
Electric-dipole-induced spin resonance in quantum dots

Vitaly N. Golovach, Massoud Borhani, and Daniel Loss
Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

�Received 27 August 2006; published 18 October 2006�

An alternating electric field, applied to a quantum dot, couples to the electron spin via the spin-orbit
interaction. We analyze different types of spin-orbit coupling known in the literature and find two efficient
mechanisms of spin control in quantum dots. The linear in momentum Dresselhaus and Rashba spin-orbit
couplings give rise to a fully transverse effective magnetic field in the presence of a Zeeman splitting at lowest
order in the spin-orbit interaction. The cubic in momentum Dresselhaus terms are efficient in a quantum dot
with anharmonic confining potential and give rise to a spin-electric coupling proportional to the orbital mag-
netic field. We derive an effective spin Hamiltonian, which can be used to implement spin manipulation on a
time scale of 10 ns with the current experimental setups.
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I. INTRODUCTION

Coherent manipulation of electron spin is at the heart of
spintronics1,2 and quantum computing with spins.3 In the
proposal of Ref. 3, the spin of an electron confined to a
quantum dot is used as qubit to store and process quantum
information. A quantum register consisting of an array of
such spin-1 /2 quantum dots is operated by a set of quantum
gates that act on single spins and pairs of neighboring spins.3

Among the simplest quantum gates are the spin rotations on
the Bloch sphere. With the help of only a static magnetic
field and an electron-spin-resonance �ESR� pulse, one can
change the state of the spin qubit at will. It is important,
however, that the ESR pulse can be applied locally to each of
the quantum dots, ensuring that the spins are accessed inde-
pendently from one another. For an ESR4,5 to occur, usually,
the electron is exposed to an alternating magnetic field of a
frequency �ac that matches the electron Zeeman splitting.
However, because strong local electric fields are easier to
obtain than strong local magnetic fields, interest arises in
spin resonance induced by electric fields.

Recently, Kato et al.6 have demonstrated three-
dimensional control of spins in a GaAs/AlxGa1−xAs hetero-
structure with the use of an alternating electric field. The
mechanism of spin coupling to the electric field relies on a
specially engineered Landé g tensor in the heterostructure,
achieved by modulating the Al content during the MBE
growth.7 The resulting g tensor is both anisotropic and space
dependent, and allows control over the direction and magni-
tude of the spin precession frequency.6,8 A g-factor modula-
tion resonance �g-TMR� occurs similarly to an ESR, when
the frequency of the electric field matches the Zeeman
splitting.6 Rashba and Efros9 have further proposed to use
the standard �Dresselhaus10 and Rashba11� spin-orbit cou-
plings to achieve an electric-dipole-induced spin resonance
�EDSR� in quantum wells. Rashba and Efros9 have shown
that the EDSR is highly efficient in quantum wells, promis-
ing electron spin control on a time scale �R

−1�100 ps, where
�R is the Rabi frequency.4 These results have important prac-
tical implications in spintronics, where spins of extended
electrons are used as a resource to accomplish information
processing. In the context of quantum computing, however,

the interest is focused on spins of localized electrons. A natu-
ral question is, therefore, “what is the microscopic mecha-
nism of EDSR in quantum dots and how strong is the EDSR
effect?”

EDSR has nearly a half-a-century long history. It was first
observed for extended electrons in bulk semiconductors,12,13

and studied more recently for donor-bound electrons in
Cd1−xMnxSe �Ref. 14� and extended electrons in two-
dimensional electron gases15,16 and epilayers.17 The “forbid-
den” electric-dipole transition between the electron spin-up
and spin-down states becomes possible in the presence of
spin-orbit interaction. Absorption spectra of EDSR provide
information about the value of the electron g factor and the
strength of the spin-orbit coupling. In two-dimensional elec-
tron systems, one expects the Dresselhaus spin-orbit
interaction10 to be enhanced compared to bulk semiconduc-
tors, because of the confinement of electron motion in one
direction. Furthermore, the Rashba spin-orbit interaction11

arises in heterostructures lacking inversion symmetry, such
as, e.g., heterojunctions. In some systems, the Rashba cou-
pling constant can be efficiently tuned by electric fields.18

In quantum dots,19 the spin-orbit interaction is generally
suppressed due to complete localization of electron motion.20

Typically, the quantum dot lateral size �d is smaller than the
spin-orbit length �SO, and any effect of the spin-orbit inter-
action is suppressed as a power of �d /�SO and therefore is
expected to be weak. This expectation contrasts with the case
of electrons in quantum wells, where the EDSR meets most
favorable conditions.9 The Zeeman interaction in quantum
dots plays an important role for observing spin-orbit
effects.21,22 Without the Zeeman interaction, the Rashba and
linear in momentum Dresselhaus spin-orbit terms do not
contribute to spin-related phenomena at the first order of
spin-orbit interaction. This “absence of spin-orbit” at the
leading order in quantum dots has been discussed exten-
sively in the literature.20–22 Here, we show that a similar
result arises also for the cubic in momentum Dresselhaus
terms in the case when the dot confining potential is qua-
dratic and the perturbation is linear in the electron coordi-
nates.

In this paper, we consider the use of EDSR for control of
individual electron spins in quantum dots. We derive an ef-
fective spin Hamiltonian for a quantum-dot electron, subject

PHYSICAL REVIEW B 74, 165319 �2006�

1098-0121/2006/74�16�/165319�10� ©2006 The American Physical Society165319-1

http://dx.doi.org/10.1103/PhysRevB.74.165319


to ac electric fields. We show that there are two major
mechanisms of EDSR in quantum dots. One arises from the
linear in momentum Dresselhaus and Rashba spin-orbit cou-
plings in combination with the Zeeman interaction. The other
arises from the cubic Dresselhaus terms in combination with
the cyclotron frequency. We estimate the strengths of both
EDSR effects and compare them to the ordinary ESR. We
find that despite a strong suppression, compared to quantum
wells, the EDSR in quantum dots is still an efficient mecha-
nism of spin manipulation and can be used alone or together
with ESR to achieve control of spin on a time scale
�R

−1�10 ns.

