantilever deflection.

Atomic-scale stick-slip was observed by Mate et al.7 in
their measurement of atomic-scale friction between a tung-
sten wire and graphite surface using a friction force micros-
copy �FFM�. With an optical beam-deflection FFM, Ruan
and Bhushan4 simultaneously measured the topography and
friction force maps of graphite surfaces and the stick-slip tip
motion during measurement was also observed, as shown in
Fig. 1�c�. This stick-slip tip motion, as well as the scan di-
rection in FFM have significant effects on the measured to-
pographic and lateral force maps.8–10 In FFM, the normal
and lateral forces between the cantilever tip and surface are
measured from the cantilever flexural and twist angles.
Therefore, topographic and lateral force images obtained us-
ing FFM are closely correlated to the cantilever response.
Efficacious models that can accurately simulate the cantile-
ver behavior in operating conditions of FFM are essential for
the understanding of cantilever dynamics and the effects of
cantilever geometry, applied normal load, and scan direction
on the measured topographic and lateral force maps.

AFM cantilevers can be modeled as a three-dimensional
�3D� beam with the clamped-free boundary conditions,
which has four deformation shapes: vertical bending �bend-
ing about the y axis�, lateral bending �bending about the z
axis�, torsion �about the x axis�, and extension �along the x
axis�, as shown in Fig. 2. Point-mass models12 and one-
dimensional �1D� beam models13–15 have been employed to
model cantilever vertical bending behavior. The cantilever
torsion is usually modeled by torsional shaft models.16–20
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The coupled torsional-bending model, which considers the
coupling between torsion and lateral bending of the cantile-
ver, was developed by Song and Bhushan.21 The cantilever
in FFM undergoes vertical bending, torsion, and lateral bend-
ing. For the simulation of friction profiling process, two
models exist to date with cantilever deflections taken into
consideration. Sasaki et al.8 constructed a total potential en-
ergy consisting of the elastic energy of cantilever and sample

surface and potential of tip-sample interaction. Polak-
Ribiere-type conjugate gradient method was then employed
to minimize the total potential to obtain the tip position with
a fixed tip-surface distance. This model is a static model
which does not consider the dynamic effects of the cantilever
response in friction profiling process. Hölscher et al.9,11,22

simulated the tip motion during the profiling process using a
3D point-mass model. They showed that the friction force
maps of graphite surface represent a “hollow-site resolution”
instead of “atomic resolution” because of the two-
dimensional �2D� stick-slip movement of the tip.11 Using the
same point-mass model, Wang et al.23 studied the profiling
process in FFM and believed that the topographic maps ob-
tained in FFM measurements were, instead of the constant
normal load profiles, the maps of the maxima of the longitu-
dinal direction lateral force. In the 3D point-mass model, the
tip-cantilever system is represented by three masses con-
nected by elastic springs to its holder. The point-mass model
has three uncoupled translational degrees of freedom
�DOFs�. In each translational direction, the motion of the
point-mass is described as a single DOF oscillator. The fric-
tion force in that direction is obtained as the product of the
translational displacement �relative to the holder� of the mass
and the spring stiffness. As a mathematical approximation of
the real tip-cantilever system, this model’s parameters �effec-
tive masses and spring stiffnesses� can only be obtained by
estimation and the simulated responses are translational dis-
placements instead of the rotation angles detected in FFM.
Furthermore, the 3D point-mass model neglects the coupling
between the lateral bending and torsion of the FFM cantile-
ver, which could have significant effects on cantilever
response.21

Recently, Song and Bhushan24 developed a 3D finite ele-
ment �FE� beam model for numerical simulation of free and
surface-coupled dynamics of tip-cantilever system in various
dynamic AFM modes. Representing the cantilever by 3D
beam elements, this versatile model can address the exact
excitation mechanisms, tip geometry/location, tilting of the

FIG. 1. AFM Topography images of graphite surface and typical
line plot of friction profile. �a� Topography image of graphite ob-
tained with a cantilever with tip �Ref. 1�. Hexagonal structure of
graphite surface is shown. �b�. Topography map of HOPG shown
atomic resolution of every other atoms �Ref. 4�. �3� Stick-slip tip
motion in friction measurements �Ref. 4�.

FIG. 2. Four deformation shapes of a rectangular cantilever in
FFM.
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cantilever to the sample surface, and all the possible cou-
plings among the different deflections of the AFM cantilever.
Compared with the point-mass model, this FE model repre-
sents a more realistic tip-cantilever model: the model’s pa-
rameters can be determined from the cantilever geometry and
material properties; translational displacements, as well as
flexural and twist angles are the simulated cantilever re-
sponses.

