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We employ a helicity-basis kinetic equation approach to investigate the anomalous Hall effect in two-
dimensional narrow-band semiconductors considering both Rashba and extrinsic spin-orbit �SO� couplings, as
well as a SO coupling directly induced by an external driving electric field. Taking account of long-range
electron-impurity scattering up to the second Born approximation, we find that the various components of the
anomalous Hall current fit into two classes: �a� side-jump and �b� skew scattering anomalous Hall currents. The
side-jump anomalous Hall current involves contributions not only from the extrinsic SO coupling but also from
the SO coupling due to the driving electric field. It also contains a component which arises from the Rashba SO
coupling and relates to the off-diagonal elements of the helicity-basis distribution function. The skew scattering
anomalous Hall effect arises from the anisotropy of the diagonal elements of the distribution function and it is
a result of both the Rashba and extrinsic SO interactions. Further, we perform a numerical calculation to study
the anomalous Hall effect in a typical InSb/AlInSb quantum well. The dependencies of the side-jump and skew
scattering anomalous Hall conductivities on magnetization and on the Rashba SO coupling constant are
examined.
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I. INTRODUCTION

A nonvanishing magnetization in spin-split systems may
lead to an extraordinary Hall current.1 This so-called anoma-
lous Hall effect �AHE� was first observed more than a cen-
tury ago,2 but its complete understanding still remains a chal-
lenge today.3 Up to now, it has been made clear that the AHE
arises essentially from spin-orbit �SO� interactions, which are
the results of rapid movements of carriers in various electric
fields, such as nuclear fields �e.g., the Dresselhaus SO cou-
pling�, electric fields associated with strains or gate biases
�e.g., the Rashba SO coupling�, or fields induced by electron-
impurity scattering �extrinsic SO coupling�, etc.4

In 1954, Karplus and Luttinger proposed, for the first
time, a mechanism of the anomalous Hall effect.5 This
mechanism is associated with the spin-orbit interaction due
to nuclear fields and yields to an anomalous Hall current
�AHC� independent of any electron-impurity scattering. Re-
cently, it has been reformulated by Jungwirth et al. within a
framework of momentum-space Berry phase,6 and was used
to explain the AHE in various ferromagnetic systems, such
as dilute magnetic semiconductors �Ga,Mn�As,6,7 ferromag-
netic Fe,8 SrRuO series,9–11 spinel CuCrSe, etc.12

The AHE may also stem from a spin-orbit coupling in-
duced by electron-impurity scattering, i.e., the extrinsic SO
coupling.3 It was found that there are two mechanisms re-
sponsible for this extrinsic AHE: a side-jump process pro-
posed by Berger13 and a skew scattering given by Smit.14

The side-jump AHE arises from a sidewise shift of the center
of the electron wave packet and relates to an anomalous term
in the current operator caused by the extrinsic SO
coupling.13,15 The skew scattering AHE corresponds to an
anisotropic enhancement of the wave packet due to electron-
impurity scattering and can be accounted for by considering
the scattering in the second Born approximation.16 It was

also clear that the side-jump anomalous Hall conductivity is
independent of impurity density ni, while the skew scattering
one is proportional to �ni�−1. Recently, considering a short-
range electron-impurity scattering, Crépieux, et al. presented
a unified derivation of both the side-jump and skew scatter-
ing mechanisms within the framework of a formal Dirac
equation for the electrons.17 The weak-localization correc-
tions to these anomalous Hall currents have also been
investigated.18–21