II. EDSR SETUP

We consider a quantum dot containing a single electron
with charge −e and spin S= �� /2��, where �= ��x ,�y ,�z�
are the Pauli matrices. The quantum dot is in the Coulomb
blockade regime with extraction �U−� and addition �U+� en-
ergies that are large compared to the temperature, so that the
dot occupation remains constant. An external electric field
E�r , t� is applied to the quantum dot. In practice, E�r , t� can
be generated by a pair of gates, as sketched in Fig. 1, to
which an ac signal of frequency �ac is supplied from an
external circuit �not shown�. The Hamiltonian describing the
quantum dot electron in the external alternating field reads

H = H0 + V�r,t� , �1�

where V�r , t�=e�rdr� ·E�r� , t� is the potential energy of the
electron in the external electric field and H0 is the “unper-
turbed” Hamiltonian �see further�. In particular, for an elec-
tric field constant in space E�r , t�=E�t�, the potential energy
reads V�r , t�=eE�t� ·r.

For practical applications, it is a good idea to use two
gates, as shown in Fig. 1, because this allows larger ampli-
tudes of E�t� to be applied to the quantum dot, while still
maintaining the dot within the same Coulomb blockade val-
ley. Ideally, the ac voltage drop is distributed between the
two gates symmetrically and the dot potential is kept con-
stant by counteracting potential shifts quadratic in the elec-
tric field. For a harmonic quantum dot, the desired ac poten-
tial reads

V�r,t� = eE�t� · r +
�eE�t��2

2me�0
2 , �2�

where me is the electron effective mass and �0 is the oscil-
lator frequency. Then the only effect of the ac signal on the
dot confinement is shifting the dot center as a function of
time by the amount

r0�t� = −
eE�t�
me�0

2 . �3�

The amplitude of r0�t� is going to be a relevant parameter in
our following analysis. Therefore, setups in which the dot
can be easily moved on the substrate by gates are particularly
interesting in the context of this paper. We discuss the case of
r0��SO in Sec. VI, whereas for the bulk of the paper we
restrict ourself to r0��SO.

The Hamiltonian H0 consists of several terms,

H0 = Hd + HZ + HSO, �4�

where Hd is the Hamiltonian of a confined electron,

Hd =
p2

2me
+ U�r� , �5�

with p=−i�� /�r+ �e /c�A�r� being the electron momentum,
c the speed of light in vacuum, and U�r� the quantum dot
confining potential. We restrict our consideration to quantum
dots with strong confinement along one axis, such as, e.g.,
quantum dots defined in a two-dimensional electron gas
�2DEG�. For GaAs, the 2DEG lies, typically, in the crystal-
lographic plane �001� and has a width d�5 nm, which en-
sures a strong size quantization along z � �001�. The in-plane
motion of the electron is described by the Hamiltonian �5�,
where r= �x ,y� is the electron in-plane coordinate; whereas
the transverse motion �along z� has already been integrated
out in Eqs. �1�–�5�. In the absence of external time-
dependent fields, A�r� accounts for the orbital effect of a
static magnetic field B. Assuming that B is constant in space,
we have A�r�=Bz�−y /2 ,x /2 ,0� in the symmetric gauge.
Note that the in-plane components Bx and By are not present
in A�r�, because the motion along z is strongly quantized
�d�	�c /eBx�y��.

The magnetic field B also induces a Zeeman splitting
EZ=g�BB and a spin quantization axis n=B /B via the Zee-
man interaction

HZ =
1

2
g�BB · � =

1

2
EZn · � , �6�

where g is the electron g factor and �B is the Bohr magneton.
In GaAs, the magnitude of the g factor is anomalously small
�g
−0.44� compared to other AIIIBV semiconductors. The
Zeeman energy is, therefore, much smaller than the cyclotron
energy ��c= �eBz /mec by a factor gme /m�1 �with m being
the electron mass in vacuum�, for magnetic fields applied
transversely to the 2DEG. In Sec. V, we derive an efficient
spin-electric coupling that is proportional to ��c, but present
only in anharmonic quantum dots. We remark that the mag-
netic field is an important ingredient in our EDSR scheme,

FIG. 1. Schematic of a setup for electric field control of spin via
the spin-orbit interaction. The quantum dot �QD� contains a single
electron with spin S= �� /2��, deep in the Coulomb blockade val-
ley. The gates 1 and 2 are used to generate an alternating electric
field E�t�, which acts via the spin-orbit interaction on the electron
spin. As a result, an electric dipole spin resonance �EDSR� occurs if
the frequency of E�t� is tuned to match the Larmor frequency �Z

=EZ /�.
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since at B=0 no spin-electric coupling can be obtained at the
first order of the spin-orbit interaction �see further�.

In Eq. �4�, HSO stands for the spin-orbit Hamiltonian. We
start with considering the so-called “linear in p” spin-orbit
interaction

HSO = ��px�y − py�x� + ��− px�x + py�y� , �7�

which is the sum of the Rashba ��� �Ref. 11� and 2D
Dresselhaus ��� �Refs. 10 and 23� spin-orbit interactions.
This type of spin-orbit interaction gives rise to a sizable
phonon-induced spin relaxation rate 1 /T1,21,22 of the same
order of magnitude as experimentally measured.24,25,31 More-
over, in the 2D limit the linear in p spin-orbit interaction is
dominant, because ��1/d2.

In the standard ESR scheme, an alternating magnetic field
is generated by a current in a nearby conductor. In our setup
�see Fig. 1�, no charge flow is ideally present between the
gates. However, the alternating electric field E�r ,z , t� gives
rise to a displacement current, with the current density

JD�r,z,t� =
	

4


�E�r,z,t�
�t

, �8�

where 	 is the electric permittivity. The external magnetic
field B acquires, thus, an ac component B→B+B�t�, where
B�t�=��A�t�. The vector potential A�r ,z , t� is obtained
as usual from Ampere’s law26

�2A = −
4
�

c
�J + JD� , �9�

where � is the magnetic permittivity and J is the charge flow
density �in our case J=0�. In Eq. �9�, we adopted the Cou-
lomb gauge � ·A=0 and used the notation �= �� /�r ,� /�z�.

