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We study numerically the production of orbital and spin entangled states in chaotic quantum dots for
noninteracting electrons. The introduction of spin-orbit coupling permits us to identify signatures of time-
reversal symmetry correlations in the entanglement production previously unnoticed, resembling weak-
�anti�localization quantum corrections to the conductance. We find the entanglement to be strongly dependent
on spin-orbit coupling, showing universal features for broken time-reversal and spin-rotation symmetries.
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I. INTRODUCTION

The existence of entangled many-particle quantum states
subject to nonclassical correlations is widely recognized as a
fundamental resource for quantum information processing.
Two quantum systems A and B are said to be entangled if
they are not separable, namely, if the common �pure� state
��AB� can not be written as the product of individual states
��A� and ��B� �i.e., ��AB�� ��A���B��. In this case the in-
ternal degrees of freedom of systems A and B are quantum
mechanically correlated, since any measurement performed
on system A would condition the results of a measurement
on system B beyond any classical constraint. In solid-state
physics, several aspects related to the production, control,
and detection of entangled electronic states have been ad-
dressed �see Ref. 1 for a recent review� and an extended
literature already exists.2–25 Most of the existing proposals
for the generation of electronic entanglement are based on
the presence of some kind of interaction between the par-
ticles involved as, e.g., Coulomb interaction, �anti�ferromag-
netism, superconducting pairing, etc. In contrast to the origi-
nal belief, it was recently recognized that interactions are
indeed not necessary to produce entanglement. Noninteract-
ing electrons, initially in a separable uncorrelated state, can
evolve into an entangled state due to exchange correlations
in a scattering process from an external potential.1–8 This
applies to electronic transport in multiterminal mesoscopic
quantum conductors. In this approach, the efficiency of the
entangler depends on the particular characteristics of the
scatterer, which is described by its corresponding scattering
matrix S. Among the several possibilities, systems of special
interest are disorder-free chaotic quantum dots, also referred
to as chaotic billards. These have the advantage of allowing
for a statistical analysis that can reveal universal properties
of �chaotic� electronic entanglers. This case was recently ad-
dressed by Beenakker et al.2 by means of a random-matrix-
theory �RMT� approach. They obtained a universal mean
value for the degree of two-electron entanglement produced
between spatially separated orbital channels, and remarkably
found that it is not significantly affected by the breaking of
time-reversal symmetry �TRS�—in contrast to other �single-
particle� transport characteristics such as the conductance.
Later, Samuelsson, Sukhorukov, and Büttiker5 reformulated
the problem by formally including the spin, though in the
absence of any spin-dependent interaction.

In this paper we study the production of both orbital and
spin two-particle entanglement for noninteracting electrons
in multiterminal chaotic billards. We approach the problem
numerically. By introducing the Rashba spin-orbit �SO�
coupling26 together with a magnetic-flux-breaking TRS, we
are able to identify the signatures of weak-localization �WL�
and weak-antilocalization �WA� quantum corrections in the
entanglement production. Such TRS correlation effects ap-
pear as a constraint that can limit or enhance the efficiency of
the entangler. We find that the production of spin as well as
orbital entanglement is strongly affected by SO coupling on
a scale corresponding to the pass from WL to WA. Addition-
ally, we show that a finite residual entanglement survives
after the breaking of both TRS and spin-rotation symmetry
showing some universal characteristics.

The paper is organized as follows. In Sec. II we describe
our numerical model and shortly review some relevant
single-particle properties as the WL and WA quantum correc-
tions to the conductance. In Sec. III we start discussing the
interaction-free production of entanglement from a separable
two-particle state �Sec. III A�. We introduce the concurrence
as a measure of two-qubit entanglement in Sec. III C. In Sec.
III B we discuss some features related to the accessible en-
tanglement as a consequence of the local particle number
conservation. The results are presented in Sec. IV, followed
by a short summary of conclusions in Sec. V.

