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The coherent ultrafast optical injection and the temporal evolution of charge and spin currents in semicon-
ductors is analyzed using a microscopic many-body theory. The approach is based on the semiconductor Bloch
equations and includes light-field-induced intraband and interband excitations, excitonic effects, and carrier–
LO-phonon and carrier-carrier scattering processes. The relaxation effects are treated both in the second
Born-Markov approximation and on the level of quantum kinetic theory including memory effects. The dy-
namics of the charge and spin currents is evaluated numerically for a one-dimensional model system. The
dependence of the currents and their decay on the temperature, the excitation intensities, and the frequencies of
the incident light fields is discussed. Whereas the overall decay dynamics is described well within the Markov
approximation, the quantum kinetic theory predicts additional oscillatory signatures in the current transients.
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I. INTRODUCTION

The coherent ultrafast generation of photocurrents in
semiconductors and semiconductor heterostructures by se-
quences of optical laser pulses has attracted a great deal of
attention recently.1–17 In particular, it has been predicted2 and
observed3 that it is possible to generate photocurrents in
semiconductors via the excitation with two light fields with
frequencies � and 2�, which satisfy 2���Egap���, where
Egap is the band-gap energy. In this scheme, the valence- and
conduction-band states are coupled by both one- and two-
photon transitions, which allows one to coherently control
the photoexcitations. The interference between interband and
intraband transitions may lead to photoexcited electronic dis-
tributions which are not symmetric in k space, i.e., they cor-
respond to a nonvanishing current. The generated photocur-
rents depend sinusoidally on the relative phase between the
two incident fields. For the case of disordered semiconduc-
tors, it has been predicted that sequences of temporally de-
layed excitation pulses may lead to current echoes,6,7 how-
ever this phenomenon has not yet been observed experi-
mentally.

The interference of the � and 2� fields can be used to
excite charge currents for the case of linear parallel polariza-
tion. Due to the dependence of the transition matrix elements
on the spin, however, for linear perpendicular polarization
directions of the incident pulses, the same interference
scheme can be used to generate spin currents.4,11 In such a
situation, electrons with opposite spin predominantly move
into opposite directions such that no effective charge but just
the spin is transported. These spin currents have been ob-
served recently.8–10 They could be of interest for future ap-
plications in the area of spintronics.18,19

Whereas the formulation of the current generation in
terms of nonlinear optical susceptibilities is very useful in

determining the existence and strength of coherent photocur-
rents for various crystal symmetries and excitation
geometries,2,11 a detailed microscopic understanding of the
temporal evolution of these currents requires the evaluation
of dynamic equations. Sets of Bloch equations for the rel-
evant intraband and interband transitions and populations
have been successfully used to describe the coherent genera-
tion and dynamics of the currents.6,7,13,15 Excitonic effects
have been shown to lead to phase shifts of the photo- and
spin currents in bulk semiconductors,14 and interferences be-
tween optically allowed and forbidden excitons in quantum
wires can be used to generate oscillating photocurrents.15

Only a little knowledge is available on the temporal decay
of the coherent photocurrents, which is modeled by phenom-
enological decay times in most of the existing publications.
However, the relaxation of the electronic current by the scat-
tering with LO phonons has been analyzed5 and some results
on the decay of the spin current by carrier-carrier scattering
in bulk GaAs have been obtained by considering a rather
simple model.20 It has been shown recently that carrier-
carrier scattering processes may lead to a more rapid decay
of the spin current as compared to that of the charge
current.16 This result has been obtained without taking any
spin relaxation mechanisms21–23 into account and is a conse-
quence of the momentum-exchanging but spin-conserving
Coulomb scattering between the carriers with opposite spin.
Therefore, the explanation of the enhanced damping of the
photogenerated spin current is similar to the spin Coulomb
drag that has been found in studies of spin-polarized
transport.24

In this paper, we analyze the dynamical generation and
the decay of charge and spin currents using a microscopic
many-body theory that is based on the semiconductor Bloch
equations �SBE�, i.e., the equations of motion for the optical
polarization and the carrier populations.25–27 This coupled set
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of equations nonperturbatively includes light-field-induced
intraband and interband excitations. The coherent part of the
SBE furthermore contains the first-order Hartree-Fock Cou-
lomb effects, i.e., excitonic effects and Coulombic nonlin-
earities due to energy and field renormalization.25–27 In order
to be able to describe besides the coherent dynamics of the
currents also the subsequent temporal decay, incoherent scat-
tering processes are also considered. Therefore, the coherent
SBE are supplemented by collision contributions that de-
scribe carrier–LO-phonon and carrier-carrier scattering.
These processes are known to dominate the ultrafast relax-
ation and dephasing dynamics of photoexcited semiconduc-
tors. In this paper, we describe these terms either on the level
of a second-order Born-Markov approximation25–29 or at the
level of non-Markovian quantum-kinetic theory.30 We inves-
tigate the decay of the charge and spin currents induced by
these scattering contributions. Further processes, in particu-
lar spin relaxation mechanisms,19,21–23 are not taken into ac-
count by our present two-band model. Thus the results re-
ported here are apply to situations in which the damping of
the photocurrents is mainly caused by the energy relaxation
of the photogenerated nonequilibrium carrier distributions.
The model used here can be extended to incorporate further
bands and spin relaxation mechanisms. This will, however,
largely increase the numerical requirements. It can be ex-
pected that the enhancement of the damping of the photoge-
nerated spin current as compared to that of the charge current
will increase if spin relaxation processes are relevant.

Using the Markovian approximation in the evaluation of
the scattering terms is valid in the long-time regime, where
the energy conservation for each completed collision strictly
holds. This approximation, however, fails to describe some
characteristic features on the ultrashort time scale since
quantum kinetic effects, i.e., the finite duration of collisions,
are neglected. In a short-time interval, the energy is not con-
served in a single scattering event and the system has a
memory of its previous states. In order to investigate the
influence of these effects, we apply the quantum kinetic
approach30 and analyze the Coulomb and LO-phonon relax-
ation dynamics on ultrafast time scales.

We have structured this paper such that the following Sec.
II presents the Hamiltonian and the coherent part of the SBE.
The collision contributions as they arise in the second Born-
Markov approximation and in the quantum-kinetic theory are
given in Appendix A. In Appendix B we present a third-order
expansion of the SBE which systematically shows the gen-
eration of the optically induced currents.

Due to the extensive numerics involved with the solution
of our coupled system of equations and in order to be able to
perform a systematic analysis of the relaxation dynamics
with and without Markov approximations, we consider here
a relatively simple model system for a one-dimensional
quantum wire with two parabolic bands using GaAs param-
eters, see Sec. III. Numerical results on the dynamical evo-
lution of the distribution functions and the charge and spin
currents are presented in Sec. IV. Of particular importance is
the dependence of the currents and their decay on the tem-
perature, the excitation intensity, and the frequency of the
incident light field. Furthermore, it is shown that the overall
decay of the currents is basically correctly described by Mar-

kovian calculations. However, quantum-kinetic memory ef-
fects may lead to additional oscillatory signatures in the cur-
rent transients. Our most important results are summarized in
the concluding Sec. V.