The magnetic field B�t� couples to the electron spin via
the Zeeman interaction in Eq. �6� �with B→B+B�t��, giving
rise to an ESR source, which can be used, in principle, for
spin manipulation in quantum dots. However, the amplitude
of B�t� is, in practice, extremely small; it is proportional to
1/c, as expected from the relativistic nature of B�t�. Further-
more, the proximity of the top gates to the 2DEG decreases
the displacement current enclosed by the magnetic field lines
penetrating the quantum dot. Using Eq. �9�, we estimate B
=�	c−1Lz�E /�t
10−6 G, for a quantum dot which is Lz
=100 nm below the gates plane and an electric field E�t�
=E0sin��act�, with amplitude �	E0=102 V/cm and fre-
quency �ac /2
=109 Hz. As we show below, a much stron-
ger effective magnetic field arises from the EDSR effect in
the present setup, and therefore, the displacement current can
be safely ignored.

Recently, a sizable ESR effect has been obtained with the
help of a wire placed on top of a GaAs double dot.27 In this
case, J�0 and the magnitude of B�t� is estimated from Eq.
�9� to be B=
�c−1I / �Ly +Lz�, where I is the current in the
wire and 2Ly is the lateral size of the wire. For Ly =Lz
=100 nm and I=1 mA, the magnetic field obtained in this
setup is on the order of B�10 G.

III. SPIN-ELECTRIC COUPLING

Now, we focus on the electric-field component of the ac
signal and show that, together with the spin-orbit interaction
HSO and Zeeman splitting HZ, it suffices to generate a sizable
EDSR field in the quantum dot. For simplicity, we set
B�t�→0 from now on and choose A�t�=0. As a result, we
retain only a constant in space and time magnetic field B
=B�cos � sin  , sin � sin  , cos � and an alternating elec-
tric field E�r , t�= �1/e��V�r , t�. Thus, we consider further the
Hamiltonian in Eq. �1�, assuming that H0 is time-independent
and describes the dot in the absence of ac fields.

We aim at diagonalizing H0 using a Schrieffer-Wolff
transformation, similar to Ref. 21. We thus look for a trans-
formation matrix S such that the transformed Hamiltonian

H̃0=exp�S�H0exp�−S� is fully diagonal, see Appendix. At B

=0, the ground state of H0 �and also of H̃0� is a Kramers
doublet, because the spin-orbit interaction is time-reversal
symmetric �at B=0�. We therefore choose to encode the qubit
into the ground state Kramers doublet of the quantum dot.
Owing to the mixed spin and orbital nature of the states an
alternating potential V�r , t�, such as in Eq. �1�, couples to the
qubit. We proceed to derive this coupling, by calculating the
transformation matrix S at the leading order of spin-orbit
interaction

S =
1 − P

L̂d + L̂Z

HSO + O�HSO
2 � , �10�

where L̂d and L̂Z are Liouville superoperators, i.e., L̂dA

= �Hd ,A� and L̂ZA= �HZ ,A�, ∀A. The projector P projects
onto the diagonal �or degenerate� part of the Hilbert space of
Hd+HZ, which ensures applicability of “nondegenerate” per-
turbation theory. The coupling of spin to electric fields is
then found by applying the same Schrieffer-Wolff transfor-
mation to the potential V�r , t�. We obtain the following ef-
fective Hamiltonian for our qubit in the presence of an alter-
nating potential V�r , t�, to leading order in the spin-orbit
interaction

Heff = HZ + ��0��S,V�r,t����0 , �11�

where S is the transformation matrix in Eq. �10� and ��0 is
the quantum dot ground state. For a quantum dot with a
harmonic confining potential U�r�=me�0

2r2 /2, the transfor-
mation matrix S was calculated in Ref. 28 to all orders of the
Zeeman interaction and the first order of the “linear in p”
spin-orbit interaction �7�. For simplicity, we consider here
only the linear in B terms

S = i� · � −
EZ

me�0
2 �n � �� · � ,

� = ��−
−1y�,�+

−1x�,0� ,

� = ��−
−1 � /�y�,�+

−1 � /�x�,0� , �12�

where �±= � /me��±�� are the spin-orbit lengths, and
the vectors � and � are given in the coordinate frame x�
= �x+y� /	2, y�=−�x−y� /	2, and z�=z �see Fig. 1�. The first
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term in Eq. �12� commutes with scalar potentials and there-
fore drops out in Eq. �11�. More generally, for arbitrary con-
fining potential, the first term is replaced by i�1−P�� ·�,
resulting nevertheless in no coupling of spin to electric
fields. The second term in Eq. �12�, however, allows us to
express the coupling of spin to charge via the electric field
E�t�= �1/e���0 ��V�r ,z , t� ��0 that acts on the quantum dot
electron. For the harmonic confining potential, we obtain

Heff =
1

2
g�BB · � +

1

2
h�t� · � , �13�

h�t� = 2g�BB � ��t� , �14�

��t� =
− e

me�0
2 ��−

−1Ey��t�,�+
−1Ex��t�,0� . �15�

The dimensionless field ��t� describes a combined effect of
the spin-orbit interaction and electric fields �or more gener-
ally potential fluctuations� on the qubit. ��t� was calculated
in Ref. 21 for the phonon potential and in Ref. 28 for the
shot-noise of a QPC nearby the quantum dot. In our case,
��t� is merely a classical driving field generated by the ac
signal.