In this paper, we use the 3D FE beam model to simulate
the atomic-scale topographic and lateral force profiling pro-
cess in FFM. First, the working mechanism of a FFM and the
cantilever deflections during profiling process are described.
Then, we illustrate how to simulate the FFM cantilever re-
sponse to the interatomic forces between tip and graphite
surface. Atomic-scale topographic and friction force maps on
graphite surface are obtained for different combinations of
cantilever geometries, applied normal loads, and scan direc-
tions. The simulated results are compared with the experi-
mental results and the reasons that the full atomic structure
of surfaces is detected or not are discussed.

II. CANTILEVER DEFLECTIONS IN FFM

Figure 3 shows a schematic diagram of the optical beam-
deflection FFM.25,26 The optical beam-deflection FFM allows
the simultaneous measurements of surface topography, nor-
mal and lateral forces. A laser beam is projected on the upper
surface of the cantilever at a point close to the tip �point C�.
The beam is reflected and led by a mirror into a four-segment
photodiode. By calibrating the vertical and lateral voltage
output of the photodiode, the cantilever flexural angle �y

C and
twist angle �x

C are measured, respectively. �y
C and �x

C are the
only deflection information we can obtain from the FFM
measuring system. Figure 4 shows the 3D tip-surface inter-

action forces exerted on the cantilever. With the tilting of the
cantilever to the sample surface being neglected, the vertical
bending is solely caused by the normal force fz and the mo-
ment My

C=−fxl resulting from the lateral force fx, where x is
the longitudinal axis of the cantilever, l is the length of the
tip. The lateral force fy causes the lateral bending, and its
resulting torque fyl twists the cantilever. Extension occurs
due to the lateral force fx but usually it is very small and thus
can be neglected. For a typical cantilever, the extension stiff-
ness is 4-5 orders of magnitude higher than that of vertical
bending.

Refer to Figs. 2 and 4, �y
C is the flexural angle of the

cantilever due to vertical bending. It is related to the normal
load fz and lateral force fx. We will demonstrate below that
the contribution from fx to �y

C is much smaller than that from
fz �less than 5%�. Approximately, the normal load fz can be
viewed as the sole cause of �y

C. Therefore, normal force fz
can be obtained by measuring �y

C. With the help of a feed-
back loop in FFM, surface topography �or constant normal
force profile� can be obtained by keeping a constant �y

C

through the z-direction motion of the piezotube when the
cantilever tip is scanned over the sample surface. Since the
lateral force fy is the only interaction force that is responsible
for the cantilever torsion, the twist angle �x

C is a good mea-
surement for fy.

In constant-force mode of FFM, a constant normal load
�or, equivalently, a constant �y

C� is maintained to make the
measured results meaningful. During the measurement, the
�fast� scan direction is perpendicular to the longitudinal di-
rection of the cantilever �along the y axis� and the lateral
force fy is obtained by measuring the twist angle �x

C. During
measurement, the tip is always in a stable equilibrium state

FIG. 3. Schematic diagram of a FFM. The four-segment photo-
diode can measure the flexural angle �y

C and twist angle �x
C of the

cantilever at the location close to the tip �point C�. �y
C is related to

the vertical bending caused by normal load. �x
C is the twist angle

due to lateral force along the fast scan direction. By maintaining a
constant �y

C with a feedback loop, topography of the sample surface
can be measured.

FIG. 4. 3D tip-surface interaction forces on cantilever tip and
the resulting forces and moments on cantilever. Normal force fz and
the moment My

C=−fxl due to the lateral force fx is responsible for
the vertical bending of the cantilever. Extension is caused by the
lateral force fx. Lateral force fy cause the lateral bending, and the
resulting torque fyl twists the cantilever.
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in the vertical direction if the holder is moving with a mod-
erate scan speed. In that case, the vertical displacement and
flexural angle can be obtained by

dz
C = constant =

L3

3EIy
fz +

L2l

2EIy
fx, �1a�

�y
C = constant = −

L2

2EIy
fz −

Ll

EIy
fx, �1b�

where E is Young’s modulus, L is cantilever length, Iy is
moments of inertia about the y axis, respectively. For a rect-
angular cantilever, Iy =bh3 /12, where b is width, h is thick-
ness of the cantilever cross section. For a typical cantilever,
the tip length l is about 1 /10–1/30 of the cantilever length
L. The lateral force fx could be one order of amplitude
smaller than the normal force fz. Refer to Eq. �1�, the con-
tribution of fx to dz

C and �y
C is much smaller than that from fz.