II. THEORY

We subdivide the Hamiltonian of our interacting many-
body system into five individual contributions,25,26,34

H = Hband structure + Hlight matter + HCoulomb + Hphonon

+ Hcarrier phonon. �1�

In the following, we consider the spin-degenerate lowest
conduction bands and the highest heavy-hole valence bands,
which are denoted by c and v, respectively. The two spin
directions are labeled by �= ↑ ,↓. The electronic single-
particle energy is given by

Hband structure = �
��k

��ka��k
† a��k, �2�

where ��k is the band structure and a��k
† �a��k� is the cre-

ation �annihilation� operator of an electron with momentum
k and spin � in the band �=c ,v. The light-matter interaction
is described semiclassically as

Hlight matter = − E�t� · �
������kk�

d���kk�
��� a��k

† a����k�. �3�

Here, E�t� is the electric field and

d���kk�
��� = er��k

��� 	���	�k − k�� + ie	���	����k	�k − k��

�4�

is the dipole matrix element where r��k
��� describes optical

interband transitions and �k is the intraband accel-
eration.31–35 The many-body Coulomb interaction between
the carriers reads

HCoulomb =
1

2 �
������kk�q�0

Vqa��k+q
† a����k�−q

† a����k�a��k,

�5�

where Vq is the Coulomb matrix element. The energy of the
phonon system is given by

Hphonon = �
q

��q�bq
†bq +

1

2
� . �6�

Here, bq
† �bq� creates �annihilates� a phonon with wave vector

q and energy ��q. The carrier-phonon interaction is de-
scribed by

Hcarrier phonon = �
��kq

gqa��k+q
† a��k�bq + b−q

† � , �7�

where the matrix element gq determines the coupling
strength.

The dynamical optoelectronic response is analyzed using
the Heisenberg equations of motion for the carrier popula-
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tions n�k
e = �ac�k

† ac�k� and n�k
h =1− �av�k

† av�k� and the inter-
band polarization p�k= �av�k

† ac�k�. The resulting SBE
read25,26,31–34

d

dt
n�k

e = − 2 Im�
�k
R p�k

* � −
e

�
E�t� · �kn�k

e +� d

dt
n�k

e �
coll

,

�8�

d

dt
n�k

h = − 2 Im�
�k
R p�k

* � −
e

�
E�t� · �kn�k

h +� d

dt
n�k

h �
coll

,

�9�

d

dt
p�k = −

i

�
���k

e + ��k
h �p�k − i�nk

e + nk
h − 1�
�k

R

−
e

�
E�t� · �kp�k +� d

dt
p�k�

coll
, �10�

where


�k
R =

1

�	er��k
cv · E�t� + �

q�0
Vqp�k+q
 �11�

is the generalized Rabi frequency and

��k
e = �ck − �

q�0
Vqn�k+q

e , ��k
h = − �vk − �

q�0
Vqn�k+q

h

�12�

are the renormalized electron and hole energies. The terms
written explicitly in Eqs. �8�–�10� are the ones arising in the
time-dependent Hartree-Fock approximation for the Cou-
lomb interaction. All contributions beyond this level are de-
noted by ��coll. These collision terms, which arise as a conse-
quence of the carrier-phonon and the carrier-carrier Coulomb
interaction, are given in Appendix A. Since the light-matter
and the carrier-phonon interactions are diagonal in the spin,
Eqs. �8�–�10� describe within the time-dependent Hartree-
Fock scheme a system of two uncoupled two-band situations
characterized by the spin index �= ↑ ,↓. These optically iso-
lated subsets are, however, coupled via Coulombic many-
body correlations, i.e., the carrier-carrier scattering processes
described in Appendix A.

Equations similar to Eqs. �8�–�10�, however without in-
clusion of the spin degree of freedom, have been used al-
ready in Refs. 31–34 to describe the optoelectronic response
of semiconductor superlattices in the presence of static and
terahertz fields applied in the growth direction. In those stud-
ies, the optical fields were considered solely to generate in-
terband transitions via the terms proportional to E�t� ·r��k

cv ,
whereas the static and terahertz fields led to the intraband
acceleration via the E�t� ·�k terms. Such a distinction be-
tween rapidly oscillating and static or slowly oscillating
fields was useful in order to apply the rotating-wave approxi-
mation when solving the SBE. In our present investigations,
however, we are interested in describing the optical genera-
tion of currents by the interference of optical fields with fre-
quencies � and 2� which fulfill ���Egap�2��, i.e., by
two fields of comparable frequency. Therefore, the previ-

ously made simplification is not possible and instead the total
field has to be considered for both the intraband and inter-
band excitations. The results presented in Sec. IV are ob-
tained by numerical integration of the SBE without invoking
the rotating-wave approximation, i.e., by using a very small
time step that resolves the optical oscillation period of the
laser pulses. When solving Eqs. �8�–�10�, it is, however, still
possible to treat the intraband acceleration exactly by intro-
ducing a time-dependent frame according to31–34

k�t� = k�t = 0� +
e

�
�t

dt�E�t�� , �13�

i.e., the wave vector satisfies the acceleration theorem

d

dt
k�t� =

e

�
E�t� . �14�

Besides excitonic effects and the scattering terms, Eqs.
�8�–�10� include nonperturbatively intraband and interband
excitations induced by homogeneous electric fields. This al-
lows us to study the dependence of the optoelectronic re-
sponse on the intensity of the incident light fields. If one
assumes that the incident fields are weak, it is justified to
solve Eqs. �8�–�10� perturbatively in the light-matter interac-
tion. In Appendix B, it is outlined how the SBE presented
here can be limited to describe the generation of coherent
photoinduced currents arising in third order in the light field.

The time-dependent polarizations and populations are ob-
tained by solving Eqs. �8�–�10� including the scattering
terms. The electron and hole populations n�k

e,h determine the
dynamics of the charge and spin current densities, which are
evaluated by computing

J = e�
�k

vcn�k
e − e�

�k
vvn�k

h , �15�

S =
�

2 �
�k

�vcn�k
e −

�

2 �
�k

�vvn�k
h , �16�

where v�=�k��k /� is the group velocity. In the effective-
mass approximation, the group velocity is given by v�

=�k /m�.

III. ONE-DIMENSIONAL QUANTUM WIRE
MODEL SYSTEM

If the electronic band structure is symmetric in k, the co-
herent generation of currents is due to material excitations
that are not symmetric in k space. In such situations, solu-
tions of Eqs. �8�–�10� beyond the rotating-wave approxima-
tion and including the scattering contributions are numeri-
cally quite demanding. Therefore, we limit the present
analysis to a one-dimensional model system of a GaAs quan-
tum wire with parabolic spin-degenerate valence and con-
duction bands. The electronic band structure is described by

��kx
=

�2kx
2

2m�

±
Egap

2
, �17�

with mc=0.067m0, mv=−0.457m0, where m0 is the free-
electron mass, and Egap=1.5 eV.
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In order to be able to analyze both charge and spin cur-
rents, the interband matrix elements r���kx

��� are taken as

r↑↑kx

cv = rcv�1,i,0�, r↓↓kx

cv = rcv�1,− i,0� , �18�

with rcv=3 Å and vanish for all other indices. We thus use
the same circularly polarized dipole matrix elements that de-
scribe heavy-hole to conduction-band transitions in quantum
wells close to the � point. This allows us to model charge
and spin current generation using the same excitation con-
figurations as in quantum wells. With regard to the decay of
charge and spin currents, it has been shown that the results
obtained within this one-dimensional model system are
qualitatively similar to much more time-consuming two-
dimensional calculations.16

The effective one-dimensional Coulomb potential in real
space is given by25

V1D�z� =
e2

�

1

�z� + b
. �19�

Here, the regularization parameter b is taken as 0.3a0, where
a0 is the three-dimensional exciton Bohr radius, and the di-
electric constant is �=10.92. In k space, the Coulomb po-
tential is

Vq
1D = 2

e2

�
	��

2
− Si�bq��sin�bq� − Ci�bq�cos�bq�
 ,

�20�

where Si�x� and Ci�x� are the sine and cosine integrals, re-
spectively.