Considering further a constant in space �at least on the
scale of the quantum dot�, alternating electric field E�t�
=E0sin��act� of amplitude E0=E0�cos � , sin � ,0�, where �
is the angle of E0 with respect to the axis x� �see Fig. 1�, we
obtain explicitly ��t�=�0sin��act�, with

�0 =
− eE0

me�0
2 ��−

−1sin �,�+
−1cos �,0� . �16�

To give an estimate for the amplitude �0 in GaAs quantum
dots, we assume �+
�−
�SO=8 �m, ��0=1 meV, and
E0=102 V/cm, which yields �0�10−3.

The amplitude of the resulting effective magnetic field
due to EDSR is found from Eq. �14� to be

�B0 = 2B � �0. �17�

The maximal amplitude is obtained for B��0, which in
experiment can easily be arranged for by, e.g., choosing B � z.
In-plane magnetic fields can also be used, especially when
E�t� is linearly polarized. For example, an electric field E�t�
aligned with x� generates, according to Eq. �15�, a dimen-
sionless field ��t� along y�. In this case, B should be chosen
along x� for maximal spin-electric coupling.

Using our previous estimate for �0�10−3, we obtain
from Eq. �17� that �B0�1 mT for a magnetic field B=1 T
oriented transversely to �0. In principle, the dimensionless
factor �0 can be increased up to �0�1. However, this re-
quires a specially designed setup, where the value of the
electron displacement r0 in Eq. �3� approaches the spin-orbit
length �SO.

Next we remark that ��t� in Eq. �15� can be written by
the order of magnitude as ��t��r0�t� /�SO. More rigorously,
we rewrite Eq. �15� in the following form:

�i�t� = �
j

��SO
−1 �ijr0j�t� , �18�

where ��SO
−1 �ij is a tensor of inverse spin-orbit lengths

��SO
−1 �ij = � 0 1/�−

1/�+ 0
� , �19�

with 1/�±=me��±�� /� and the frame �x� ,y�� was used to
represent the tensor. For order of magnitude estimates, it is
useful to introduce the scalar

1

�SO
=

1
	2

��SO
−1 � , �20�

where ��SO
−1 � is the Frobenius norm of ��SO

−1 �ij. In the case of
Eq. �19�, we have 1/�SO= �me / � �	�2+�2.

Despite the fact that Eq. �18� was obtained considering
the harmonic confining potential as an example, its general-
ity suggests that it should remain valid for quantum dots of
arbitrary confinement, provided, to a good approximation,
the ac signal merely displaces the quantum dot parallel to
itself by a vector r0�t� as a function of time. Note that r0�t� is
the only available parameter to be compared with �SO in the
limit of strong confinement ��d→0�. We extend the class of
Hamiltonians considered here to any combination of confine-
ment and ac-voltage potential that can be rewritten in the
form

U�r� + V�r,t� = U�r − r0�t�� + V0�t� , �21�

where V0�t� is independent of r. We note that, as before, the
electron wave function extension �d is assumed to be small
compared to the spin-orbit length �SO at each moment in
time. Equation �21� need not be satisfied exactly. Note that
�d enters only in the definition of r0�t� and does appear alone
as a parameter in Eq. �18�. Therefore, defining r0�t� as the
average electron position, r0�t�=�r ���r , t��2d2r, we expect
Eq. �18� to be valid to leading order also when the electron
probability density ���r , t��2 changes shape, but the dot size
changes weakly.

Equations �13�, �14�, and �18� form the basis of EDSR in
quantum dots and can be used to efficiently manipulate the
electron spin by electrical gates. Finally, we remark that Eqs.
�13�–�15� have been derived under the assumption r0��SO,
and therefore, can be used only for �0�1. In Sec. VI we
discuss the case of �0�1 in more detail. A further assump-
tion in deriving Eqs. �13�–�15� was that the frequency spec-
trum of E�t� lies well below the size-quantization energy
��0. This adiabaticity constraint is generic to the spin-based
quantum computation;2,3 it guarantees that the electron is not
excited to higher in energy orbital levels.

IV. SPIN DYNAMICS AND COHERENCE

The electron spin obeys the Bloch equation29,30

�Ṡ = ��Z + ���t�� � �S − ��S + � , �22�

where �Z=g�BB /� is the Larmor spin-precession frequency
and ���t�=h�t� /�. The spin relaxation tensor �ij and the
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inhomogeneous part �i are due to the environment and can
be derived microscopically21,29 within the Born-Markov ap-
proximation. Strictly speaking, �ij and �i in Eq. �22� depend
also on the driving. In particular, �ij acquires, in general, a
time-dependent part. However, we neglect these effects here
since the energy scales are well separated. Indeed, from
experiments24,25,31 and theory,21,22 we infer that �ij ,�i
��102−106� s−1, i.e., they are very small, so that the regime
�ij ,�i�����Z usually holds. In this regime, the rotating
wave approximation30 is valid. We consider a completely
general driving field

���t� = ��asin��act� + ��bcos��act� , �23�

which can be realized in practice by implementing two inde-
pendent electric fields at the quantum dot site. This is, how-
ever, by no means necessary for our EDSR scheme.

The Rabi frequency then reads

�R =
1

2
���a � n − ���b � n� � n� . �24�

Here, we assume that �ac is not far from resonance, i.e.,
��ac−�Z � ��ac /2. In a coordinate frame �X ,Y ,Z� with Z �B,
the spin dynamics is approximated as follows:

�S±�t� 
 S̃±�t�e±i�act, �25�

�SZ�t� 
 S̃Z�t� , �26�

where S±=SX± iSY. The spin S̃�t� obeys a simpler �static�
Bloch equation

S̃
˙

= �� + �R� � S̃ − �̃S̃ + �̃ , �27�

where �= ��Z−�ac�n gives the detuning from resonance. The

relaxation tensor �̃ij is diagonal, with �̃XX= �̃YY =1/T2 and

�̃ZZ=1/T1, and �̃i assumes �̃i= �̃ijSj
T. Here, T1 and T2 are

the relaxation and decoherence times in the absence of
driving measured in experiment,24,25,31 and ST=
−�ng /2 �g � �tanh�EZ /2kBT� is the thermodynamic value of
spin, with T being the temperature.