With the contribution of fx being neglected, we have dz
C

� L3

3EIy
fz and �y

C�− L2

2EIy
fz. Therefore, the topography map ob-

tained in FFM zt�xt ,yt� can be obtained by solving the non-
linear equation

fz�xt,yt,zt� = W , �2�

where �xt ,yt ,zt� are coordinates of cantilever tip, W is ap-
plied normal load.

Based on the above discussion, we note that the contribu-
tion of fx to cantilever vertical bending is much smaller than
that from fz. Thus, the topography should reflect more about
the variation of fz than that of fx. In addition, since �y

C is the
only deflection information that the FFM feedback system
can use to keep a constant normal load, the scan direction in
constant-force mode of FFM could only be in the y axis of
the cantilever. During scanning, only the lateral force fy can
be measured through the twist angle �x

C.

III. TOPOGRAPHIC AND FRICTION FORCE MAPS OF
GRAPHITE WITHOUT CONSIDERING CANTILEVER

DYNAMICS

The simulation of FFM topography and friction force
maps involves the calculation of the forces exerted on the tip,
which are functions of tip position with respect to the sample
surface, and the cantilever deflections due to those forces.
The interaction forces can be calculated from the spatial de-
rivatives of an interaction potential. The forms of the inter-
action potential depend on the adopted atomistic model for
tip and sample surface. In this paper, a simplified model is
adopted to calculate the interatomic forces between cantile-
ver tip and graphite surface. The tip is represented by a one-
atom model and the relaxation of the tip and sample surface
is neglected. It is assumed that the interaction system is al-
ways in an equilibrium state since the scan speed of the
cantilever tip in FFM is much lower than the characteristic
velocity of the lattice vibration.

There are complex tip-surface models in which multi-
atom tip models are employed and the relaxation of tip and
surface is considered.27 The tip-surface forces in these mod-

els are calculated using the molecular dynamics, or static
atomistic simulation and quantum mechanical techniques.
These models, which describe the motion of single atoms,
can address the tip and surface deformations and even the
contamination of the tip by a cluster of surface material.
However, molecular dynamics techniques and quantum me-
chanical methods are still too expensive for routine image
modeling. The practical time length of simulation is several
orders of magnitude smaller than the time length in a typical
scanning process. Static methods based on total energy mini-
mization are only suited for modeling very slow adiabatic
processes at low temperature. In our simulations, the simpli-
fied model is employed so that we can put our emphasis on
the effects of cantilever dynamics on FFM images.

Figure 5 shows the hexagonal structure of �0001� graphite
surface. Layers of the hexagonal structures are staggered
with a distance of 0.335 nm. The periodic structure of the
graphite surface induces a periodic interaction potential,4

which can be approximated by the Lennard-Jones potential
in the form of Vts�rt�=�k�i4�ts��� /rki�12− �� /rki�6�. Here,
the parameters are chosen as �ts=0.87�10−2 eV and �
=0.249 nm �see Ref. 8�, rki is the distance from the kth atom
on the tip to the ith atom on the surface �k=1 in our one-
atom tip model�. In the �x ,y ,z� coordinate system of the
cantilever, the tip position vector is denoted as rt= �xt ,yt ,zt�.

We define � as the angle from the x axis of the cantilever
to the x� axis of the graphite surface. Using a one atom tip

FIG. 5. 2D schematic view of the periodic hexagonal lattice
structure of �0001� graphite surface. Two layers of honeycomb
structures are shown. Two types of carbon atoms, A-type and
B-type, exist due to the way the layers staggered. A-type atoms have
a direct neighbor in the adjacent layers while B-type atoms do not.
Hollow sites are the centers of each hexagon. In the coordinate
system for the cantilever, the x axis is along the cantilever longitu-
dinal direction. The cantilever is always scanned along the y axis
�perpendicular to the longitudinal direction of the cantilever� in
constant-force mode of FFM. Another coordinate system �x� ,y�� is
introduced for convenient determination of atom locations on the
graphite surface. The shown parallelogram is a primitive unit cell
which includes two carbon atoms. Vectors a1 and a2 are the unit
lattice vectors for the primitive unit cell. The angle � is defined to
represent the relation between the coordinate systems for the canti-
lever and graphite lattice structure.
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model, interaction force maps are calculated for a constant
tip-surface distance zt=0.17 nm when �=0°, as shown in the
left-hand column of Fig. 6�a�. If the normal force keeps con-
stant, zt has to change at different locations on the graphite
surface. For a constant normal load W=25 nN, nonlinear
equation in �2� is solved to get the proper zt map and the
corresponding lateral force maps are then calculated. The
maps in the right-hand column of Fig. 6�a� give the tip-

surface distance and lateral forces exerted on the cantilever
tip when the tip is at different locations of the graphite sur-
face. The topography of the graphite surface can be obtained
from zt map by subtracting the min�zt� from zt. The results in
the right column of Fig. 6�a� can be viewed as the FFM
topography and friction force maps of graphite surface with
cantilever dynamics being neglected.