II. MODEL AND SINGLE-PARTICLE PROPERTIES

We consider a two-dimensional chaotic dot connected to
electron reservoirs at the left and right, as shown in Fig. 1.28

FIG. 1. Chaotic quantum dot entangler used in the numerical
model. Leads connected to electron reservoirs support one orbital
channel plus two spin channels each.
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Two single-orbital-channel leads are attached at each side of
the dot, similar to what was proposed in Ref. 2. In addition,
each orbital mode can support two spin channels. The single-
particle Hamiltonian for electrons with charge −e and effec-
tive mass m* reads

H =
�2

2m* +
�R

�
�� � ��z + V�r� , �1�

where �=p+ �e /c�A, �R is the Rashba SO coupling
strength, � is the vector of Pauli spin matrices, z is the axis
perpendicular to the dot’s plane, and V is a hard-wall confin-
ing potential describing the dot’s contour. The strength of the
Rashba SO interaction can be given in terms of the ratio
Lesc /LSO, where Lesc=�A /w is the classical escape length in
an open chaotic billard of area A with a total opening of
width w,29 and LSO=��2 /�Rm* is the spin-precession length
due to SO coupling. A uniform magnetic field �generated by
the vector potential A� introduces a flux � �measured in units
of the flux quantum �0=hc /e�. Applying a �small� bias volt-
age between reservoirs produces a coherent electron current
through the dot from left to right. For the calculation of the
corresponding scattering amplitudes we implement a recur-
sive Green’s function technique based on a spin-dependent
tight-binding model arising from a real-space
discretization.27 Additionally, we also perform some inde-
pendent RMT simulations for comparison.

The single-particle transport properties are characterized
by the Landauer-Büttiker linear conductance G. For illustra-
tion, in Fig. 2 we present some numerical results for the
sample-average conductance �G� of the chaotic dot of Fig. 1
as a function of Lesc /LSO and �. Coherent backscattering
leads to a minimum in G �WL� at �=0 in the absence of SO
coupling. For large SO coupling, G presents a maximum
�WA� instead. The transition from WL to WA shows up
around Lesc /LSO�10 �see also Refs. 30–33�. For a large �,
TRS is broken and G is independent of the SO coupling
strength, remaining close to its classical value �Gcl=2e2 /h in
our case�. Such underlying single-particle physics is relevant
for the understanding of the two-particle effects reported in

this paper. The crossover from WL to WA is also manifest,
though differently, in the entanglement production as we see
below.

III. ENTANGLEMENT PRODUCTION FROM SEPARABLE
TWO-PARTICLE STATES

A. Incoming and outgoing two-particle states

We consider a separable two-particle state incoming from
an electron reservoir on the left of the dot of Fig. 1:

��in� = a1
s1†a2

s2†�0� , �2�

where ai
si† creates an incoming electron in lead i=1,2 with

spin si= ↑ ,↓, and �0� is the Fermi sea at zero temperature.
Multiple scattering within the dot entangles the ougoing
state. This is a coherent superposition of orbital and spin
channels determined by the single-particle S matrix. It reads

��out� = �
n,�

�
m,	

Sn1
�s1Sm2

	s2bn
�†bm

	†�0� , �3�

where Sji
ssi is the scattering amplitude from lead i=1,2 with

spin si to any lead j=1, . . . ,4 with spin s. The bj
s† creates an

outgoing electron in lead j with spin s, satisfying the vector
equation b† ·S=a†. The terms in �3� with n=m, �=	 vanish
for the sake of fermionic statistics.

B. Particle conservation

The ��out� of Eq. �3� can be split into three terms with
different local particle number at the left �nL� and right �nR�
of the dot such that nL+nR=2, in the form

��out� = �
nL,nR

�nL,nR� = �2,0� + �0,2� + �1,1� . �4�

The accessible entanglement34 in ��out� is studied in Bell-
like measurements by performing local operations that con-
serve the local particle number.1 This is of fundamental im-
portance for electrons, preventing the local creation of states
in a coherent superposition of different number of particles.
This means that local operations do not mix the three terms
of Eq. �4� and the entanglement can be studied in each of
them independently.