The time-evolution of S̃ in Eq. �27� is simplest in a coor-
dinate frame �X� ,Y� ,Z��, with Z� � ��+�R�, and reads

S̃X��t� = S�
0 e−t/T̃2sin�t	�2 + �R

2 + �� ,

S̃Y��t� = S�
0 e−t/T̃2cos�t	�2 + �R

2 + �� ,

S̃Z��t� = S̃T + �SZ�
0 − S̃T�e−t/T̃1, �28�

where S�
0 , SZ�

0 , and � give the initial spin state

�S�0�� S̃�0�= �S�
0 sin � ,S�

0 cos � ,SZ�
0 �, in the coordinate

frame �X� ,Y� ,Z��. Furthermore, the decay times T̃1 and T̃2

read

1

T̃1

=
1

�2 + �R
2 � �2

T1
+
�R

2

T2
� ,

1

T̃2

=
1

2��2 + �R
2�
��R

2

T1
+

2�2 + �R
2

T2
� . �29�

The stationary value of spin S̃Tª S̃�t→ � � to leading or-
der reads

S̃T = −
g

2�g�
�� + �R��

�2 + �T1/T2��R
2 tanh�EZ/2kBT� . �30�

Note that at resonance ��=0�, the right-hand side in Eq. �30�
vanishes. Therefore, in the vicinity of resonance, S̃T is deter-
mined by the subleading order term, which can be obtained
from Eq. �30� by replacing the numerator ��+�R��
→ �1/T2���R�n�. Measurement of S̃T in the presence of
driving provides information about the spin lifetimes T1,2.
For instance, at resonance the relaxation time T1 can be ac-
cessed at the leading order of �ij /�R�1,

S̃T�� = 0� = −
g

�g�
�R � n

2T1�R
2 tanh�EZ/2kBT� . �31�

Finally, we estimate the Rabi frequency �R using Eq. �24�
and the parameters from Sec. III. For �0�10−3, �g � =0.44,
and B=10 T we obtain �R�108 s−1. We conclude that, with
the present quantum-dot setups, EDSR enables one to ma-
nipulate the electron spin on a time scale of 10 ns, which is
considerably shorter than the spin lifetimes, for which values
between 1 and 150 ms �depending on the applied magnetic
field� in gated GaAs quantum dots have been reported
recently.24,31

V. p3-DRESSELHAUS TERMS

Next we consider the so-called p3 terms of the Dressel-
haus spin-orbit interaction23

HSO =
�

2
�pypxpy�x − pxpypx�y� , �32�

where �=�c /	2me
3Eg is the spin-orbit coupling constant,

with �c �
0.07 for GaAs �Ref. 23�� being a dimensionless
constant defined in Ref. 32 and Eg the band gap. For sim-
plicity, we impose here the dipolar approximation for the ac
signal

V�r,t� = e�
0

r

dr� · E�r�,t� 
 eE�t� · r . �33�

Quite remarkably, if the quantum dot potential is harmonic,
U�r�=�ijuijrirj, then the spin does not couple to E�t� at the
first order of HSO and zeroth order of EZ. Indeed, the second
term in Eq. �11� vanishes for V�r , t�=eE�t� ·r and S

= L̂d
−1HSO because of the following two identities
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��0��L̂d
−1HSO,r���0 = ��0��L̂d

−1r,HSO���0 , �34�

�L̂d
−1r,HSO� = 0, ∀ HSO�p� . �35�

The latter is specific to Hd in Eq. �5� with a harmonic U�r�,
for which the operator L̂d

−1r can be expressed via the compo-
nents of p− �e /c�Bz�r. Note that, generally, �p ,HSO�
= �e /c��Bz�r ,HSO� for any HSO that is a function of only
p= �px , py�. Thus, for a harmonic confining potential, one is
left with the same dominant mechanism as considered above
for the “linear in p” terms. Expanding in terms of the Zee-
man interaction, we recover Eqs. �13� and �14� with ��t�
given now by

�i�t� = −
e

me�0
2�

j

��SO
−1 �ijEj�t� , �36�

��SO
−1 �ij =

me

�
��0�

�2HSO

��i � pj
��0 , �37�

where ��SO
−1 �ij is a tensor of inverse spin-orbit lengths, and

as before we consider U�r�=me�0
2r2 /2. For HSO in

Eq. �32�, we obtain explicitly ��SO
−1 �ij =

1
4��0me

2�ij and �i�t�
=−�emeEi�t� /4�0. To estimate the strength of the resulting
EDSR, we note that ���d2 /�2, and therefore the amplitude
of h�t�=2g�BB���t� is down now by a factor d2 /�d

2�1
compared to the p terms.

Next we consider a quantum dot with anharmonic poten-
tial U�r� and show that the p3 terms in Eq. �32� give rise to
a spin-electric coupling proportional to the cyclotron fre-
quency �c=eBz /mec. Since ��c differs parametrically from
EZ �EZ / ��c=gmeB /2mBz�, the p3 terms can be as significant
as the p terms, provided EZ / ��c�d2 /�d

2, which is realistic
for GaAs quantum dots. Note that for the p terms no spin-
electric coupling proportional to �c arises at the first order of

HSO. We thus leave out L̂Z in Eq. �10� and consider a con-
fining potential U�r� that differs from a harmonic one by a
function W�r�,

U�r� = �
ij

uijrirj + W�r� � UH�r� + W�r� , �38�

where uij are real coefficients and W�r�=O�r3�. While in
general W�r� need not be small compared to HH= p2 /2me

+UH�r�, in the following we expand the denominator of Eq.
�10� in terms of W�HH, considering therefore only small
deviations of U�r� from harmonic potentials. Then, using
Eqs. �11�, �13�, and �33�, we obtain at leading order in �c

hi�t�
�c

= eE�t� · ���0��R�r�,
�2SH

��c � �i
���0�

�c=0
, �39�

where we set �c→0 in the right-hand side of Eq. �39� after
evaluating �SH /��c in the symmetric gauge, with SH defined
as �HH ,SH�=HSO. The linear relationship between hi and �c

holds for �c��0, where �0�2	det�u� /meTr�u�. In Eq.
�39�, the perturbation W�r� enters via the function R�r� de-
fined as follows:

Ri�r� = �
j

�u−1�ij
�W�r�

�rj
. �40�

Note that �R /r�W0�d / ��0�W is the small parameter of our
expansion in terms of W�r�, with W0 and �W��d being,
respectively, the characteristic amplitude and length scale of
the variation of W�r� over the quantum dot size. It is impor-
tant to note that the antisymmetric part of W�r� drops out in
Eq. �39� because HSO is also antisymmetric with respect to
r→−r.