Figure 6�b� show the relative locations of the carbon at-
oms of graphite surface and the maxima of the lateral forces
under the constant normal load W=25 nN. It is clear that
without considering cantilever dynamics, the topographic
map or constant normal force profile does reflect the surface
atomic structure. The locations of the maxima of the normal
force coincide to the atom locations. Whereas the lateral
force maps are not straightforward tools for observation of
atomic structures since the maxima of the lateral forces are
not located at the atom locations.

We note that the horizontal and vertical axes of the maps
in Fig. 6�a� are the x and y coordinates of the cantilever tip at
time t, i.e., (xt�t� ,yt�t�). In the topographic and friction maps
measured by FFM, the horizontal and vertical axes represent
actually the “nominal” coordinates of the tip position, i.e.,
the tip position at time t if the cantilever is rigid �no deflec-
tion�. The nominal tip coordinates are determined from the
coordinate of the cantilever holder. Here we represent them
as (xh�t�+Lh ,yh�t�), where (xh�t� ,yh�t�) are coordinates of the
holder and Lh is a constant in each experiment. Due to the
cantilever deflection during measurement, usually one will
find (xt�t� ,yt�t��� �xh�t�+Lh ,yh�t�).

In addition, in the simulation for the topography map
shown in Fig. 6�a�, with or without considering the contribu-
tion from fx, the resulting topography is almost the same.
This proves again that the contribution of fx to cantilever
vertical bending is very small compared to that from fz and
can be neglected.

IV. CANTILEVER RESPONSE SIMULATION

We use the 3D finite element beam model developed
earlier24 to describe the cantilever motion in a FFM. In this
model, the cantilever is discretized by 3D beam elements. At
the nodes of each beam element, there are six degrees of
freedom �DOFs�: three translational and three rotation
angles. In the �x ,y ,z� coordinate system shown in Figs. 2–4,
the motion equation governing the cantilever response is ex-
pressed as

Mütol + Cu̇ + Ku = Fts. �3�

Here, M and K are mass and stiffness matrices, ütol �utol� is
the acceleration �displacement� vector of the cantilever, u
and u̇ are, respectively, the displacement and velocity vectors
of the cantilever relative to its holder, Fts is tip-sample inter-
action force vector. The displacement vector of the cantilever
holder is expressed as gh= �xh ,yh ,zh�T. The displacement
vector utol is related to the relative displacement vector u by

utol = u + �gh, �4�

where � is the position matrix to describe the relation be-
tween the displacement vectors utol and u. Rewriting the mo-

FIG. 6. �a� 3D interatomic force maps with a constant tip-
surface distance zt=0.17 nm �left-hand column� and lateral inter-
atomic force and tip-surface distance maps with a constant normal
load fz=25 nN �right-hand column�. �b� The relative positions of
the carbon atoms and the maxima of lateral forces under the con-
stant normal load fz=25 nN.

ATOMIC-SCALE TOPOGRAPHIC AND FRICTION FORCE… PHYSICAL REVIEW B 74, 165401 �2006�

165401-5



tion equation in �3� in the reference frame attached to the
cantilever holder, we have

Mü + Cu̇ + Ku = Fts − M�g̈h. �5�

In our simulation, it is assumed that the cantilever tip is
located at the end of the cantilever. For easy illustration and
to save computational time, in the following of this paper,
the cantilever is represented by only one 3D beam element.
With a moderate scan speed, the cantilever deflections in
FFM profiling process are dominated by its first-order vibra-
tional modes corresponding to vertical bending, torsion, and
lateral bending. The fact that the cantilever is discretized by
only one beam element will not compromise the simulation
accuracy significantly, which has been confirmed in our trial
simulations where the cantilever is discretized with ten 3D
beam elements. In the reference frame attached to the canti-
lever holder, there are six DOFs at the end of the cantilever,
i.e., u= �dx

C ,dy
C ,dy

C ,�x
C ,�y

C ,�z
C�. The position vector is

� = 	1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



T

. �6�

The extension of the cantilever can be neglected, i.e., dx
C=0.