The Rashba SO coupling in a two-dimensional �2D� elec-
tron system with magnetization can also give rise to a non-
vanishing contribution to the Hall conductivity.22–24 It was
found that the anomalous Hall current due to the Rashba SO
interaction consists of two terms: one of which is associated
with all electron states below the Fermi surface and is inde-
pendent of any electron-impurity scattering; and another one
relating only to electrons near the Fermi surface, which is
disorder related but independent of impurity density.23,24 Liu
and Lei have also clarified that, in the helicity basis, these
two different contributions to anomalous Hall current in 2D
Rashba semiconductors essentially arise from two distinct
interband polarizations and they relate to two distinct parts of
the off-diagonal elements of the distribution function.24 In
these studies, the Rashba SO coupling was considered non-
perturbatively, but the extrinsic SO interaction was com-
pletely ignored. Such a treatment is valid only for 2D elec-
tron systems based on wide-band semiconductors. In 2D
narrow-band semiconductors, such as InSb/AlInSb quantum
wells �QWs�, the coupling constant for extrinsic SO interac-
tion is relatively large �for example, the extrinsic SO cou-
pling constant, �, is �=5.31 nm2 for InSb, while it is equal
to 0.053 nm2 for GaAs �Ref. 25��. Hence, to investigate the
AHE in Rashba 2D systems based on narrow-band semicon-
ductors, we must consider not only the Rashba but also the
extrinsic SO interactions.
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In this paper, we employ a kinetic equation approach to
investigate the AHE in Rashba 2D narrow-band semiconduc-
tors. We deal with the Rashba SO interaction in a nonpertur-
bative way, while the extrinsic SO coupling is considered in
the first order of the coupling constant �. We also take ac-
count of the SO interaction induced directly by the external
driving electric field, which, to our knowledge, was men-
tioned only by Nozières and Lewiner in the absence of
Rashba SO coupling.26 In our study, to investigate the skew
scattering AHE effect, we consider the electron-impurity
scattering up to the second-Born approximation. It is found
that various components of the anomalous Hall current can
fit into two classes: the side-jump and skew scattering
anomalous Hall currents. The side-jump AHC involves con-
tributions from the extrinsic SO coupling and SO coupling
induced by the driving electric field. It also contains a com-
ponent which comes from the Rashba SO interaction and
relates to the off-diagonal elements of the helicity-basis dis-
tribution function. The skew scattering AHC is associated
with anisotropic diagonal components of the distribution
function and stems from both the Rashba and extrinsic spin-
orbit interactions. A numerical calculation of the anomalous
Hall current in a InSb/AlInSb quantum well indicates that
both the side-jump and skew scattering anomalous Hall cur-
rents are of the same order of magnitude, leading to compli-
cated dependencies of the total anomalous Hall conductivity
on magnetization and on the Rashba spin-orbit coupling con-
stant. It is also clear that in the side-jump anomalous Hall
current, the contribution from SO coupling due to the driving
electric field is dominant for small magnetization.

This paper is organized as follows. In Sec. II, we derive
the kinetic equation for the nonequilibrium distribution func-
tion considering long-range electron-impurity scattering up
to the second Born approximation. The solution of this equa-
tion to first order of the extrinsic spin-orbit coupling is pre-
sented. We also discuss the various components of the side-
jump and skew scattering anomalous Hall currents. In Sec.
III, we perform a numerical calculation to investigate the
anomalous Hall effect in a InSb/AlInSb quantum well. Fi-
nally, we review our results in Sec. IV. The detailed form of
the scattering term of the kinetic equation is presented in an
Appendix.

II. FORMALISM

A. Hamiltonian and current operator

We consider a Rashba quasi-two-dimensional narrow-
band semiconductor in the x-y plane. When a homogeneous
magnetization M��0,0 ,M� induced by a weak magnetic
field B, M =g�BB �g is the effective g factor and �B is the
Bohr magneton�, and a uniform in-plane dc electric field E
are present, the Hamiltonian of an electron with momentum
p��px , py���p cos �p , p sin �p� can be written as

Ȟ = Ȟ0 + Ȟimp + ȞE. �1�

Ȟ0 is the free electron Hamiltonian given by

Ȟ0 = �p + ���xpy − �ypx� − M�z, �2�

where � is the Rashba SO coupling constant, �l �l=x ,y ,z�
are the Pauli matrices, and �p= p2 /2m* with m* as the elec-
tron effective mass. By a local unitary spinor transformation,
Up,

Up =
1

�2�p
� ��p + M ��p − M

iei�p��p − M − iei�p��p + M
� , �3�

Hamiltonian �2� can be diagonalized as Ĥ0�Up
+Ȟ0Up

=diag��1�p� ,�2�p�� with ���p�= p2 /2m*+ �−1���p ��=1,2
and �p��M2+�2p2� as dispersion relations of two spin-
orbit-coupled bands.

Since the extrinsic spin-orbit coupling in narrow-band

semiconductors cannot be ignored, the Hamiltonian Ȟimp,
which describes the electron-impurity interaction, should
contain not only an ordinary scattering potential term but
also a term related to the extrinsic SO coupling,

Ȟimp = 	
i


V��r − Ri�� − ��� � �V��r − Ri��� · p� , �4�

where r and Ri, respectively, are the coordinates of the elec-
tron and impurity, V�r� is the electron-impurity scattering
potential, and � is a spin-orbit coupling constant depending
on the intrinsic semiconductor parameters, such as energy
gap E0, spin-orbit splitting �SO, and matrix element of the
momentum operator between the conduction and valence
bands P: �= �1/E0

2−1/ �E0+�SO�2�P2 /3.27 HE describes the
application of the external electric field, and, in the Coulomb
gauge, it can be written as

ȞE = − eE · r − ��� � E� · p . �5�

In Eq. �5�, we have considered the effect of the spin-orbit
coupling directly induced by the external driving dc electric
field.