Next, as an example, we consider UH�r�=me�0
2r2 /2 and

W�r�=�r4, and obtain

1

2
h�t� · � =

e���2�c

9me�0
4 �Ey�t��x + Ex�t��y� . �41�

Here, we have used the deformation quantization theory,33

which allowed us to considerably simplify the derivation of
Eq. �41� by performing most of the calculation in classical
mechanics and only at the final stage come back to quantum
mechanics. We have also carried out a fully quantum deriva-
tion of Eq. �41� and recovered the same result.

To estimate the strength of the resulting EDSR, we note
that h� ��c��d /�SO��e�dE0 / ��0��R /r, where �SO

=4/��0me
2 �
�d

2 / �0.01 nm� for GaAs� is the spin-orbit
length of the p3 terms and the parameter �R /r
�W��d� / ��0 characterizes the deviation of the quantum dot
confinement from harmonic. In practice, �R /r can be as
large as unity, but here we assume �R /r���d

4 / ��0=0.1.
For an electric field with amplitude E0=102 V/cm and a
GaAs quantum dot with ��0=1 meV, we obtain the equiva-
lent of an ac magnetic field �B�t�=h�t� /g�B that has an am-
plitude �B0
1 mT at Bz=1 T and �g � =0.44. In contrast to
the previous mechanism, �B�t� can have here also a finite
longitudinal component �B��t�=n�n ·�B�t��, which, how-
ever, vanishes if B � z.

Finally, we note that the p3 terms can also be relevant for
spin relaxation in quantum dots with anharmonic confining
potential. Of course, the magnetic field has to have an out-
of-plane component for this spin-electric coupling to domi-
nate over the one considered in Sec. III.

VI. DISCUSSIONS

The coupling of spin to electric fields that we have de-
rived above can be used in a variety of ways to access and
manipulate the electron spin in experiments. The effective
Hamiltonian in Eq. �13� has the same form as the Hamil-
tonian of an ESR effect. This shows that ESR and EDSR are
mutually interchangeable and the choice of the effect to be
used depends on the particular experimental setup. In GaAs
quantum dots, the spin-orbit interaction is weak enough to
ensure long coherence times and, at the same time, strong
enough to allow room for spin manipulation on an experi-
mentally accessible time scale of �10 ns. Much shorter time
scales can be achieved in InAs quantum dots, because of a
much stronger spin-orbit coupling and a larger electron g
factor. In contrast, in materials with very weak or nearly
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absent spin-orbit interaction, such as, e.g., carbon-nanotube
quantum dots, the EDSR mechanism is inefficient. To make
order-of-magnitude estimates easier, we draw an analogy be-
tween the EDSR and ESR effects in terms of the particular
way the B and E fields couple to the electron spin S
= �� /2��.

We recall that the ESR effect occurs as a result of the
Zeeman interaction of the electron spin with an ac magnetic
field. It is convenient to write this interaction in the form of
a magnetic dipole interaction

HESR = − 	 · B�t� , �42�

where B�t� is the ac magnetic field and 	 is the electron
magnetic moment,

	 = −
1

2
g�B� , �43�

where g is, in general, a tensor, see Eq. �A18�.
By analogy with the ESR effect, the EDSR effect can be

viewed as arising from an interaction between the ac electric
field E�t� and a spin-electric moment 
. The respective spin-
electric interaction is then analogous to Eq. �42� and reads

HEDSR = − 
 · E�t� , �44�

where the spin-electric moment 
 is due to an interplay be-
tween the spin-orbit interaction and some time-reversal
breaking interaction, such as the Zeeman interaction. This
analogy is not complete. Equation �44� is valid only for ac
electric fields E�t� that oscillate around zero, whereas Eq.
�42� holds also for static B-fields. The reason why a static
electric field E cannot be used in Eq. �44� will become clear
after we explain the origin of 
 in Eq. �44�.

The spin-electric moment 
 arises because the dipolar
transitions in the quantum dot become allowed, e.g., for the
ground state

��0↑�r��0↓ � 0. �45�

The electron charge density operator ��r�=−e��r−rel�, where
rel is the electron coordinate, acquires spin-dependent terms
in the transformed basis

��ns = e−S��n��s , �46�

�̃�r� = eS��r�e−S, �47�

where e−S is the transformation used in Sec. III and studied
in detail in the Appendix. One can present �̃�r� as a sum of
two terms

�̃�r� = �̄�r� + ���r� , �48�

where �̄�r� is spin independent and ���r� is proportional to
the spin. Then the spin-electric moment can be written as
follows:


 =� r���r�dv , �49�

where dv is the elementary volume of integration. Equation
�49� unveils the physical meaning of the spin-electric mo-

ment 
: due to the mixed spin and orbit nature of the electron
density, the electron spin couples to the first moment �dipole
moment� of the electron.

While oscillating around an equilibrium position, the elec-
tron produces a time-dependent dipole moment, part of
which is proportional to the electron spin. Obviously, in a
static electric field, one can set to zero the electron dipole
moment, because the new electron position can be taken as
the equilibrium one. Therefore, only the change of the mo-
ment as a function of time has a physical meaning for single
electrons �as for any other monopoles�. In contrast, the elec-
tron magnetic moment 	 couples to static magnetic fields,
because one can view 	 as arising from a pair of Dirac
monopoles of opposite signs, for which the relative distance
between them has an absolute meaning.