C. The concurrence as an entanglement measure

We evaluate the amount of entanglement between pairs of
two-level �sub�systems or qubits, which in our case corre-
spond to an electron leaving the quantum dot in one of two
predetermined orbital or spin states. This requires a biparti-
tion of the system by choosing some pairs of outgoing chan-
nels of interest, tracing out the nonobserved degrees of free-
dom compatible with that choice. The two-qubit
entanglement is quantified by the concurrence 0
C
1, de-
fined as35

C��� � max	0,�1 − �2 − �3 − �4
 . �5�

The �i’s are the square roots of the eigenvalues �in decreas-
ing order� of the matrix ��̃, where ��4�4 is a two-qubit
density matrix and �̃���y � �y��*��y � �y�, with �y the sec-

FIG. 2. Sample-averaged conductance �G� for the chaotic quan-
tum dot of Fig. 1 vs SO coupling in the presence of a magnetic flux
�. The curves correspond to � /�0=0 �solid line�, 1 /2 �dashed
line�, and 5 �dotted line�. The results illustrate WL �WA� quantum
corrections to the classical conductance �2e2 /h in this case� for
weak �large� SO coupling due to TRS �� /�0=0�. These quantum
corrections disappear as TRS breaks �� /�0�0�.
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ond Pauli matrix. Separable unentangled states have C=0,
while C=1 correspond to maximally entangled �Bell� states.
States with 0
C
1 are nonseparable, partly entangled
states. A C�0 is a necessary and sufficient condition for
affirming that the two involved qubits are non-classically
correlated due to entanglement. For electrons in the quantum
dot of Fig. 1, where both orbital and spin degrees of freedom
are involved, the two-particle density matrix � is generally
larger than 4�4, i.e., it does not correspond to a two-qubit
system. Still, a study of the, e.g., orbital qubits can be per-
formed by defining a reduced density matrix �RDM� Trs���
�4�4, where the trace is taken over the spin degree of
freedom s; and vice versa �see Sec. IV�. For a chaotic dot,
the outgoing wave function �3� is a function of a random
scattering matrix S, and so its corresponding density matrix.
The entanglement contained in �3� depends on the particular
S, which is sample dependent. Hence, we characterize the
production of entanglement in by calculating the sample-
averaged �C� and its fluctuations var�C���C2�− �C�2. The
concurrence can be related to zero-frequency current-noise
measurements �i.e., without time-resolved detection� in me-
soscopic conductors, as recently shown in Refs. 1 and 2.
Alternatively, the presence of entanglement could be deter-
mined by other means such as, e.g., beam-splitter current
correlations giving a lower bound for entanglement36 or
implementing some entanglement witness.37 Here, we calcu-
late C from its definition �5� for several bipartitions of the
outgoing state �3� independently of any particular detection
scheme.

IV. RESULTS

We investigate first the entanglement produced between
outgoing left and right channels. To this aim we project
��out� onto the subspace containing one single excitation at
each side of the dot �i.e., �1, 1��. We obtain

��LR� � �
p,�

�
q,�

�Sp1
�s1Sq2

�s2 − Sq1
�s1Sp2

�s2�bp
�†bq

�†�0� , �6�

where the indices p=1,2; �= ↑ ,↓ and q=3,4; �= ↑ ,↓ stand
for left and right outgoing channels, respectively. The density
matrix of the state �6� reads �LR= ��LR���LR � / ��LR ��LR�
�8�8, which by construction accounts for both orbital and
spin degrees of freedom. The degree of orbital entanglement
contained in �6� can be extracted from �LR by tracing out the
spin degree of freedom, defining the RDM �LR

orb

=��,��� ,� ��LR �� ,���4�4 for two orbital qubits. Figure 3
shows results for the corresponding average concurrence
�CLR

orb� vs Lesc /LSO for parallel �s1=s2=↑; solid line� and an-
tiparallel �s1=↑, s2=↓; dashed line� incoming spins subject to
a magnetic flux �. The insets depict the fluctuations. Outgo-
ing spins of different species do not contribute to orbital
entanglement.5 This is why only parallel incoming spins
show a finite �CLR

orb��0.39 in the absence of SO coupling
�Lesc /LSO=0� when leaving the quantum dot. This value, al-
most unaffected by the breaking of TRS �finite ��, is in very
good agreement with previous RMT results2 depicted by the
full dots in Fig. 3. As SO coupling increases, spins flip dur-