The coupling of the electrons and holes to dispersionless
LO phonons is described by the Fröhlich relation

gq
2 =

��LOVq

2
�1 −

�

�0
� . �21�

Here, we use ��LO=36 meV and �0=12.9.
The incident electric field consists of a superposition of

two pulses with frequencies � and 2�, i.e.,

E�t� = E��t� + E2��t� . �22�

The two fields are taken to be linearly polarized here and are
given by

E��t� = e�A��e−t2/�L
2
e−i�t−i�� + c.c.� . �23�

In Eq. �23�, e� denotes the polarization direction, A� is the
amplitude, and �� is the phase of the field of frequency �
=� and 2�, respectively. Both frequency components are
considered as Gaussian-shaped pulses with a duration deter-
mined by �L. For the case in which both field components are
linearly polarized in the x direction, i.e., e�=e2�=ex, the
photoexcitation produces a pure charge current since the two
spin systems are excited identically. For the case of linear
perpendicularly polarized pulses, i.e., e�=ex and e2�=ey, a
pure spin current with no accompanying charge current is
generated.

IV. NUMERICAL RESULTS

In this section, we present results obtained by numerically
solving the SBE, i.e., Eqs. �8�–�10�, including carrier–LO-
phonon and carrier-carrier scattering for the model system
described in Sec. III. In Sec. IV A, we first analyze the ex-
citation and decay of the charge and spin currents for the
case in which the scattering terms are treated on the second
Born-Markov level. Then in Sec. IV B, we discuss the results
of our non-Markovian quantum kinetic calculations.

A. Charge and spin current dynamics at the Born-Markov level

The excitation geometries allowing for the generation of
charge and spin currents are shown in Fig. 1. To excite a
charge current J, both electric fields with frequencies � and
2� are polarized in the x direction, i.e., their polarization
directions are e�=e2�=ex in Eq. �23�. A spin current S is
injected by two cross-linearly-polarized pulses, where the �
pulse is polarized along x and the 2� pulse is polarized in the
y direction, i.e., e�=ex and e2�=ey. The dynamics of the
charge and spin currents are evaluated from the time-
dependent populations using Eqs. �15� and �16�, respectively.

The excitation conditions used in the following describe
situations in which typically 2�� is several excitonic binding
energies above the band gap. Therefore, the phase shifts due
to excitonic effects,14 which are included in our analysis, are
rather small. The charge and spin currents both depend sinu-
soidally on the phase difference between the � and 2�
fields. In order to obtain a large current, we are guided by the
phase dependence of the currents, which, without excitonic
phase shifts, is given by J�sin��2�−2��� and S�cos��2�

−2���.3,8,10,11 Therefore, we use in our numerical calcula-

FIG. 1. �Color online� Schematic illustration of the excitation of
the photocurrents with linearly polarized � and 2� fields. �a� When
the polarization directions of the two fields are parallel and polar-
ized along the direction of the quantum wire, i.e., e�=e2�=ex, a
pure charge current J is generated. �b� When the two fields are
perpendicularly polarized with e�=ex and e2�=ey, a pure spin cur-
rent S is generated.
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tions �2�−2��=� /2��� to obtain a large charge �spin� cur-
rent.

The ultrafast laser pulses used in our computations have a
duration of �L=20 fs. The ratio between the amplitudes of
the � and the 2� fields is denoted by x=A� /A2�. In most of
the following calculations we use x=2, and we chose the
amplitudes in order to reach a certain density of photoin-
duced carriers.

Figures 2�a� and 2�b� show the dynamics of the photoex-
cited electron and hole distributions in k space for the case in
which a charge current is excited. The two incident laser
pulses have frequencies of ��=0.81 eV and 2��=1.62 eV,
respectively, and are polarized as shown in Fig. 1�a�. The
optical excitation generates the carriers with an excess en-
ergy of 120 meV above the band gap. Due their smaller
mass, about 105 meV of the kinetic energy is given to the
electrons whereas that of the holes is only about 15 meV.
Since the energy of the LO phonons is ��LO=36 meV, the
electron relaxation is considerably influenced by the emis-
sion of LO phonons. The hole distribution is, however, only
weakly affected by the scattering with LO phonons, since
LO-phonon emission is not possible due to their small excess
energy. Immediately after the excitation, e.g., at t=50 fs, the
electron and hole distributions are very similar, see Figs. 2�a�
and 2�b�. Both show maxima around k= ±5/a0 and the peaks
at positive k are larger than the ones at negative k, i.e., the
distributions are not symmetric in k space,2 which, according
to Eq. �15�, corresponds to a nonvanishing charge current. If
only the 2� pulse were considered, the initial peaks of the
distributions around k= ±5/a0 would be symmetric since in
this case interband excitations dominate. The interference be-
tween the � and 2� pulses involves intraband excitations
that lead to the asymmetries in the k-space distributions, as is

shown in Appendix B. Since the scattering processes ex-
change momentum among the carriers and with the phonon
system, the degree of asymmetry decreases with increasing
time. In the limit of long times, the electron and hole distri-
butions both approach quasiequilibrium distributions in their
respective bands, see Figs. 2�a� and 2�b�. Due to their larger
mass, the hole distribution is significantly broader than that
of the electrons.

Figures 2�c� and 2�d� show the dynamics of the distribu-
tions of the spin-up and the spin-down electrons in k space
for the case in which a spin current has been excited. It can
be clearly seen that the spin-dependent electron distributions
are mirror images of each other, i.e., that the relation n↑k

e

=n↓−k
e holds. Since the same relation also holds for the holes

�not shown in figure�, according to Eq. �15� the charge cur-
rent vanishes and a pure spin current, see Eq. �16�, is gener-
ated. The relaxation dynamics of the electron distribution in
Fig. 2�c� is very similar to the case in which a charge current
has been excited, see Fig. 2�a�.

The computed time dependencies of the charge and spin
currents corresponding to the situation displayed in Fig. 2 are
shown by the thick solid lines in Figs. 3�a� and 3�b�. Note
that due to their smaller mass, both currents are predomi-
nantly due to the electrons. As a result of the relaxation and
the concomitant reduction of the asymmetric parts of the
k-space distributions, the initially generated currents de-
crease with time. The decays are nonexponential, however
up to about 1 ps they can be approximated by exponential
decays with time constants of �680 fs for the case of the
charge current and �530 fs for the case of the spin current.
If the carrier-carrier scattering is neglected, see the dashed
lines in Figs. 3�a� and 3�b�, the dampings of the charge and
the spin currents are slower and the carrier–LO-phonon scat-

FIG. 2. �Color online� Relaxation dynamics of
the photogenerated carriers in k space caused by
carrier–LO-phonon and carrier-carrier scattering.
�a� and �b� show snapshots of the electron and the
hole distributions for the case in which a charge
current has been excited with linear parallel po-
larized � and 2� fields. In this case, the distribu-
tions do not depend on the spin. �c� and �d� show
snapshots of the distributions of the spin-up and
spin-down electrons for the case in which a spin
current has been excited with linear perpendicular
polarized � and 2� fields. Both calculations are
performed for the same excitation conditions. The
incident pulses have a duration of �L=20 fs, the
amplitudes are chosen as A�=2A2�, with A2�

=128A0, where A0=E0 /ea04�103 V/cm, E0

is a three-dimensional exciton Rydberg, and a0 is
the Bohr radius of a three-dimensional exciton.
The frequency of the 2� pulse corresponds to
2��=1.62 eV, the density of the photoinjected
carriers is N=5�105 cm−1, and the temperature
is T=50 K.
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tering alone produces an identical decay characterized by a
time constant of �1050 fs for both currents. Thus for a
density of N=5�105 cm−1, the carrier-carrier scattering sig-
nificantly speeds up the relaxation dynamics. This is to be
expected, since for the considered excitation conditions the
maxima of the photogenerated electron and hole distributions
are comparable to 1, see Figs. 2�a� and 2�b�, i.e., the photo-
excitation is not in the low-intensity limit. Furthermore, as
has already been demonstrated in Ref. 16, the carrier-carrier
scattering leads to a more rapid decay of the spin current as
compared to that of the charge current. Further calculations,
in which different scattering processes have artificially been
switched off, have shown that the different dampings of the
charge and spin currents result from the Coulomb scattering
among carriers with opposite spin. This process exchanges
momentum between the carriers with opposite spin and is
therefore able to symmetrize the k-space distributions of the
spin-up and spin-down carriers for a situation corresponding
to a spin current as shown in Figs. 2�c� and 2�d�. For the case
of a charge current, both spins are excited identically and

carry the same nonvanishing average momentum, which can-
not be reduced by momentum-exchanging carrier-carrier
scattering.