From Hamiltonian �1�, it follows that, in spin basis, the
single-particle current operator, ǰ�p�, can be written as

ǰl�p� = ǰl
f�p� + ǰl

imp�p� + ǰl
E�p� , �6�

with l=x ,y. The term ǰl
f�p� comes from the free-electron

Hamiltonian Ȟ0: ǰl
f�p�=epl /m*−�	lmz�

m �m=x ,y and 	lmz is

the totally antisymmetric tensor�, while ǰl
imp�p� comes from

the SO coupling term of Ȟimp and takes the form �n=x ,y�

ǰl
imp�p� = i�e	

k,i
Vp−keiRi·�k−p��	lmn�km − pm��n� . �7�

The term ǰl
E�p� arises from the spin-orbit coupling directly

induced by the external driving electric field and it is given
by

ǰl
E�p� = − �e2	lmn�mEn. �8�

Taking the statistical ensemble average, we find that the
observed net current, J, consists of three components,

LIU, HORING, AND LEI PHYSICAL REVIEW B 74, 165316 �2006�

165316-2



Jl = Jl
f + Jl

imp + Jl
E. �9�

Jl
f ,E is determined by Jl

f ,E=	pTr� ǰl
f ,E�p�
̌�p��, with 
̌�p� as

the distribution function in the spin basis: 
̌���p�= �̌�p
+ �̌�p�

��̌�p
+ and �̌�p, respectively, are the spin-basis electron cre-

ation and annihilation operators�. Jl
imp arises from the current

operator term jl
imp�p� and takes the form

Jl
imp = i�e 	

p,k,i,�,�
Vp−keiRi·�k−p�
�̌�p

+ �̌�k��	lmn�km − pm����
n �� .

�10�

Obviously, to determine Jl
imp, one must analyze the function

�̌�p
+ �̌�k�.
Without loss of generality, we study here the anomalous

Hall current flow along the x axis when the electric field is
applied along the y direction, i.e., E= �0,E ,0�. In helicity
basis, the current Jx

E can be written as

Jx
E = �e2E	

p
�
̂11�p� − 
̂22�p�� , �11�

with 
̂���p� �� ,�=1,2� defined as the elements of the
helicity-basis distribution function related to the spin-basis
distribution function by 
̂�p�=Up

+
̌�p�Up. Jx
f can be ex-

pressed as a sum of the contributions from the diagonal and
off-diagonal elements of the helicity-basis distribution func-
tion, Jx

fd and Jx
fo:

Jx
f = Jx

fd + Jx
fo, �12�

with

Jx
fd = e	

p
�� 1

m* −
�2

�p
�p cos �p
̂11�p�

+ � 1

m* +
�2

�p
�p cos �p
̂22�p�� , �13�

and

Jx
fo = e	

p
�2�M

�p
cos �p Re 
̂12�p� + 2� sin �p Im 
̂12�p�� .

�14�

From Eq. �14�, we can see that the nonvanishing contribution
to Jx

fo comes from the component of the real part of 
̂12�p�,
depending on the momentum angle through cos �p:
Re��
̂�12�p��=�p�cos �p+¯, and from the component of
the imaginary part of 
̂12�p�, involving sin �p: Im��
̂�12�p��
=��p�sin �p+¯. As a result, Jx

fo can be rewritten as

Jx
fo = 2�e2E	

p
�M�p�

�p
cos2 �p + ��p�sin2 �p� . �15�

Note that these Jx components, Jx
f , Jx

imp, and Jx
E, can fit into

two classes: �a� side-jump and �b� skew scattering anomalous
Hall currents. We know that the side-jump AHE originates
from the shift of the electron wave-packet center towards the
direction transverse to the driving electric field. Such a shift
is reflected by those current operator components involving

the antisymmetric tensor 	lmn: ǰl
imp, ǰl

E and the term in ǰl
f

associated with the Rashba spin-orbit coupling. Correspond-
ingly, the observed side-jump anomalous Hall current Jx

sj is a
sum of Jx

imp, Jx
E, and Jx

fo: Jx
sj=Jx

fo+Jx
imp+Jx

E. From Eq. �13�, we
see that the remaining Jx component, Jx

fd, becomes nonvan-
ishing if there exists a component of 
̂���p� depending on
the angle of momentum through cos �p. This implies that Jx

fd

results from an anisotropy due to electron-impurity scattering
and hence it is just a component of Jx

ss: Jx
ss=Jx

fd.