ing transport and outgoing spin channels of different sign
open up both at the left and right of the dot. This hinders the
production of orbital entanglement from originally parallel
spins, leading to a reduction of the concurrence. In contrast,
for incoming antiparallel spins SO scattering contributes to
the formation of orbitally entangled states between spins of
the same outgoing species. The scale on which the concur-
rence varies significativelly as a function of Lesc /LSO is simi-
lar to that determining the transition fron WL to WA in the
conductance shown in Fig. 2. For large SO coupling, the
degree of entanglement saturates as the orientation of outgo-
ing spins randomize. However, a finite difference �C
�0.05 survives between different incoming spin configura-
tions for �=0 �Fig. 3, upper panel�. This is a consequence of
the TRS correlations preserved by the SO interaction: As
soon as a finite � breaking TRS is applied the concurrence
tends rapidly to a common asymptotic value independent of
the initial condition �Fig. 3, lower panel�. This indicates that
breaking time-reversal and spin-rotation symmetries give
rise to a residual orbital entanglement with universal average
concurrence �CLR

orb��0.075 for chaotic dots. We point out that
orbital entanglement is very sensitive to the spin dynamics
even for broken TRS �Fig. 3, lower panel�, where WL and
WA quantum corrections to the conductance are absent �dot-
ted line in Fig. 2; see also Refs. 30–33�. Regarding the fluc-
tuations �insets in Fig. 3�, they show a functional dependence
similar to that of the concurence. For large Lesc /LSO,
�var�C���C�. These features repeat in our results of Figs. 4
and 5. We further note that some difficulties may appear for
detecting orbital entanglement produced from incoming an-
tiparallel spins by violating Bell inequalities for shot noise as
described in Ref. 2. This is because both incoming as well as
outgoing channels would mix at the left side of the dot �un-
less they can be spatially separated�. However, this does not
exclude the possibility implementing alternative approaches

FIG. 3. Left-right orbital entanglement: �CLR
orb� vs SO coupling

with TRS preserved �upper panel� and broken �lower panel�. Solid
�dashed� lines correrspond to �anti�parallel incoming spins. Insets
depict the fluctuations var�C�, respectively. Full dots: RMT results
from Ref. 2.
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for detection as, e.g., the determination of lower bounds for
entanglement from beam-splitter current correlations36 or the
use of some entanglement witness.37

Information regarding the degree of spin entanglement
between left and right channels contained in �6� can be
evaluated from �LR by tracing out the orbital degree of
freedom instead, constructing the RDM �LR

spin

=�p,q�p ,q ��LR � p ,q��4�4 for two spin qubits. Results for
the corresponding average concurrence �CLR

spin� are presented
in Fig. 4. In contrast to the previous case of orbital entangle-
ment, antiparallel incoming spins �dashed lines� lead now to
a finite �CLR

spin� already at Lesc /LSO=0 due to exchange corre-
lations, while parallel incoming spins �solid lines� do not.

The result is in agreement with our independent RMT simu-
lations �full dots� performed by following the approach of
Ref. 2. The presence of multiple orbital channels give rise to
an outgoing mixed state �Tr �LR

spin2
1� with �CLR
spin�
1. This

differs from the case in which one single-orbital-channel lead
is attached at each side of the dot: There, antiparallel incom-
ing spins escape at the left and right in a pure singlet state
with �CLR

spin�=1 independently of the scattering amplitudes
�straightfoward from Eq. �6�; see also Ref. 5
. We also note
that �CLR

spin�� �CLR
orb� at Lesc /LSO=0 �compare Figs. 3 and 4�.

This is probably related to the fact that, in contrast to spin
entanglement, orbitally entangled electrons leave the dot at
left and right in a pure state �Tr �LR

orb2=1�. For large SO cou-
pling, Fig. 4 shows features similar to those for orbital en-
tanglement: A finite �C survives between different incoming
states at �=0 due to TRS correlations �Fig. 4, upper panel�.
The difference disappears as TRS is broken by a finite �
�Fig. 4, lower panel�. More interestingly, the asypmtotic
value for �CLR

spin� is very similar to that for �CLR
orb� in Fig. 3

�lower panel�. This indicates the existence of a universal
value for the concurrence of residual left-right entanglement
independently of the initial condition and particular degree
of freedom. The claim is supported by RMT, which shows
that when both time-reversal and spin-rotation symmetries
are broken the S matrix is uniformly distributed in the uni-
tary group and no effective difference exists between spin
and orbital channels.38