In constant-force mode of FFM, vertical bending-related
DOFs dy

C and �y
C are determined by Eq. �1�. The cantilever

deflections corresponding to lateral bending �dy
C and �z

C� and
torsion ��x

C� are governed by Eq. �5�. We consider the canti-
lever is scanned with a constant velocity, i.e., g̈h= �0,0 ,0�T.
Equation �5� is then expressed as

�AL	 39/105 0 − 11L/210

0 Ip/3A 0

− 11L/210 0 L2/105

�d̈y

C

�̈x
C

�̈z
C
�

+ 	c11 c12 c13

c21 c22 c23

c31 c32 c33

�ḋy

C

�̇x
C

�̇z
C
�

+ 	 12EIz/L
3 0 − 6EIz/L

2

0 GJ/L 0

− 6EIz/L
2 0 4EIz/L


�dy
C

�x
C

�z
C� = � fy

C

Mx
C

Mz
C� ,

�7�

where G is shear modulus, � is mass density, A is area of
cross section, J is torsion constant. For a cantilever with a
rectangular cross section, J� 1

3bh3�1.0−0.630h
b +0.052� h

b
�5�.

The force and moments at point C are related with fy as

� fy
C

Mx
C

Mz
C� = �1

l

0
� fy�xt,yt,zt� . �8�

The lateral force fy is a function of the tip location. Tip
location can be determined from Eq. �2� and the following
equations

xt = xh + L − l�y
C, �9a�

yt = yh + dy
C + l�x

C. �9b�

In Eq. �9a�, we note that −l�y
C� L2l

2EIy
fz=constant, i.e., along

each scan line, xt=constant. Observing Eqs. �7�–�9�, it is
clear that the lateral bending and torsion of the cantilever are
coupled together since yt is dependent on both dy

C and �x
C.

Equation �7� is nonlinear and needs to be solved numerically
with Eq. �2� to simulate the cantilever response in FFM. The
resulting maps of zt and �x

C are the FFM imaging results of
topography and friction force, respectively.

The damping matrix in Eq. �7� addresses the energy dis-
sipation mechanism in the tip-cantilever-surface system. It
consists of two parts. One is the damping that the cantilever
encounters when it is far away from the sample surface, in-
cluding the material damping inside the cantilever and that
from the air if it is not operated in vacuum. The other part is
induced from the tip-sample interaction, such as phonon gen-
eration. Song and Bhushan24 has demonstrated that the
damping effects due to the tip-sample interaction can be
equivalently addressed as an additional damping term to the
material damping matrix of the cantilever. Here, the damping
matrix is calculated as24

C = ��1,�2,�3�−T diag�2�1�1,2�2�2,2�3�3���1,�2,�3�−1,

�10�

where �i, �i and �i �i=1,2 ,3� are the ith natural circular
frequency, normalized eigenmode vector and damping ratio
of the system. Usually, large damping ratios �close to 1.0� are
adopted to simulate the damping effects in the profiling pro-
cess of FFM.

V. RESULTS AND DISCUSSION

We simulated the profiling processes to obtain the topo-
graphic and lateral force maps of graphite surface for differ-
ent combinations of normal loads, tip lengths, and scan di-
rections. The rectangular silicon cantilever considered here
has the following dimensional and material parameters: L
=252 	m, b=35 	m, h=2.3 	m, �=2330 kg/m3, E=1.3
�1011 Pa, 
=0.28. Two scan directions are considered. In
one case, �=0°, i.e., the scan is carried out along the y� axis,
and in the other case �=30°, which is equivalent to �=90°
due to the hexagonal structure of graphite, i.e., the scan di-
rection is along the x� direction. The scan size is 1 nm
�1 nm. The scan velocity in the fast scan direction is
200 nm/s. Figure 7 shows the simulated maps of the canti-
lever twist angle −�x

C, the tip-distance map zt, and the paths
of cantilever tip. The maps of −�x

C can be viewed as a mea-
surement of the lateral force that resists the movement of the
cantilever, i.e., the lateral force whose direction is opposite to
the scan direction. The effects of cantilever dynamics in
FFM topography and friction images can be clearly demon-
strated by comparison of the maps shown in Figs. 6 and 7.