B. Kinetic equation and its solution

Obviously, in order to carry out the calculation of the
anomalous Hall current, it is necessary to determine the elec-
tron distribution function. Under homogeneous and steady-
state conditions �averaging over a uniform impurity distribu-
tion�, the helicity-basis distribution function, 
̂�p�, obeys a
kinetic equation written in the form

eE · �p
̂�p� − eE · �
̂�p�,Up
+�pUp� − i�eE · �p � n�

��Up
+�zUp, 
̂�p�� + i�H0, 
̂�p�� = − Î , �16�

where n is a unit vector along z axis and Î is a scattering term
determined by

Î =� d�

2�
��̂r�p,��Ĝ��p,�� + �̂��p,��Ĝa�p,��

− Ĝr�p,���̂��p,�� − Ĝ��p,���̂a�p,��� . �17�

Ĝr,a,��p ,�� and �̂r,a,��p ,�� are, respectively, the helicity-
basis nonequilibrium Green’s functions and self-energies.
Equation �16� is derived from the Dyson equation of the
spin-basis nonequilibrium lesser Green’s function by apply-
ing the unitary transformation Up.

In Eq. �16�, the electron-impurity scattering is embedded
in the self-energies, �r,a,��p ,��. This interaction in the he-

licity basis is described by a potential, V̂pk, which can be
written as

V̂pk = Up
+V�p − k�Uk + i�Up

+�n · �p � k��V�p − k�Uk.

�18�

In terms of the Feynman diagrams, V̂pk is denoted by two
different interaction vertices: ordinary and anomalous verti-
ces, which, respectively, are depicted in Figs. 1�a� and 1�b�.
Since electron-impurity scattering will be considered up to
the second Born approximation, it is convenient to express

the self-energies by means of generalized T matrices, T̂pk
r,a���,

which obey the equations28

T̂pk
r,a��� = V̂pk + 	

q
V̂pqĜr,a�q,��T̂qk

r,a��� . �19�

�These equations are exhibited in terms of Feynman dia-
grams in Fig. 1�c�.� Thus, the lesser self-energy can be writ-
ten as28
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�̂��p,�� = ni	
k

T̂pk
r ���Ĝ��k,��T̂kp

a ��� , �20�

while the retarded and advanced self-energies take the forms

�̂r,a�p,�� = niT̂pp
r,a��� . �21�

In the present paper, we restrict our considerations to the
linear response regime. In connection with this, all the func-
tions, such as the nonequilibrium Green’s functions, self-
energies, and distribution function, can be expressed as sums
of two terms: A=A0+A1, with A representing the Green’s
functions, self-energies, or distribution function. A0 and A1,
respectively, are the unperturbed part and the linear electric
field part of A. In this way, the kinetic equation for the linear
electric field part of the distribution, 
̂1�p�, can be written as

eE · �p
̂0�p� − eE · �
̂0�p�,Up
+�pUp� − i�eE · �p � n�

��Up
+�zUp, 
̂0�p�� + i�Ĥ0, 
̂1�p�� = − Î�1�, �22�

with Î�1� as the linear electric field part of the collision term Î,

Î�1� =� d�

2�
��̂1

��p,��Ĝ0
a�p,�� − Ĝ1

��p,���̂0
a�p,��

+ �̂0
r�p,��Ĝ1

��p,�� − Ĝ0
r�p,���̂1

��p,��� . �23�

We note that, here, the effect of Ĝ1
r,a�p ,�� on distribution

function has been ignored because these linear electric parts
of the retarded and advanced Green’s functions lead to a
collisional broadening effect on 
̂1�p�, which plays a second-
ary role in transport studies.

To further simplify Eq. �22�, we employ a two-band gen-
eralized Kadanoff-Baym ansatz �GKBA�.29,30 This ansatz,
which expresses the lesser Green’s function through the
Wigner distribution function, has been proven sufficiently
accurate to analyze transport and optical properties in
semiconductors.31 To first order in the dc field strength, the
GKBA reads

Ĝ1
��p,�� = − Ĝ0

r�p,��
̂1�p� + 
̂1�p�Ĝ0
a�p,�� , �24�

where the retarded and advanced Green’s functions in helic-

ity basis are diagonal matrices: Ĝ0
r,a�p ,��=diag
��

−�1�p�± i��−1 , ��−�2�p�± i��−1�. Note that the helicity-basis
equilibrium distribution is also diagonal, 
̂0�p�
=diag
nF��1�p�� ,nF��2�p��� with nF��� as the Fermi func-
tion.