We consider now the entanglement production for trans-
mitted spins, i.e., the spin entanglement between channels at
the right side of the dot. This entanglement is contained in
the �0, 2� component of Eq. �4�. We note that such compo-
nent splits at the same time into other three contributions,
each of them with different local particle number at leads 3
�n3� and 4 �n4� such that n3+n4=2. Following Sec. III B, we
see that also here the entanglement can be studied indepen-
dently in each term due to local particle number conserva-
tion. The only component of interest is that one with one
single excitation on each lead, obtained by projecting the
outgoing state �3� onto the corresponding subspace. It reads

��R� � �
�,�

�S31
�s1S42

�s2 − S41
�s1S32

�s2�b3
�†b4

�†�0� , �7�

where � and � label ougoing spins in the leads 3 and 4,
respectively. Note that the ��R� can be only spin entangled
since there are just two orbital channels on the right side
of the dot. After defining the density matrix �R

spin

= ��R���R� / ��R ��R� for the two spin qubits, we plot in Fig.
5 �upper panel� the corresponding �CR

spin� vs Lesc /LSO for �
=0. As in the previous case of left-right spin entanglement,
only antiparallel incoming spins �dashed line� lead to a finite
�CR

spin� at Lesc /LSO=0. However, the degree of entanglement
is much larger �its value agrees with our RMT calculations
depicted by the full dot�. That holds true for large SO cou-
pling, where the concurrence arrives at a relatively large
common asymptotic value �CR

spin��0.4 independently of the
initial condition. This contrast with our findings for left-right
entanglement, where TRS correlations are relevant. The ap-

FIG. 4. Left-right spin entanglement: �CLR
spin� vs SO coupling

with TRS preserved �upper panel� and broken �lower panel�. Solid
�dashed� lines correrspond to �anti�parallel incoming spins. Fluctua-
tions var�C� shown in insets. Full dots: RMT results.

FIG. 5. Transmitted spin entanglement: �CR
spin� vs. SO coupling

with TRS preserved �upper panel� and broken �lower panel�. Solid
�dashed� lines correrspond to �anti�parallel incoming spins. Insets
show the fluctuations var�C�. Full dots: RMT results.
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plication of a finite �, Fig. 5 �lower panel�, does not affect
the zero-flux characteristics significatively.

Usefull information can be still extracted from the wave
functions �6� and �7� by plotting their modulus square �Fig.
6�. The larger contribution is given by ��LR�2. The ��R�2 is
much smaller instead. It means that highly spin-entangled
electrons transmitted to the right are actually produced with a
lower probability. This can be understood by using classical
probabilities in the limit of broken time-reversal and spin-
rotation symmetries: The probability for the two incoming
electrons to end up in any two different channels is 1 /28.
There are 16 combinations giving one electron on the left

and one on the right, and only four with one electron in each
lead 3 and 4. The quantities 16/28�0.571 and 4/28
�0.143 are in agreement with the asymptotic values of Fig.
6 �lower panel�. Quantum corrections to these values show
up for small SO coupling, specially when �=0. We further
note in Fig. 6 that a probability difference appears between
parallel �solid line� and antiparallel �dashed line� incoming
spins in the left-right component due to fermionic statistics.
Breaking TRS increases the contribution, keeping the rela-
tive difference unaffected.

V. CONCLUSION

In summary, we studied the role of spin dynamics and
TRS correlations in the production of entanglement in meso-
scopic conductors and the connection with WL and WA
quantum corrections. By including SO coupling, among
other things we found that the TRS effects can be more im-
portant than originally thought.2 These manifest both in the
degree of entanglement as well as in the production rate. The
effects of SO coupling appear on a scale corresponding to the
pass from the regime of WL to WA in the quantum conduc-
tance. We also determined some universal characteristics of
chaotic entanglers as the residual amount of entanglement
produced after time-reversal and spin-rotation symmetry
breaking.
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