The influence of the temperature on the decay of the
charge and spin current densities is shown in Figs. 4�a� and
4�b�. Increasing the temperature from 50 to 300 K notice-
ably speeds up the initial decay of both the charge and the
spin currents, since at elevated temperatures the population
of LO phonons is increased and therefore the carrier–LO-
phonon scattering is more rapid. Comparing the approximate
decay times of the charge and the spin currents at the two
temperatures, one finds that at 50 K the spin current decays
about 19% more rapidly than the charge current, whereas at
300 K the decay is enhanced by only about 15%. A reduction
of this difference is to be expected since at elevated tempera-
tures the relative importance of the carrier-carrier scattering,
which is responsible for the different decay times of the
charge and the spin currents, is reduced. Qualitatively similar
results regarding the influence of the temperature on the cur-
rent decay due to carrier–LO-phonon scattering in bulk semi-
conductors have been reported in Ref. 5.

FIG. 3. Time dependence of the charge �a� and the spin �b�
current densities. The parameters are the same as in Fig. 2. The
thick solid line shows the dynamics including both carrier–LO-
phonon and carrier-carrier scattering processes, whereas the dashed
lines have been calculated considering only carrier–LO-phonon
scattering. The thin solid lines represent exponential decays
�exp�−t /�� with time constants of �=1050 and 680 fs in �a� and of
�=1050 and 530 fs in �b�, respectively.

FIG. 4. Time dependence of the charge �a� and the spin �b�
current densities including carrier–LO-phonon and carrier-carrier
scattering at two temperatures. The thick solid and dashed lines
show the dynamics at T=50 and 300 K, respectively. The other
parameters are the same as in Fig. 2. The thin solid lines represent
exponential decays �exp�−t /�� with time constants of �=680 and
540 fs in �a� and of �=570 and 470 fs in �b�, respectively.
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By varying the amplitudes of the incident light fields, we
can analyze how the charge and spin currents decay for dif-
ferent densities of the photoexcited carriers. The initial am-
plitude of the charge current, see Fig. 5�a�, decreases and its
decay becomes slower with decreasing density. This is due to
the fact that the carrier-carrier scattering becomes less rapid
when a smaller density is present. Thus, in the limit of very
small densities the decay is governed entirely by carrier–LO-
phonon scattering. The dependence of the dynamics of the
spin current on the carrier density is displayed in Fig. 5�b�.
As the charge current, see Fig. 5�a�, also the initial amplitude
of the spin current decreases and its decay becomes slower
with decreasing density. Thus, for very low densities, the
decay of both currents is mainly governed by the carrier–LO-
phonon scattering since the carrier-carrier scattering becomes
very slow. Consequently, the relative difference of the decay
times of the charge and the spin currents gets smaller with
decreasing carrier density.

In the low-intensity limit, the carrier density and the
charge and spin currents can be described by the perturbative
approach presented in Appendix B. To lowest order in the
light fields, the density is proportional to the product of two
field amplitudes, i.e., N�A��A��, whereas the currents are at
least of third order in the field, i.e., J ,S�A��A��A��, where
��, ��, and �� are either � or 2�. If A� and A2� are compa-
rable, the resonant 2� interband transitions predominantly
excite the density in second order and therefore N�A2�

2

holds. The currents are generated by interacting with the 2�
field once and the � field twice, i.e., J ,S�A�

2 A2�, since this
excitation scheme is able to resonantly create asymmetric
third-order populations in k space. If the excitation is in the
low-intensity limit and the ratio between A� and A2� is kept
constant, a change of the carrier density N by a factor �
requires us to change the field amplitudes by ��. The cur-

FIG. 6. Time dependence of the charge �a� and the spin �b�
current densities including carrier–LO-phonon and carrier-carrier
scattering at different excitation frequencies. The thick solid,
dashed, dotted, and dashed-dotted lines shows the dynamics at
2��=1.65, 1.62, 1.59, and 1.56 eV, respectively. The density of the
photoinjected carriers is N=5�105 cm−1 in each case. To generate
this carrier density, field amplitudes of A2�=A� /2=140A0, A2�

=A� /2=128A0, A2�=A� /2=115A0, and A2�=A� /2=100A0, re-
spectively, are used. The other parameters are the same as in Fig. 2.
The thin solid lines represent exponential decays �exp�−t /�� with
time constants of �=870, 680, 530, and 430 fs in �a� and of �
=700, 530, 400, and 340 fs in �b�, respectively.

FIG. 5. Time dependence of the charge �a� and the spin �b�
current densities including carrier–LO-phonon and carrier-carrier
scattering at three densities. The thick solid, dashed, and dotted
lines show the dynamics at N=5�105 cm−1, 5�104 cm−1, and 5
�103 cm−1, respectively. To generate these carrier densities, field
amplitudes of A2�=A� /2=128A0, A2�=A� /2=38A0, and A2�

=A� /2=12A0, respectively, are used. The other parameters are the
same as in Fig. 2. The thin solid lines represent exponential decays
�exp�−t /�� with time constants of �=680, 790, and 860 fs in �a�
and of �=530, 750, and 850 fs in �b�, respectively.
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rents are therefore proportional to �1.5. This analysis explains
why the initial amplitudes of the currents shown in Figs. 5�a�
and 5�b� change by a factor of approximately 30 when the
carrier density changes only by a factor of 10.

Figure 6�a� shows the time-dependent charge currents cal-
culated for different excitation frequencies of the laser
pulses. In order to ensure that the carrier density is constant
�N=5�105 cm−1� when varying the frequencies, the ampli-
tudes of light fields were adjusted appropriately. With de-
creasing excitation frequency, the initial magnitude of the
current decreases since the kinetic energy and thus the mo-
mentum of the photogenerated carriers decreases. Addition-
ally, the initial decay of the current becomes more rapid with
decreasing excitation frequency. This behavior is due to the
strong dependence of the LO-phonon emission rate on the
carrier energy, which in our model calculations is signifi-
cantly influenced by the one-dimensional density of states. It
has been shown36,37 that the one-dimensional LO-phonon
emission rate has a singularity when the kinetic energy of the
carriers is equal to the energy of the LO phonons and be-
comes smaller at higher energies. When exciting with 2��
=1.56 eV, the initially rapid current decay slows down for
longer times, see Fig. 6�a�. The reason for the transient slow-
ing down of the decay is that the electrons are created with
an initial kinetic energy of about 52 meV, which means that
they can emit only a single LO phonon. Thus, at long times
the initially rapid relaxation due to LO-phonon emission is
suppressed and the subsequent decay is dominated by the
carrier-carrier scattering. The dependence of the spin current
on the excitation frequency of laser fields is shown in Fig.