Since our studies are concerned with electron transport
within the diffusive regime, it is sufficient to study the lowest
order of the distribution function in the impurity-density ex-
pansion. From the diagonal parts of Eq. �22�, we see that the
leading order of the diagonal 
̂1�p� elements, �
̂1����p�, is
proportional to �ni�−1. These diagonal elements of the distri-
bution function give rise to off-diagonal elements of the scat-

tering term Î�1�, which are independent of the impurity den-
sity. From the fact that the left-hand side of the off-diagonal

parts of Eq. �22� involves the term i�Ĥ0 , 
̂1�p�� proportional
to the off-diagonal elements of the distribution function,

i�Ĥ0, 
̂1�p�� = − 2i�p� 0 �
̂1�12�p�
�
̂1�21�p� 0

� , �25�

it follows that the leading order of the off-diagonal elements
of 
̂1�p� should be of order �ni�0, i.e., independent of the

impurity density. Note that the contributions to Î�1� from such
off-diagonal elements of 
̂1�p� are linear in the impurity den-

sity and hence can be ignored, while the contributions to Î�1�

from the diagonal elements, �
̂1����p�, are independent of ni

and become dominant. Thus, to the lowest order of the

ni-power expansion, Î�1� effectively involves only the diago-
nal elements of the distribution function.

From Eq. �22� we see that the driving force of the kinetic
equation can be classified into two classes: diagonal
eE ·�p
̂0, and off-diagonal −eE · �
̂0�p� ,Up

+�pUp� and
−i�eE · �p�n��Up

+�zUp , 
̂0�p��. In connection with this, we
may formally split the kinetic equation into two equations
with 
̂1�p�= 
̂1

I �p�+ 
̂1
II�p� as

FIG. 1. Feynman diagrams for electron-impurity scattering. �a�
and �b� show the interaction vertices, which, respectively, corre-
spond to the original scattering potential and the potential due to the
extrinsic SO coupling. �c� is the equation for the T matrix. �d� and
�e�, respectively, are Feynman diagrams for the T matrix in the first
and second Born approximations up to the first order of the spin-
orbit coupling constant, �.
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eE · �p
̂0�p� + i�Ĥ0, 
̂1
I �p�� = − Î�1�, �26�

− eE · �
̂0�p�,Up
+�pUp� − i�eE · �p � n��Up

+�zUp, 
̂0�p��

+ i�Ĥ0, 
̂1
II�p�� = 0. �27�

From Eq. �27� it is evident that 
̂1
II�p� has null diagonal ele-

ments. Since Î�1� depends only on the diagonal elements of
the distribution function, 
̂1

I �p� and 
̂1
II�p� can be approxi-

mately determined independently of one another by Eqs. �26�
and �27�.

Substituting the explicit forms of Ĝ0
r,a�p ,�� into Eq. �23�

and considering Eq. �24�, the elements of the linear electric-

field scattering term, Î�1�, can be written as

Î��
�1� = − 2 Im
�T̂pp

r �������p����
̂1
I ����p�

− 2�	
k

�����p� − ���k���T̂pk
r �������k��

��T̂kp
a �������k���
̂1

I ����k� − 2�	
k

�����p� − ��̄�k��

��T̂pk
r ���̄���̄�k���T̂kp

a ��̄����̄�k���
̂1
I ��̄�̄�k� �28�

and

Î��̄
�1� = i�T̂pp

r ���̄���̄�p���
̂1
I ��̄�̄�p� − i�T̂pp

a ���̄����p���
̂1
I ����p�

+ 	
k,�

„�T̂pk
r �������k���T̂kp

a ���̄����k���
̂1
I ����k�

�
�Ĝ0
a��̄�̄�p,���k�� − �Ĝ0

r����p,���k���… , �29�

with �=1,2 and �̄=3−�.
Further, as in all previous studies, we consider the anoma-

lous Hall current only to the first order of the spin-orbit cou-

pling constant �. Thus, the scattering term Î�1� and hence the
T matrix may be considered only in the lowest and first order
of �. On the other hand, we will evaluate the diagonal ele-

ments of Î�1� up to the second-Born approximation, but its
off-diagonal elements only in the first-Born approximation. It
is widely accepted that, in usual cases, the self-consistent
first Born approximation is sufficiently accurate to analyze
transport in diffusive regime �correspondingly, the scattering
term may be considered only in the first-Born approxima-

tion�. In our studies, Î��
�1� is evaluated up to the second Born

approximation because we should account for the skew scat-
tering AHC associated only with the diagonal elements of the
distribution function. Under these considerations, we need to
analyze only the Feynman diagrams depicted in Figs. 1�a�,
1�b�, 1�d�, and 1�e�. Substituting the T matrix obtained from
these diagrams, we obtain the explicit form of the scattering

term Î�1�, which is presented in the Appendix.
Considering the elastic features of the electron-impurity

scattering, Eq. �26� can be solved analytically. We know that

Î�1� does not involve the off-diagonal elements of 
̂1
I �p�.