A. Slow-fast motion pattern

In Fig. 7�a�, the results are for the normal load W
=10 nN, tip length l=12.5 	m, and �=0°. The full hexago-
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nal structure of graphite surface can be seen in the topo-
graphic map. The paths of the cantilever tip are plotted by
dots separated by equal time interval. Although the cantilever
holder moves in a constant velocity, the cantilever tip does
not slide over the surface smoothly. The dense part on the tip
paths indicates that the tip is moving slowly over the surface
while the sparse part represents a faster motion. As the
“slow-fast” motion of the cantilever tip becomes remarkable,

many researchers refer it as “stick-slip” motion. Figure 7�b�
gives the results under the same conditions as those in Fig.
7�a�, except that the normal load is increased from
10 nN to 25 nN. The slow-fast tip motion in Fig. 7�b� is
more remarkable than that in Fig. 7�a� due to the increased
normal load, as shown clearly in the tip paths in Figs. 7�a�,
7�b�, and 8. Consequently, the hexagonal structure in topog-
raphy cannot be observed in Fig. 7�b� and only the “resolu-
tion of every other atom” is shown. Also, dramatic difference
can be seen in the lateral force maps in Figs. 7�a� and 7�b�.

The topographic and lateral force maps obtained in FFM
measurements are the combined results of the real spatial
distributions of 3D tip-sample interaction forces and cantile-
ver dynamics. In the measured maps of FFM, the topography
and lateral forces at the locations of the tip �xt�t� ,yt�t�� are
plotted against the “nominal” coordinates of the tip �xh�t�
+Lh ,yh�t��. The discrepancy between the measured results
and the realities depends on how close it is between
�xt�t� ,yt�t�� and �xh�t�+Lh ,yh�t��. The tip paths shown in Fig.
7 are different from the simulated results reported by Sasaki
et al.8 and Hölscher et al.11 In their analyses, the cantilever
tip follows a zigzag stick-slip motion, moving from one hol-
low site to another and staying most of the time there. In our
simulations, the tip move straight along the scan lines due to

FIG. 7. The simulated maps of cantilever twist angle −�x
C �left-

hand column� and tip-surface distance �middle column� zt and 13
paths of the cantilever tip �right-hand column� for different combi-
nations of the normal loads, tip lengths, and scan directions. The
maps of cantilever twist angle are equivalent to the lateral force
maps. The tip-surface distance maps are equivalent to the topo-
graphic maps. The data on the maps are unit-cell averaged. The
paths of the tip is “time resolved,” i.e., the paths are plotted by dots
separated by equal time interval �t=0.05 ms. The height variation
in all topographic maps is about 0.03 nm, which agrees well with
the experiment and theoretical calculation �Refs 29 and 30.�

FIG. 8. Plots of cantilever twist angles for the scan lines of xt

=0.172 nm under two different normal loads, i.e., the third paths in
Figs. 7�a� and 7�b�.
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the constant normal load condition. Refer to Eq. �9a�, we
have xt=xh+L− l�y

C=constant. Therefore, in each scan line, it
is the difference between yt�t� and yh�t� that determines the
discrepancy between the measured results and the realities.
The observation of surface atomic structure from the topo-
graphic maps is possible if the cantilever tip moves smoothly
enough over the sample surface. Furthermore, from the tip
paths shown in Fig. 7, the slowly-moving part of the tip
paths could happen at the hollow sites or somewhere near the
atom locations. It is not necessary true that the cantilever tip
always stays more time at the hollow sites than other loca-
tions.

We note that in our simulation, the feedback system
works instantaneously to keep the constant normal load con-
dition. In reality this could not be possible. In experiment,
the scan velocity should be small enough in order that the
feedback system has enough time to react effectively to ad-
just the tip-sample distance even at the fast motion part of
the tip paths.

B. Conditions of occurrence of remarkable slow-fast tip
motion

One would ask under what circumstances remarkable
slow-fast tip motion �or stick-slip� will not occur so that the
detection of the full atomic structure becomes possible. It is
generally recognized that stick-slip will occur if a soft can-
tilever is scanned over a surface with large lateral forces.7–9

Fujisawa et al.10 experimentally found that the sticking do-
main decreased with the increased normal load, and under
lower normal load the tip shows smoother motion. Their ob-
servation are consistent to the conclusion that stick-slip oc-
curs for soft cantilevers under large lateral forces since a
high normal load means a smaller tip-sample distance and
therefore larger lateral forces. Johnson and Woodhouse28 as-
sumed a sinusoidal lateral force and gave the analytical con-
dition under which the tip motion is steady and no stick-slip
occurs