6�b�. As for the charge current, see Fig. 6�a�, also the initial
magnitude of the spin current becomes smaller and its initial
decay gets more rapid with decreasing excitation frequency.

Figure 7�a� shows how the injected carrier density de-
pends on the amplitudes A=A2�=A� /2 of the fields, when
their ratio is kept equal. In the considered regime, the density
increases approximately linearly with A. The charge current,
however, depends on A in a strongly nonlinear fashion, see
Fig. 7�b�. It has a maximum at A180A0 and decreases for
smaller and larger amplitudes. In the low-intensity limit, the
k-space carrier distributions increase with A without signifi-
cant distortion. Therefore, in this regime both the total den-
sity and the charge current become larger with increasing A.
At a certain excitation level, however, the peaks of the gen-
erated distributions at k= ±5/a0, see Fig. 2, become compa-
rable to 1 and further excitation is suppressed by the Pauli
exclusion principle. Additionally, the intraband acceleration
broadens the distributions over larger regions in k space. As
a result, the photogenerated carrier distributions become
more symmetric in k space and subsequently the charge cur-
rent decreases when the field amplitude is increased further.
The results shown in Figs. 7�c� and 7�d� for the excitation of
a spin current are very similar to the ones obtained for the
charge current, see Figs. 7�a� and 7�b�. In particular, the larg-
est spin current is obtained for about the same field ampli-
tudes, which also maximize the charge current.

Figures 8�a� and 8�b� show how the carrier density and
the charge current density depend on the ratio of the ampli-
tudes of the two incident pulses x=A� /A2� for a fixed am-
plitude of the 2� field, A2�=128A0. Note that all previous

FIG. 7. Dependence of �a� the carrier density and �b� the charge current density at t=50, 100, 200, and 500 fs on the amplitude A of the
incident pulses including carrier–LO-phonon and carrier-carrier scattering. A=A2�=A� /2 is measured in units of A0=E0 /ea04
�103 V/cm, where E0 is a three-dimensional exciton Rydberg. The other parameters are the same as in Fig. 2. �c� and �d� show the same
as �a� and �b� for the excitation of a spin current instead of a charge current. �a� and �b� correspond to Figs. 3�a� and 3�b� of Ref. 16.
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results were obtained for x=2. At x=0, only the 2� field is
present and therefore the photoexcited carrier distributions
are symmetric in k space. Consequently, in this case the cur-
rent vanishes. For the generation of a finite current, a finite x
is required, i.e., the amplitude of the � field must not vanish.
Both fields are necessary since the interference of interband
and intraband excitations is needed for the photoexcitation of
nonsymmetric k-space carrier distributions. With increasing
x, the current starts to rise significantly, whereas the carrier
density increases only slightly, see Figs. 8�a� and 8�b�. This
is due to the fact that a rather weak � field predominantly
redistributes the carriers in k space by introducing asymme-
tries without enhancing the density, as is shown by the per-
turbative analysis presented in Appendix B. At a certain A�,
however, due to the above-mentioned Pauli-blocking and
k-space averaging effects, a further increase of the current is
not possible. Therefore, for a fixed A2� there exists an opti-
mal A� that leads to a maximal asymmetry of the photoge-
nerated distributions and thus to a maximal current. For
A2�=128A0, the largest current is obtained for A�512A0,
i.e., for x4. For amplitudes A2� smaller than 128A0, the
optimal ratio x is larger than 4. This can be understood since
in the perturbative regime the current is linear in the 2� field
but of second order in the � field. Thus the optimal current
requires a very large x since the second-order excitations
induced by the � field have to be comparable to the linear
ones generated by the 2� field. Figures 8�c� and 8�d� show
that when switching the light polarizations from charge to
spin current excitation, the dependencies of the carrier den-
sity and the current density on the ratio x remain basically
unchanged.

B. Quantum-kinetic calculations of the charge and spin
current dynamics

In this section, the transients of the charge and spin cur-
rent densities are investigated on the level of a non-
Markovian quantum-kinetic theory for the carrier-carrier and
the carrier–LO-phonon interactions. Here, we neglect the ex-
change terms of the Coulomb quantum kinetics. First of all,
it has been shown30,38,39 that the contributions of these terms
are not very important for the analysis of ultrafast scattering
processes. Secondly, this approximation keeps the numerical
requirements within reasonable limits, particularly in the
present case in which we cannot use the rotating-wave ap-
proximation for the analysis of the charge and spin currents.
The Coulomb potential is treated in the random-phase ap-
proximation. It is well known that this approximation leads
to a long-wavelength divergence within the two-time
quantum-kinetic formalism. However, as shown in Ref. 40,
these divergencies cancel out within the generalized
Kadanoff-Baym ansatz, which is used here to replace the
two-time functions by single-time functions. The generalized
Kadanoff-Baym ansatz is also justified for the treatment of
the LO-phonon quantum kinetics as long as the electron-
phonon interaction is not in the strong-coupling regime.41

The temporal dynamics of the charge current is shown in
Fig. 9�a� for different photoexcited carrier densities. We see
that the non-Markovian quantum kinetics �QK�, thick solid
lines, and the Markov approximation �MA�, thin solid lines,
yield basically the same density-dependent decay of the
charge current. The comparison with the results obtained on
the second Born-Markov level �2BMA�, thick dotted lines,
shows that without exchange terms the decay time of the

FIG. 8. Dependence of �a� the carrier density and �b� the charge current density at t=50, 100, 200, and 500 fs on the amplitude ratio
x=A� /A2� for A2�=128A0 including carrier–LO-phonon and carrier-carrier scattering. The other parameters are the same as in Fig. 2. �c� and
�d� show the same as �a� and �b� for the excitation of a spin current instead of a charge current. �a� and �b� correspond to Figs. 3�c� and 3�d�
of Ref. 16.
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charge current is underestimated by less than 20% for a car-
rier density of N1=5�105 cm−1. At smaller carrier densities,
the contribution of the exchange terms decreases. As on the
second Born-Markov level, also within the quantum-kinetic
approach, the decay of the charge current becomes more
rapid with increasing carrier density and temperature and
when we decrease the frequencies of the incident laser pulses
�not shown in figure�. Besides a small change in the overall
magnitude, an interesting feature of the quantum-kinetic re-
sults is the weak oscillations that are visible in the decaying
charge current transients. When varying the carrier density
from 2�105 to 5�105 cm−1, the period of the oscillations
remains almost unchanged and is about 170 fs.

The oscillations with the carrier-density-independent pe-
riod of about 170 fs appear also in the spin current, see Fig.

10. Besides this characteristic feature, we find that also
within the quantum-kinetic approach, �i� the decay of the
spin current becomes more rapid with increasing carrier den-
sity ��N2

=335 fs and �N3
=385 fs, see the solid lines with

N2=3�105 cm−1 and N3=2�105 cm−1 in Fig. 10�, and �ii�
the spin current decays faster in comparison to the charge
current ��N2

=425 fs and �N3
=455 fs, see the solid lines with

N2=3�105 cm−1 and N3=2�105 cm−1 in Fig. 9�. Thus, we
find that apart from additional oscillations, the time depen-
dencies of the charge and spin current densities obtained
from the quantum-kinetic calculations are very similar to the
results obtained on the second Born-Markov level, which
have been presented in Sec. IV A.