Hence, the diagonal 
̂1
I �p� elements can be determined from

the diagonal parts of Eq. �26�, while its off-diagonal ele-
ments are given by substituting the obtained results for
�
̂1

I ����p� into the off-diagonal parts of Eq. �26�. We assume

that the solution 
̂1
I �p� can be expressed as 
̂1

I �p�=R̂0�p�
+R̂1�p� with R̂0�p� and R̂1�p� as the lowest- and first-order
terms of 
̂1

I �p� in the � expansion. In the lowest-order of �,

the diagonal elements of the distribution function, R̂0���p�,
are determined by

eE · �p
̂0���p� = − I�
a �R̂0� − I�

c �R̂0� , �30�

where the diagonal terms of Î�1�, I�
a,c�R̂0�, depend only on

the diagonal elements of R̂0�p�, R̂0���p�, and are given by

Eqs. �A1� and �A3�. Since I�
c �R̂0� is a higher-order term in

the electron-impurity scattering, we can assume that I�
c �R̂0�

is much smaller than I�
a �R̂0�. Hence, Eq. �30� can be solved

as follows: we first solve Eq. �30� by ignoring I�
c �R̂0� and

then substitute the obtained solution into I�
c to calculate a

correction caused by I�
c . Thus, we find that the solution of

Eq. �30� consists of two terms: R̂0���p�=R̂0��
s �p�

+R̂0��
c �p�, with R̂0��

s �p� and R̂0��
c �p�, respectively, deter-

mined by

eE · �p
̂0���p� = − I�
a �R̂0

s� , �31�

and

I�
a �R̂0

c� + I�
c �R̂0

s� = 0. �32�

The solution of Eq. �31�, R̂0��
s �p�, depends on the momen-

tum angle through sin �p and takes the form, R̂0��
s �p�

=eE�0�
s �p�sin �p, with the functions �0�

s �p� given by

�0�
s �p� = −

�nF����p��
����p�

��1�̄�̄
−1 + �2�̄�

−1 �
����p�

�p
+ �3��̄

−1
���̄�p̃��

� p̃�

��1�̄�̄
−1 + �2�̄�

−1 ���1��
−1 + �2��̄

−1 � − �3�̄�
−1 �3��̄

−1 , �33�
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where p̃� is given by equation ��̄�p̃��=���p� and the various
relaxation times �i�� �i=1, . . . ,3 ,� ,�=1,2� are defined as

1

�i��

= 2�ni	
k

�V�p − k��2�i���p,k� , �34�

with �1���p ,k�= 1
2 �1−cos��p−�k��a+�p ,k����, �2���p ,k�

= 1
2a−�p ,k����, �3���p−k�= 1

2 cos��p−�k�a−�p ,k���� and
a±�p ,k����p�k±M2±�2kp cos��p−�k�� /�p�k. Substituting

the result for R̂0��
s �p� into I�

c , we find that the solution of

Eq. �32�, R̂0��
c �p�, relates to a cosine function of the mo-

mentum angle: R̂0���p�=eE�0�
c �p�cos �p. �0�

c �p� is given
by

�0�
c �p� = −

��1�̄�̄
−1 + �2�̄�

−1 �L0�
c �p� + �3��̄

−1 L0�̄
c �p̃��

��1�̄�̄
−1 + �2�̄�

−1 ���1��
−1 + �2��̄

−1 � − �3�̄�
−1 �3��̄

−1 ,

�35�

with

L0�
c �p� = �2�2Mni	

k,q
Vp−kVk−qVq−p

1

�p�k
sin��k − �p�

� �c�+�p,q,k�����0�
s �p�

+ c�−�p,q,k����̄�0�̄
s �p̃��� , �36�

and c�±�p ,q ,k� defined by Eq. �A5�.
The off-diagonal R̂0�p� elements, R̂0��̄�p�, are obtained

by substituting R̂0��
s �p� into the off-diagonal parts of Eq.