T* � Tc
* = 
ke/2� , �11�

where T* is the magnitude of the sinusoidal lateral force, Tc
*

is the critical lateral force magnitude at which stick-slip will
occur, 
 is the periodic lattice spacing of the sample surface,
ke is the effective lateral stiffness. The effective lateral stiff-
ness can be calculated from the expression 1/ke=1/klat
+1/ksurf, where klat is the lateral cantilever stiffness consid-
ering both cantilever lateral bending and torsion, ksurf is the
tip-surface contact stiffness. Here, since we always assume
that the cantilever tip itself is rigid, ksurf is a description of
atomic relaxation �or surface flexibility�. Although Eq. �11�
is obtained under the assumption of a sinusoidal lateral force,
it may be used for a rough estimation of the occurrence of
stick-slip in our simulations. For a rigid surface, ke equals the
lateral stiffness of the cantilever, i.e.

ke = klat = 
 L3

3EIz
+

Ll2

GJ
�−1

. �12�

If it is chosen as 
=0.426 nm, for the cantilever in Figs. 7�a�
and 7�b�, ke=94.4 N/m. We have the critical lateral force

magnitude Tc
*=6.4 nN. The maximum lateral force is about

3 nN for W=10.0 nN and about 10 nN for W=25.0 nN �re-
fer to Fig. 6�. According to the condition in Eq. �11�, stick-
slip should happen in Fig. 7�b� but not in Fig. 7�a�, which is
consistent to our observation.

C. Methods for prevention of remarkable slow-fast tip motion

To observe the full atomic structure of the surface, the
velocity of the cantilever tip should not oscillate too much
during the scanning process. As pointed out earlier that this
usually requires a relatively small lateral force and large lat-
eral stiffness of cantilever. At the first thought, it seems that
this can be achieved simply by applying a small normal load
during measurement. However, for a typical cantilever, a
small normal load means a small lateral force and therefore
small cantilever flexural and twist angles ��y

C and �x
C� that

may not be measured effectively due to the small signal-
noise-ratio. The second thought would be to increase the
lateral stiffness of the cantilever. For a rectangular cantilever,
considering G�E /2 and J� 1

3bh3, we have

klat �
Ebh

L

4L2

b2 +
6l2

h2 �−1

, kn =
Ebh3

4L3 , k� =
Ebh3

6Ll
,

�13�

where kn is the vertical spring constant of the cantilever, k� is
the twist stiffness ��x

C=k�fy�. We may increase klat by adopt-
ing the following three methods, separately or in combina-
tion: �a� increasing the cantilever width b and/or the thick-
ness h; �b� decreasing the cantilever length L; �c� decreasing
the tip length l. All of the three methods may suffer some
limitations to applications. Methods �a� and �b� will increase
kn and k� simultaneously. Too big kn and k� will lead to small
�y

C and �x
C, just like the effects resulting from applying small

normal load. Although method �c� has no effect on kn, it
results in an increase of k�. Therefore, care has to be taken to
choose the cantilever geometry, tip length, and applied load
so that the remarkable unsmooth tip motion does not occur
and at the same time, the signal-noise ratio is big enough.

With the same normal load as that in Fig. 7�b�, Fig. 7�c�
shows the results with a smaller tip length l=2.5 	m. As
expected, the slow-fast tip motion in Fig. 7�c� becomes less
remarkable than that in Fig. 7�b� and the full hexagonal lat-
tice structure is shown in topographic map even the normal
load is the same as that in Fig. 7�b�. With a tip length of
2.5 	m, ke=194.1 N/m and the critical lateral force magni-
tude Tc

*=13.2 nN. According to Eq. �11�, the stick-slip mo-
tion should not occur. Actually, this was exactly what Bin-
ning et al.1 did in their experiment where the full atomic
structure was obtained successfully. In their experiment, a
cantilever without tip was used. During measurement, the
cantilever corner touched the sample surface for imaging. In
the other experiment by Marti et al.2 in which the full hex-
agonal structure of graphite surface was observed, a totally
different detecting-sensing design was employed. The lateral
stiffness of the wires they used is about 8�104 N/m, which
is much stiffer than the commercially-available cantilevers
whose lateral stiffness is typically 10–500 N/m.
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The difficulty encountered by experimentalists in imaging
the full hexagonal structure of graphite using FFM may be
understood from another point of view. In FFM, topographic
and friction maps are obtained simultaneously. The average
lateral force in FFM measurement is defined as

F̄ =
1

t0
�

0

t0

fy�t�dt , �14�

where t0 is the time that cantilever tip takes to scan over the
periodic lattice structure of the surface. According to Sasaki

et al.,8 the appearance of a nonzero F̄ represents the transi-
tion of the conservative lateral force to the nonconservative
frictional force and indicates the occurrence of stick-slip.