In order to understand the origin of the oscillations in the
current transients, the charge current J=Je+Jh and its elec-
tron and hole components Je and Jh �multiplied by 7� are
presented separately in Fig. 11�a� for different approxima-
tions made within the quantum-kinetic calculations. For all
considered cases, the current component of the electrons Je
decays monotonously and close to exponential as a function
of time without any visible superimposed oscillations. If only

FIG. 9. �Color online� �a� Time dependence of the charge cur-
rent density including carrier–LO-phonon and carrier-carrier scat-
tering for different approximations, i.e., on the second Born-
Markov level �2BMA�, the quantum-kinetic approach �QK�, and
with the Markov approximation neglecting the exchange terms
�MA�. The calculations have been performed for carrier densities of
N1=5�105 cm−1, N2=3�105 cm−1, and N3=2�105 cm−1 �from
top to bottom� at T=300 K and with 2��=1.59 eV. To generate
these carrier densities, field amplitudes of A2�=A� /2=115A0, A2�

=A� /2=87A0, and A2�=A� /2=70A0, respectively, are used. The
thin solid lines represent exponential decays �exp�−t /�� with �N1
=376 fs, �N2

=425 fs, and �N3
=455 fs for the QK calculations. The

decay times of the charge current density for the 2BMA calculations
are �N1

=445 fs, �N2
=460 fs, and �N3

=475 fs �not shown by lines�.
�b� The charge current density for 2��=1.62 eV and a density of
N=N2 that is generated using A2�=A� /2=96A0. The other param-
eters are the same as in �a�. The corresponding decay times are �
=570 fs for the QK calculations �see the thin solid line� and �
=585 fs 2BMA �not shown by a line�, respectively.

FIG. 10. �Color online� Time dependence of the spin current
density including carrier–LO-phonon and carrier-carrier scattering
for different approximations, i.e., the quantum-kinetic approach
�QK� and with the Markov approximation neglecting the exchange
terms �MA�. The calculations have been performed for carrier den-
sities of N2=3�105 cm−1, N3=2�105 cm−1, and N4=1.2
�105 cm−1 �from top to bottom� at T=300 K and with 2��
=1.59 eV. To generate these carrier densities, field amplitudes of
A2�=A� /2=87A0, A2�=A� /2=70A0, and A2�=A� /2=54A0, re-
spectively, are used. The thin solid lines represent exponential de-
cays �exp�−t /�� with �N2

=335 fs, �N3
=385 fs, and �N4

=405 fs.
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the carrier-carrier scattering �C-C� is considered, J, Je, and Jh
decay identically with a rather slow time constant �
=2200 fs and no oscillations are present. However, if
carrier–LO-phonon scattering is considered �C-LO and C-C
+C-LO�, the hole contribution to the current Jh shows oscil-
lations with a very pronounced amplitude and a period of
about 170 fs. This oscillation is also visible in the time-
dependent hole population nh�t� at the energetic position of
the initial photoexcitation displayed in Fig. 11�b�. Therefore,
we have identified that the coupling of the holes to the LO
phonons is the dominant source of the oscillations. Due to
the large mass of the heavy holes �mh7me�, the contribu-
tion of the oscillations present in Jh to the total current J is
rather weak. As a result, the total current density J is pre-
dominantly decaying and shows only weak additional modu-
lations with the period of 170 fs. Figure 11�a� furthermore
shows that neglecting the carrier-carrier scattering �C-LO�
significantly reduces the amplitude of the oscillations in the
current J. This is due to the fact that in the presence of
carrier-carrier scattering, which broadens the distributions in

k space, the carrier–LO-phonon scattering is enhanced.
To gain a more detailed understanding of the quantum-

kinetic oscillations, we have computed results considering
only the carrier–LO-phonon scattering and just the 2� pulse.
In these calculations, the Coulomb scattering is replaced by a
phenomenological dephasing time of T2=250 fs for the in-
terband polarization. Figure 12 shows the time evolution of
the hole population nE

h�t� at two energetic positions, namely
at the position E=�h where the holes are optically created
and at the band edge E0 meV. Here, �h= �mr /mh�� is the
hole excess energy, �=2��−Egap is the total excess energy,
and mr is the reduced mass. For an excess energy of �
=90 meV, see Fig. 12�a�, the hole is excited with a kinetic
energy of �h11.5 meV. Therefore, no real LO-phonon
emission processes are possible for the holes. The well-
resolved oscillations have a period of 160 fs. The dotted
lines in Fig. 12 allow us to see more clearly that the hole
populations at E=�h and at E0 meV �band edge� oscillate
out of phase, i.e., a minimum at �h coincides with a maxi-
mum at the band edge, and vice versa.

These quantum-kinetic oscillations are a consequence of
virtual scattering processes. The holes excited at E=�h try to
relax via the emission of an LO phonon to the band gap at
E=0. Since �h is smaller than the LO-phonon energy ��LO,
this relaxation process does not fulfill energy conservation.
As a consequence, this virtual process cannot be completed
and the hole populations at E=�h and E=0 oscillate tempo-

FIG. 11. �Color online� �a� Time dependence of the charge cur-
rent density J=Je+Jh and its electron Je and hole Jh components
computed within the quantum-kinetic approach for different ap-
proximations, i.e., with only carrier-carrier scattering �C-C�, with
only carrier–LO-phonon scattering �C-LO�, and with carrier-carrier
and carrier–LO-phonon scattering �C-C+C-LO�, at T=300 K and
with 2��=1.59 eV. For better visibility, the hole component Jh has
been multiplied by a factor of 7. The thin solid lines represent
exponential decays �exp�−t /�� with time constants of 2200, 560,
and 420 fs �from top to bottom�. In these calculations, the carrier
density is N2=3�105 cm−1. To generate this carrier density, field
amplitudes of A2�=A� /2=87A0 are used. �b� The electron and hole
populations, i.e., ne and nh, at the energetic position of the initial
photoexcitation with only carrier–LO-phonon scattering �C-LO�
considered. The parameters are the same as in �a�.

FIG. 12. Time dependence of the hole population nE
h�t� com-

puted within the quantum-kinetic approach considering only
carrier–LO-phonon scattering at two energies E=�h �thick line� and
E0 meV �thin line�. The considered excess energies �=2��
−Egap are �a� �=90 meV, �b� �=150 meV, and �c� �=260 meV at
T=300 K. This results in excess hole energies of �h=11.5 meV �a�,
�h=19.2 meV �b�, and �h=33.2 meV �c�. In these single-pulse cal-
culations, we set A�=0 and A2�=40A0. This results in carrier den-
sities of 1.2�105 cm−1 �a�, 0.95�105 cm−1 �b�, and 0.8�105

cm−1 �c�, respectively.
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rally out of phase. The oscillation period is determined by
the energy mismatch, i.e., �h−��LO, and approximately
given by

�t 
2��

��LO − �h
. �24�

For a detuning of �=90 meV, i.e., �h=11.5 meV, we get
�t165 fs, which coincides with the period found with the
quantum-kinetic calculations, see Fig. 12�a�. For an excita-
tion with an excess energy of �=150 meV, i.e., �h
=19.2 meV, we have computed, see Fig. 12�b�, a slower os-
cillation period of about 250 fs, which is in agreement with
the period determined by Eq. �24� of 246 fs. For the largest
considered detuning �=260 meV, where �h=33.2 meV ap-
proaches the LO-phonon energy of 36 meV, we find during
the first 500 fs a decrease �an increase� of the hole popula-
tion at �h �0�, see Fig. 12�c�. Thus the oscillation period has
to be longer than 1000 fs, which is again compatible with the
oscillation period of 1500 fs obtained from Eq. �24�. At
this larger detuning, irreversible relaxation due to real scat-
tering processes starts to become relevant.