�26�,

i�Ĥ0,R̂0�p�� = − Sa�R̂0
s� . �37�

Here, the effect of R̂0��
c �p� on the off-diagonal elements was

ignored. We find that R̂0��̄�p� depends on the momentum
angle not only through sin �p but also through cos �p. How-
ever, as discussed above, we are interested only in the part of

Re��R̂0�12�p��, which depends on �p through cos �p, and the

part of Im��R̂0�12�p��, involving sin �p: Re��R̂0�12�p��
=0

I �p�cos �p+¯ and Im��R̂0�12�p��=�0
I �p�sin �p+ ¯ ,

with 0
I �p� and �0

I �p� taking the forms,

�0
I �p� =

eE�ni

4�p
	

k�=1,2
�V�p − k��2 Im�ga�p,k��

��− 1��
����0�
s �p��1 − cos��p − �k��

− ���̄��0�
s �p� − �0�̄

s �p̃��cos��p − �k��� , �38�

and

0
I �p� =

eE�ni

4�p
	

k�=1,2
�V�p − k��2 Re�ga�p,k���− 1��

� �����0�
s �p�sin��p − �k�

− ���̄�0�̄
s �p̃��sin��p − �k�� , �39�

and ga�p ,k� defined as ga�p ,k��
�k�p sin��p−�k�
+ i�M�p−k cos��p−�k��� / ��k�p�.

To obtain the first-order term of the distribution function

in the � expansion, R̂1�p�, we substitute R̂0��
s �p� into the

diagonal components of the scattering term, I�
b and I�

d , as

well as its off-diagonal component Sb. We find that I�
b �R̂0

s�
depends on the angle of momentum through a sine function,

while I�
d �R̂0

s� relates to a cosine function: I�
b �R̂0

s�
=L1�

s �p�sin �p and I1�
d �R̂0

s�=L1�
c �p�cos �p with L1�

c,s given
by

L1�
s �p� = 2�ni��2	

k
�V�p − k��2

k2p2

�p�k
sin2��k − �p�

� 
�1 − cos��k − �p���0�
s �p����

− ��0�
s �p� − �0�̄

s �p̃��cos��k − �p�����̄� �40�

and

L1�
c �p� = �2�Mni	

k,q
Vp−kVk−qVq−p

1

�p�k
sin��k − �p�

� �d�+�p,q,k�����0�
s �p�

+ d�−�p,q,k����̄�0�̄
s �p̃��� . �41�

Here, d�±�p ,q ,k� are defined by Eq. �A6�. From the diago-

nal parts of Eq. �26� in the first order of �, I�
a �R̂1�

+I�
b �R̂0

s�+I�
d �R̂0

s�=0, it follows that R̂1���p� can be written
as

R̂1���p� = eE�1�
s �p�sin �p + eE�1�

c �p�cos �p, �42�

with �1�
s,c�p� determined by

�1�
s,c�p� = −

��1�̄�̄
−1 + �2�̄�

−1 �L1�
s,c�p� + �3��̄

−1 L1�̄
s,c�p̃��

��1�̄�̄
−1 + �2�̄�

−1 ���1��
−1 + �2��̄

−1 � − �3�̄�
−1 �3��̄

−1 .

�43�

The off-diagonal elements of R̂1�p� are obtained from the
off-diagonal parts of Eq. �26� in the first order of �:

i�Ĥ0 ,R̂1�p��=−Sb�R̂0
s�. According to the definitions,

Re��R̂1�12�p��=1
I �p�cos �p+¯ and Im��R̂1�12�p��

=�1
I �p�sin �p+¯, 1

I �p� and �1
I �p� can be written as

�1
I �p� =

eE�ni

4�p
	

k�=1,2
�V�p − k��2 Im�gb�p,k��

��− 1��
����0�
s �p��1 − cos��p − �k��

− ���̄��0�
s �p� − �0�̄

s �p̃��cos��p − �k��� , �44�

and

1
I �p� =

eE�ni

4�p
	

k�=1,2
�V�p − k��2 Re�gb�p,k���− 1��

�sin��p − �k������0�
s �p� − ���̄�0�̄

s �p̃��� .