This means that in any FFM measurement with a nonzero F̄,

stick-slip seems to always occur. Therefore, nonzero F̄ and
topographic maps close to reality may not be obtained at the
same time.

D. Image patterns due to different scan directions

In Fig. 7�d�, the results are for the normal load W
=25 nN, tip length l=12.5 	m, and �=30°. Compared with
Fig. 7�b�, we can see the effects of scan direction on topo-
graphic and lateral force maps. Different pattern of tip paths
are also shown. The differences of Figs. 7�b� and 7�d� can be
explained by the different distributions of atom locations. As
shown in Fig. 9, the peaks of topography for �=0° appear at
the place where the tip is scanned between the two closely-
place atoms. When �=30°, two different areas can be distin-
guished. In area A, there is no carbon atom in the way of the
scanned tip, resulting in a stripelike dark area. Area B is the
narrow stripe where the atoms are located. Due to the un-
smooth motion of the tip, the topography in this area is “av-
eraged” and thus a stripelike bright area is shown.

Figure 7�e� shows the results for the normal load W
=25 nN, tip length l=12.5 	m, and �=10°. The stripelike
topographic map is very similar to some scanning tunneling
microscopy �STM� images on graphite20 and the AFM image
on boron nitride.3 Compared with Figs. 7�b� �trigonal topog-
raphy� and 7�d� �stripelike topography�, Fig. 7�e� can be
viewed as something between them. The scan directions of
�=0° and 30° are two extreme cases regarding the atom
location distribution. Any scan direction in the range of �0°,
30°� and �30°, 60°� should result in lateral force and topog-
raphy images that are something between the results for �
=0° and 30°. The closer � is to 0° or 60°, the more the
images are similar to those in Fig. 7�b�. While � is close to
30°, the resulting images should look more like those shown
in Fig. 7�d�.

In our simulations, surface is assumed to be rigid and
atomic relaxation is not considered. As pointed out by Sasaki
et al.,8 atomic relaxation makes the cantilever effectively
stiffer and the simulated FFM images for a cantilever with-
out considering atomic relaxation are similar to those for a
softer cantilever with the relaxation taken into account. In-
corporating realistic interaction models with atomic relax-
ation into our model would be an important aspect of our
future work.

VI. CONCLUSION

In this paper we use a 3D FE model to simulate the
atomic-scale topographic and friction force profiling process
in FFM. The cantilever dynamics in operating conditions of
FFM and its effects on the measured topographic and lateral
force maps are investigated with different combinations of
cantilever geometry, applied normal load, and scan direction.

We identify that the topographic and lateral force maps
obtained in FFM experiments as the combined results of the
real spatial distributions of 3D tip-sample interaction forces

FIG. 9. �a� The relative positions of the carbon atoms in graphite
surface and the maxima of topography in Fig. 7�b�, when �=0°. �b�
When �=30°, two different areas can be distinguished. In are A,
there is no carbon atom in the way of the scanned tip. Area B is the
narrow stripe consisting of the carbon atoms.
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and cantilever dynamics. Cantilever dynamics cannot be ig-
nored in interpretation of FFM �and AFM� images when re-
markable slow-fast tip motion is present in experiments. The
experimental-obtained hexagonal and trigonal topographic
images of graphite surfaces can be achieved in simulations
with different combinations of cantilever geometry, applied
normal load, and scan direction relative to the lattice struc-
ture of graphite. The observation of the full atomic structure
of graphite surface in topographic map may be realized if the
cantilever tip moves smoothly over the sample surface with a
velocity that does not oscillate too much to the extent that the
remarkable slow-fast tip motion occurs. This can generally
be satisfied by carefully adjusting the cantilever geometry
and tip length and using a relatively low applied load to
ensure a relatively large cantilever lateral stiffness, a rela-
tively small lateral force, and a reasonable signal-noise ratio.
If remarkable slow-fast tip motion does occur, the appear-

ance of trigonal or stripelike topographic maps of graphite
surface depends on the scan direction. In FFM, topographic
and friction maps are obtained simultaneously. However,
measuring them separately may give us a better chance to
obtain topographic maps close to the reality since remarkable
slow-fast tip motion seems to always occur along with the
measurement of a nonzero average lateral force.

We note that the presented FE model fully addresses the
effects of AFM cantilever dynamics on FFM topography and
friction imaging. However, in this model, the elasticity of the
tip and the atomic relaxation of the tip and sample, which
could play a role as important as the cantilever dynamics in
the FFM topographic and friction imaging, are not consid-
ered. The more sophisticated models that account for both
the cantilever-tip dynamics and atomic tip-sample relaxation
are desirable in the future study.
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