Equation �49� is written in a very general �operator� form.
After taking the expectation value in the orbital ground state
��0, we obtain


 = −
1

2
�̄̄� , �50�

�̄̄ij = 2e
�

�� j
��0�eSrie

−S��0 , �51�

where the derivative with respect to � j is defined as a usual
derivative of an expression that is linear in �. Note that Eq.
�50� is analogous to Eq. �43� where the role of g�B is played

by the tensor �̄̄. Using Eqs. �13�–�15� we obtain for the linear
in momentum spin-orbit interaction

�̄̄ij = −
2eg�B

me�0
2 � jklBk��SO

−1 �li. �52�

Similarly, for the p3 Dresselhaus terms we obtain from Eq.
�41�

�̄̄ij =
2e���2�c

9me�0
4 �0 1

1 0
� , �53�

where we use the coordinate frame �x ,y� to represent the

tensor. Note that in both cases �̄̄ij is proportional to the mag-
netic field �or one of its components�. The spin-orbit interac-
tion produces no spin-electric coupling at B=0, because of
the time-reversal symmetry of spin-orbit interaction.

The analogy between 	 and 
 is also seen in the pairwise
interaction between spins in separate �not tunnel coupled�
quantum dots.34 For an unscreened Coulomb interaction be-
tween electrons, the spin-spin interaction is analogous to the
magnetic dipole-dipole interaction34

Hdd = �
i�j


i · 
 jrij
2 − 3�
i · rij��
 j · rij�

	rij
5 , �54�

where rij =ri−r j is the distance between two quantum dots
�rij��d� and 	 is the electric permittivity of the material.
For further detail and a microscopic derivation of Eq. �54�
we refer the reader to Ref. 34.

Next we discuss the limitations of our theory. Throughout
the paper, we have assumed that the spin orbit interaction is
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weak compared to the dot level spacing, or, in other words,
that �d /�SO�1. This assumption allowed us to use the per-
turbation theory to find the unitary transformation exp�−S�,
see Appendix. Of course, this restriction was not necessary,
if, e.g., we were to apply numerical methods to diagonalize
the Hamiltonian. In particular, note that Eq. �49� is meaning-
ful whenever the unitary transformation exp�−S� exists. The
latter is always the case, including also extended states. Our
perturbative results are qualitatively correct for �d��SO and
can be used in experiments to estimate the strength of the
EDSR effect. The case �d��SO is more seldom and requires
a separate theoretical investigation.

As a second limitation, we would like to mention the
adiabaticity criterion. In Secs. III and V, we have derived
effective Hamiltonians for the low energy subspace of the
quantum dot Hilbert space. For the validity of this effective
description, it is important that the switching �on and off� of
the effective interaction occurs on a time scale that is larger
than the inverse level spacing in the quantum dot. Obviously,
this criterion excludes applicability of our theory to extended
states. In practice, however, the finite temperature T imposes
a more stringent criterion on the confinement energy
�2 /me�d

2�kBT.
The third limitation of our theory is a small amplitude of

oscillation of the quantum dot, r0 /�SO�1. We have shown
in Sec. III that the EDSR effect is proportional to this small
parameter. Thus, for breaking the time-reversal symmetry by
the Zeeman interaction we have �by order of magnitude�

�R � �Z
r0

�SO
, �55�

where �Z=EZ /�. Similarly, for breaking the time-reversal
symmetry by the orbital B-field effect �Sec. V�, we have

�R � �c
r0

�SO
�R/r , �56�

where �R /r is the small parameter of deviation of the quan-
tum dot confinement from harmonic. We remark that our
theory remains qualitatively valid also for r0 /�SO�1 and for
�R /r�1. Beyond these limits, we do not expect the Rabi
frequency to grow indefinitely. The Rabi frequency is bound
in the case of Eq. �55� by �R��Z, and in the case of Eq.
�56� by �R��c. We conclude that, by designing quantum
dot setups that allow for large oscillation amplitudes r0
��SO, the EDSR effect can be strongly enhanced, beyond
the numeric estimates made in Secs. III–V. In conclusion, the
EDSR mechanisms presented above provides a means of
implementing local electrical control of electron spins in
quantum dots.
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APPENDIX: SCHRIEFFER-WOLFF TRANSFORMATION
AND FINE STRUCTURE

In this Appendix, we first work out the Schrieffer-Wolff
transformation to the third order of perturbation theory and
for a general weak perturbation. Then, we consider an ex-
ample Hamiltonian and use the Schrieffer-Wolff transforma-
tion to partly diagonalize the Hamiltonian. Finally, we ana-
lyze the fine structure of the transformed Hamiltonian and
complete its diagonalization by an additional unitary trans-
formation.

As in standard perturbation theory, we consider a Hamil-
tonian H=H0+H1, where H1 is a weak perturbation with
respect to H0. For the matrix elements of H1, we assume

�n�H1�m = 0, for En = Em, �A1�

�n�H1�m � En − Em, for En � Em, �A2�

where �n and En are, respectively, the eigenstates and eigen-
values of H0, and are obtained from H0 �n=En �n.