V. CONCLUSIONS

A microscopic many-body theory that is capable of de-
scribing the coherent optical injection of charge and spin
currents and their temporal evolution has been presented.
The approach is based on the semiconductor Bloch equations
and nonperturbatively includes light-field-induced intraband
and interband excitations. Besides excitonic Coulomb effects
in the Hartree-Fock approximation, also carrier–LO-phonon
and carrier-carrier scattering processes are treated.

The theory has been used to evaluate numerically the dy-
namics of the carrier distributions and of the charge and spin
currents for a one-dimensional model system. When evaluat-
ing the scattering processes on the second Born-Markov
level, we find that with increasing temperature the carrier–
LO-phonon scattering rates increase and subsequently the
decay of the charge and spin currents becomes more rapid.
The LO-phonon emission rate becomes smaller if the kinetic
energy of the carriers increases and consequently the decay
times of the currents get longer. With increasing carrier den-
sity, the carrier-carrier scattering becomes more rapid and
thus the currents decay faster. We have also investigated how
the currents behave when varying the field amplitudes and
the ratio between the amplitudes of the � and the 2� fields.
For both cases, we find nontrivial field parameters that maxi-
mize the currents since for strong fields �i� the density of
excited carriers is limited by phase-space filling effects and
�ii� the intraband acceleration significantly broadens the car-
rier distributions in k space.

Our analysis demonstrates that at low carrier densities,
where carrier–LO-phonon scattering dominates, the charge
and spin currents decay on the same time scale, whereas at
higher densities, due to carrier-carrier scattering processes
between particles with different spin, the decay of the spin
current is faster than that of the charge current.16 The influ-
ences of the temperature, the carrier density, the excitation
frequency, and the intensity of the pulses are very similar for

both currents. Due to the inefficient scattering in one dimen-
sion, the obtained decay times for the one-dimensional
model system are rather long. When evaluating our theory
for two-dimensional systems, we find that typical decay
times are shorter and in the range of 100–200 fs.16

When evaluating the scattering contributions at the
quantum-kinetic level, we confirm the basic decay dynamics
of our second Born-Markov theory. However, our results
predict that memory effects can lead to additional oscillatory
signatures in the decaying current transients. Our analysis
attributes the quantum-kinetic oscillations to the virtual
emission of LO phonon, when the kinetic energy of the pho-
toexcited holes is smaller than the energy of the LO phonons.
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APPENDIX A: COLLISION CONTRIBUTIONS

The collision terms appearing in Eqs. �8�–�10� originate
from the carrier-phonon and the carrier-carrier interaction.
We therefore write

� d

dt
x�k�

coll
=� d

dt
x�k�

c-ph
+� d

dt
x�k�

c-c
, �A1�

with x=ne, nh, and p.

1. Collision contributions in the second Born-Markov
approximation

Both processes are treated up to second order in the re-
spective interaction and the Markov approximation is ap-
plied.

a. Carrier-phonon scattering

Considering the carrier-phonon interaction on the second
Born-Markov level results in the following terms:25,26

� d

dt
n�k

� �
c-ph

=
2�

�
�
q

gq
2	��k+q

� − �k
� − ��q��n�k+q

� �1 − n�k
� �

��Nq + 1� − n�k
� �1 − n�k+q

� �Nq�

−
2�

�
�
q

gq
2	��k+q

� − �k
� + ��q�

� �n�k
� �1 − n�k+q

� ��Nq + 1� − n�k+q
� �1 − n�k

� �Nq�

−
1

�
�
q

gq
2�D��k

�̄ − �k+q
�̄ − ��q�pk+q

* pk + c.c.�

+
1

�
�
q

gq
2�D��k

�̄ − �k+q
�̄ + ��q�pk+q

* pk + c.c.� ,

�A2�
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� d

dt
p�k�

c-ph
=

1

�
�
�q

gq
2�D��k+q

� − �k
� − ��q��Nq + 1 − n�k

� �

+ D��k+q
� − �k

� + ��q��Nq + n�k
� ��pk+q

−
1

�
�
�q

gq
2�D��k

� − �k+q
� − ��q�

��Nq + 1 − n�k+q
� � + D��k

� − �k+q
� + ��q�

��Nq + n�k+q
� ��pk, �A3�

where D���= iP�1/��+�	���, �̄=h�e� for �=e�h�, and Nq

= �exp���q /kBT�−1�−1 is the Bose-Einstein distribution de-
scribing a thermal phonon population.

b. Carrier-carrier scattering

On the second Born-Markov level, the Coulomb collision
terms are described by25–29

� d

dt
n�k

� �
c-c

=
2�

�
�

��k�q

Wq�Wq − Wk−k�	����	��k+q
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� − �k�+q
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���n�k+q
� n��k�
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�̄ − �k
��

� �n�k+q
� n��k�+q

�̄ �1 − n��k�
�̄ ��1 − n�k

� � − �1 − n�k+q
� ��1 − n��k�+q

�̄ �n��k�
�̄ n�k

� �

+
1

�
�

��k�q

Wq
2�D��k+q

� + �k�+q
�̄ − �k�

�̄ − �k
���n�k

� − n�k+q
� �p��k�

* p��k�+q + c.c.�

+
1

�
�

��k�q

Wq
2�D��k

�̄ + �k�
� − �k�+q

� − �k+q
�̄ ��n��k�+q

� − n��k�
� �p�k+q

* p�k + c.c.�

+
1

�
�

��k�q

Wq�Wq − Wk−k�	�����D��k+q
� + �k�

� − �k�+q
� − �k

���n�k
� − n�k+q

� �p��k�+q
* p��k� + c.c.�

+
1

�
�

��k�q

Wq�Wq − Wk−k�	�����D��k
�̄ + �k�+q

�̄ − �k�
�̄ − �k+q

�̄ ��n��k�
�̄ − n��k�+q

�̄ �p�k+q
* p�k + c.c.�

+
1

�
�

��k�q

WqWk−k�	����D��k+q
� + �k

�̄ − �k�
�̄ − �k�+q

� ���n�k+q
� − n��k�+q

� �p��k�
* p�k + �n��k�

�̄ − n�k+q
� �p��k�+q

* p�k� + c.c.�

+
1

�
�

��k�q

WqWk−k�	����D��k�
� + �k�+q

�̄ − �k+q
�̄ − �k

����n��k�
� − n�k

� �p�k+q
* p��k�+q + �n�k

� − n��k�+q
�̄ �p�k+q

* p��k�� + c.c.� ,

�A4�

� d

dt
p�k�

c-c
=

1

�
�

���k�q

Wq�Wq − Wk−k�	����D��k+q
� + �k�

� − �k�+q
� − �k

��

��n��k�
� �1 − n�k

� ��1 − n��k�+q
� � + n�k

� n��k�+q
� �1 − n��k�

� � − p��k�+q
* p��k��p�k+q

+
1

�
�

���k�q

Wq
2D��k+q

� + �k�+q
�̄ − �k�

�̄ − �k
���n��k�+q

�̄ �1 − n�k
� ��1 − n��k�

�̄ � + n�k
� n��k�

�̄ �1 − n��k�+q
�̄ � − p��k�

* p��k�+q�p�k+q

−
1

�
�

���k�q

Wq�Wq − Wk−k�	����D��k
� + �k�+q

� − �k�
� − �k+q

� �

��n��k�+q
� �1 − n�k+q

� ��1 − n��k�
� � + n�k+q

� n��k�
� �1 − n��k�+q

� � − p��k�
* p��k�+q�p�k

−
1

�
�

���k�q

Wq
2D��k

� + �k�
�̄ − �k�+q

�̄ − �k+q
� ��n��k�

�̄ �1 − n�k+q
� ��1 − n��k�+q

�̄ � + n�k+q
� n��k�+q

�̄ �1 − n��k�
�̄ � − p��k�+q

* p��k��p�k

TEMPORAL DECAY OF COHERENTLY OPTICALLY… PHYSICAL REVIEW B 74, 165328 �2006�

165328-13



−
1

�
�

���k�q

WqWk−k�	���D��k
� + �k+q

�̄ − �k�+q
�̄ − �k�

� ��p��k�+q
* − p��k�

* �p�kp�k+q

−
1

�
�

���k�q

WqWk−k�	���D��k�+q
� + �k�

�̄ − �k
�̄ − �k+q

� ����1 − n�k
�̄ ��1 − n�k+q

� �n��k�+q
� + n�k+q

� n�k
�̄ �1 − n��k�+q

� ��p��k�

− ��1 − n�k
�̄ ��1 − n�k+q

� �n��k�
�̄ + n�k+q

� n�k
�̄ �1 − n��k�

�̄ ��p��k�+q� , �A5�

where Wq is the statically screened Coulomb potential,
which is determined by solving the Lindhard equation