The projector P, defined as follows:

PA = �
nm

En=Em

Anm�n�m�, ∀ A �A3�

projects onto the diagonal or degenerate part of H0. In the
particular case, when the spectrum of H0 is nondegenerate, P
assumes PA=�nAnn �n�n�, ∀A. From Eq. �A1� and the defi-
nition �A3�, it follows that

PH1 = 0, �A4�

PH0 = H0. �A5�

Next we look for a unitary transformation that brings the
Hamiltonian H=H0+H1 to a partly diagonal form

H̃ = eS��H0 + H1�e−S� = H0 + �H , �A6�

where the operator �H obeys P�H=�H. Here, S�=−S�† is
the transformation matrix. The unitary transformation in Eq.
�A6� is called the Schrieffer-Wolff transformation.35 We ex-
pand S� and �H in terms of the perturbation H1:

S� = S��1� + S��2� + S��3� + ¯ , �A7�

�H = �H�1� + �H�2� + �H�3� + ¯ , �A8�

where the superscripts give the order of perturbation theory.
Substituting Eqs. �A7� and �A8� into Eq. �A6�, we find a set
of equations for S�,

�H0,S��1�� = H1, �A9�

�H0,S��2�� =
Q
2

�S��1�,H1� , �A10�
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�H0,S��3�� =
Q
2

�S��2�,H1� +
Q
12

�S��1�,�S��1�,H1��

+
Q
4

�S��1�,P�S��1�,H1�� , �A11�

where Q�1−P. It is important to note that S is defined in
Eqs. �A9�–�A11� up to terms PM, where M is arbitrary. Such
terms drop out on the left-hand side in Eqs. �A9�–�A11� be-
cause �H0 ,PS��=0. Thus, PS� can be chosen arbitrarily,
which shows that there are infinitely many transformation
matrices S� that satisfy Eq. �A6�. For simplicity, we choose

PS�=0 and address the fine structure of H̃=H0+�H later on.
For the operator �H, we obtain

�H�1� = 0, �A12�

�H�2� =
P
2

�S��1�,H1� , �A13�

�H�3� =
P
3

�S��1�,�S��1�,H1�� . �A14�

Introducing the Liouvillean L̂0 : L̂0A= �H0 ,A�, ∀A, we can
formally solve Eqs. �A9�–�A11� one by one. For example,
the transformation matrix at the lowest order reads S��1�

=QL̂0
−1H1. For �H, we recover then the perturbation theory

expansion in a more familiar form

�H = − PH1L̂0
−1H1 + PH1L̂0

−1H1L̂0
−1H1 + ¯ , �A15�

with the usual convention PL̂0
−1A=0, ∀A adopted.

Next, we remark that the fine structure of H̃=H0+�H can
be addressed in each particular case by means of degenerate
perturbation theory. As an example, we consider here the
Hamiltonian H=H0+H1, with H0=Hd+HZ and H1=HSO.
Here, Hd is given in Eq. �5�, with U�r�=me�0

2r2 /2, HZ is
given in Eq. �6�, and HSO is given in Eq. �7�. Using the
transformation matrix S�=S, with S given in Eq. �12�, we

obtain a diagonal Hamiltonian H̃=Hd+HZ at the first order of
HSO. At the second order of HSO, however, a fine structure in
the energy spectrum arises. At B=0, the transformed Hamil-
tonian reads

H̃ =
p2

2me
+

me�0
2

2
r2 +

1

2
�SOlz�z, �A16�

where lz=−i�x� /�y−y� /�x� is the electron rotational mo-
mentum and �SO=2me��2−�2�. The Kramers doublets are
identified, in this case, as the pairs of states with quantum
numbers �lz ,�z� and �−lz ,−�z�. For lz�0, the twofold orbital
degeneracy is lifted and a splitting �SOlz arises. Note that the
ground orbital state, which has lz=0, remains doubly degen-
erate in this case.

At B�0, the fine-structure interaction in Eq. �A16� is
modified by both the Zeeman energy EZ and the cyclotron
frequency �c. For simplicity, we omit terms ��SOEZ / ��0,
but keep terms ��SO�c /�0, assuming that EZ� ��c. Then,
the Hamiltonian �A16� acquires two extra terms

EZ

2
n · � +

�SO

4�2 �zPr2, �A17�

where �=	� /me�c is the magnetic length and we use the
symmetric gauge, A�r�=Bz�−y /2 ,x /2 ,0�. The last term in
Eq. �A17� can be viewed as a renormalization of the electron
g factor. Allowing for an anisotropic Zeeman interaction

HZ
eff =

1

2
�B�

ij

gij�iBj , �A18�

we obtain that the tensor gij is diagonal in the main crystal-
lographic frame, with

gxx = gyy = g ,

gzz = g +
m�SO

�2 ��n�r2��n , �A19�

where m is the electron mass in vacuum and �n is the elec-
tron orbital state. For the ground orbital state, the corrected g
factor reads gzz=g+m�SO/me��, where �=	�0

2+�c
2 /4.

Note that the sign of the correction is given by the sign of
�2−�2 contained in �SO. The spin quantization axis does
not, in general, coincide with the magnetic field direction n
and is given by the following unit vector:

ñ =
n +  nz

	1 +  �2 +  �nz
2

, �A20�

where  = �gzz−g� /g. An additional unitary transformation
can be used to diagonalize the 2�2 blocks of Zeeman-split
Kramers doublets

H̃Z
eff = eS�HZ

effe−S� =
1

2
ẼZn · � , �A21�

where ẼZ=EZ	1+ �2+ �nz
2 is the renormalized Zeeman en-

ergy and

e−S� =	1 + n · ñ

2
− i

 �n � nz� · �

	 2nz
2�1 − nz

2�
	1 − n · ñ

2
.

�A22�

So far, we have considered a given orbital state �n, for which
the tensor gij is given in Eq. �A19�. The transformation
above is also valid in general, provided  is understood as a
diagonal operator  = �m�SO/g�2�Pr2.

We summarize by mentioning that the unitary transforma-
tion in Eq. �A6� can, in principle, be adjusted to give a fully

diagonal H̃=H0+�H, i.e., we had not to require PS�=0 in
the first place. However, in practice, it is more convenient
first to apply the nondegenerate perturbation theory, Eqs.
�A9�–�A15�, and then, at the end, complete the diagonaliza-
tion of H0+�H by a second unitary transformation. The
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latter is specific to each particular case and amounts, in gen-
eral, to applying the degenerate perturbation theory. For the
sake of simplicity, we shall refer to S in the main text of the
paper as to the full transformation matrix, despite the fact

that the respective unitary transformation comes, in practice,
as a product of two unitary transformations. Thus, we denote
the product e−S�e−S� by e−S in the main text. Finally, we re-
mark that e−S�
1+O�HSO

2 �.
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