Wq =
Vq

��q,� = 0�
= Vq��1 − Vq �

�,�k

n�k−q
� − n�k

�

��k−q
� − ��k

� � .

�A6�

In order to avoid divergencies that may arise when the static
Lindhard equation is solved with nonequilibrium distribu-
tions, we use quasiequilibrium thermal distribution functions
when evaluating Eq. �A6�. Since the time-dependent thermal
distributions are chosen to have the same density and kinetic
energy as the actual distribution, this procedure should lead
to results of reasonable accuracy.

2. Quantum-kinetic analysis of the collision contributions

The carrier-phonon and the carrier-carrier interactions are
treated in the framework of nonequilibrium Green’s func-
tions. In this approach, the collision terms are determined
by30,42

� �

�t
Gb1b2k

s� �t,t��
coll

= −
i

�
�
b3

�
−

t

dt���b1b3,k
s,� �t,t��Gb3b2,k

s,� �t�,t�

− �b1b3,k
s,� �t,t��Gb3b2,k

s,� �t�,t�

− Gb1b3,k
s,� �t,t���b3b2,k

s,� �t�,t�

+ Gb1b3,k
s,� �t,t���b3b2,k

s,� �t�,t�� . �A7�

The self-energy � is computed in the self-consistent GW
approximation

�b1b3

s�,��t,t�� = i��
q

wq
�,��t�,t�Gb1b2,k−q

s�,� �t,t��

+ gq
2Dq

�,��t�,t�Gb1b2,k−q
s�,� �t,t�� , �A8�

where w�t , t�� combines the Coulomb and phonon interaction
and is approximately given by

wq
�,��t�,t� = vq

�,��t�,t� + gq
2Dq

�,��t�,t�Gb1b2,k−q
s�,� �t,t�� ,

�A9�

with the screened Coulomb potential v and the Fröhlich in-
teraction matrix element gq

2. D denotes the unperturbed LO-
phonon propagators

Dq
��t�,t� = − i�

±
Nq

±e±i�LO�t−t��, �A10�

with Nq
±=Nq+ 1

2 ± 1
2 . Nq is the thermal phonon distribution,

i.e., the Bose-Einstein distribution.
The scattering terms can be rewritten as

� �

�t
Gb1b2,k

s� �t,t��
coll

= �
b3,q
�

−

t

dt�„��w−q
� �t,t��Gb1b3,k−q

s� �t,t��Gb3b2,k
s� �t�,t��

− �b1 ↔ b2�*� − �k ↔ k − q,w−q ↔ wq�… . �A11�

The screened Coulomb interaction is determined by42

vq
��t,t�� = Vq	�

−

t

dt1Lq
r�t,t1�wq

��t1,t�� + �
−

t�
dt1Lq

��t,t1�

��vq
a�t1,t�� + Vq	�t1 − t���
 �A12�

with the polarization function Lq=−i��b1b2,s,kGb1b2,k
�

�Gb2b1,k−q
� . In the short-time regime, the screening of the

Coulomb potential can be neglected, i.e., one can approx-
imate43 Vq

r,a�t , t��Vq	�t− t��. This approximation is justified
for times up to about the inverse plasma frequency �pl

−1,
which is the characteristic time scale that determines the
buildup of screening.38,39 In this approximation, the screened
Coulomb interaction is given by

vq
��t,t�� = Vq

2Lq
��t,t�� . �A13�

To calculate the Green’s functions G�,�, we use the gener-
alized Kadanoff-Baym ansatz G�=Gr�, with the retarded
Green’s function Gb1b2,k

r �t , t���− i
�	b1b2

��t− t��e−�i/���b1,k�t−t��

and the density matrix � whose diagonal components are the
electron and hole populations ne and nh and whose off-
diagonals are given by the polarizations p and p*.

APPENDIX B: COHERENT CURRENTS ARISING
IN THIRD ORDER IN THE LIGHT-MATTER

INTERACTION

Here, we present a set of equations that describes the
coherent generation of currents, i.e., carrier distributions that
are asymmetric in k space, up to third order in the optical
field. For clarity, the collision contributions �see Appendix
A� are not considered.
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We assume that before the optical excitation, the semicon-
ductor is in its ground state. Denoting the order in the field
by upper indices �i�, we thus start with n�k

e�0�=n�k
h�0�= p�k

�0�=0.
In first order, in the light-matter interaction interband polar-
izations are generated according to

d

dt
p�k

�1� = −
i

�
���k

e + ��k
h �p�k

�1� +
i

�
�
q�0

Vqp�k+q
�1� +

i

�
er��k

cv · E�t� .

�B1�

Equation �B1� shows that p�k
�1� is induced by the optical field

times the interband dipole matrix element. The coupling of
all transitions in k space due to the Coulomb interaction
gives rise to excitonic effects.

In second order, one can either generate carrier popula-
tions by interband excitations or one can create interband
polarizations by intraband excitations, i.e.,

d

dt
n�k

e�2� =
d

dt
n�k

h�2�

= − 2 Im� 1

�	er��k
cv · E�t� + �

q�0
Vqp�k+q

�1� 
p�k
�1�*� ,

�B2�

d

dt
p�k

�2� = −
i

�
���k

e + ��k
h �p�k

�2� +
i

�
�
q�0

Vqp�k+q
�2� −

e

�
E�t� · �kp�k

�1�.

�B3�

If r��k
cv is symmetric in k space, p�k

�1�, n�k
e�2�, and n�k

h�2� are sym-
metric in k space since these terms are solely induced by
interband excitations. Consequently, in this case the second-
order populations carry no current. For a symmetric p�k

�1�,
however, the intraband excitations proportional to
E�t� ·�kp�k

�1�, see Eq. �B3�, generate an antisymmetric second-
order polarization p�k

�2�.
In third order one can again generate carrier populations

and interband polarizations. Since the charge and spin cur-
rents are determined by the populations, only their equations
of motion are given,

d

dt
n�k

e/h�3� = − 2 Im� 1

�	er��k
cv · E�t� + �

q�0
Vqp�k+q

�1� 
p�k
�2�*

+
1

�
�
q�0

Vqp�k+q
�2� p�k

�1�*� −
e

�
E�t� · �kn�k

e/h�2�.

�B4�

The third-order populations are generated either by interband
excitations from the second-order polarization p�k

�2� or by in-
traband excitations from the second-order populations n�k

e/h�2�.
Therefore, the creation of n�k

e/h�3� involves two interband and
one intraband excitation. If r��k

cv is symmetric in k space,
n�k

e/h�3� is antisymmetric and thus corresponds to a finite cur-
rent.
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