�45�
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The other component of the kinetic equation, Eq. �27�,
can be solved easily. The solution 
̂1

II�p� has null diagonal
elements. Its off-diagonal elements can be written as
�
1

II�12�p�=II�p�cos �p+ i�II�p�sin �p with II�p� and �II�p�
defined as

II�p� =
�eE

4�p
2 �1 − 2�p2�
nF��1�p�� − nF��2�p��� �46�

and

�II�p� =
�eEM

4�p
3 
nF��1�p�� − nF��2�p��� . �47�

C. Anomalous Hall current

We first analyze the component of the anomalous Hall
current, Jx

f , that is associated with the current operator term
arising from the free-electron Hamiltonian and is a sum of
contributions from the diagonal and off-diagonal elements of
the distribution function: Jx

f =Jx
fd+Jx

fo. We know that Jx
fd is a

component of the skew scattering AHC. Considering Eq.
�13�, it is obvious that the nonvanishing Jx

fd comes from the

diagonal terms of the distribution function, R̂0��
c �p� and

R̂1��
c �p�, which depend on momentum angle through the

cosine function. Thus, Jx
fd can be written as Jx

fd=Jx
ss−L+Jx

ss−F,
where Jx

ss−L and Jx
ss−F, respectively, are associated with the

lowest- and first-order terms of the distribution function,

R̂0��
c �p� and R̂1��

c �p�,

Jx
ss−L = e2E	

p,�
�� 1

m* + �− 1���2

�p
�p cos2 �p�0�

c �p�� ,

�48�

Jx
ss−F = e2E	

p,�
�� 1

m* + �− 1���2

�p
�p cos2 �p�1�

c �p�� .

�49�

Note that both Jx
ss−L and Jx

ss−F are proportional to the inverse
of the impurity density, i.e., �ni�−1, appearing when electron-
impurity scattering is considered up to the second-Born ap-
proximation.

Since both the distribution terms 
̂I�p� and 
̂II�p� have
nonvanishing off-diagonal elements, the contribution to the
anomalous Hall current from off-diagonal elements of 
̂�p�,
Jx

fo, can be expressed as Jx
fo=Jx

fo�I+Jx
fo�II, where Jx

fo�I and Jx
fo�II

arise from 
̂12
I �p� and 
̂12

II �p�, respectively, and take the forms

Jx
fo�I = 2e2E	

p
��M

�p
�0

I �p� + 1
I �p��cos2 �p + ���0

I �p�

+ �1
I �p��sin2 �p� �50�

and

Jx
fo�II = 2e2E	

p
��M

�p
II�p�cos2 �p + ��II�p�sin2 �p�

=
M�2e2E

2 	
p

1

�p
3 �1 − �p2�
nF��1�p�� − nF��2�p��� .

�51�

From Eq. �50� we see that Jx
fo�I is independent of the im-

purity density, due to the ni independence of 0
I and �1

I . How-
ever, it is due to disorder and relates to longitudinal trans-
port. It is obvious that Jx

fo�I involves the derivative of the
equilibrium distribution function, i.e., �nF��� /��. This im-
plies that Jx

fo�I arises only from electron states in the vicinity
of the Fermi surface, or, in other words, from electron states
involved in longitudinal transport. Physically, the electrons
participating in transport experience impurity scattering, pro-
ducing diagonal 
̂1

I �p� elements of order of ni
−1. Moreover,

the scattering of these perturbed electrons by impurities also
gives rise to an interband polarization, which eliminates de-
pendence on the impurity density within the diffusive re-
gime.

However, the anomalous Hall current Jx
fo�II is a function of

the entire unperturbed equilibrium distribution, nF���, not
just of its derivative, �nF��� /��, at the Fermi surface. This
indicates that Jx

fo�II has contributions from all electron states
below the Fermi sea. Obviously, Jx

fo�II is independent of any
electron-impurity scattering and relates to the driving terms,
one of which is just the interband electric dipole moment,
while the other one arises from the SO coupling directly
induced by the driving electric field.

From Eq. �10�, it is obvious that to determine the first-
order term of Jx

imp in the �-power expansion, one must deal

with the function �̌�p
+ �̌�k� in the lowest order of �. We find

that this lowest-order term of �̌�p
+ �̌�k� can be evaluated

from the kinetic equation for the distribution function 
̌�p�.
To show this, we start with a Heisenberg equation for the

operator �̌�p
+ �̌�p,

i �
�

�T
�̌�p

+ �̌�p = �Ȟ,�̌�p
+ �̌�p� = − ieE · �p��̌�p

+ �̌�p�

+ �Ȟ0 + ȞE,�̌�p
+ �̌�p� + Ǐ��

s �p� , �52�

where Ǐ��
s �p���Ȟimp, �̌�p

+ �̌�p�. In the lowest order of �,

Ǐ��
s �p� takes the form

Ǐ��
s �p� � 	

k,i
Vp−k�eiRi·�p−k��̌�k

+ �̌�p − eiRi·�k−p��̌�p
+ �̌�k� .

�53�

Multiplying both sides of Eq. �52� by �lmnpm���
n and taking

the summation over � and �, we get

	
p,��

�lmn�pm���
n Ǐ��

s �p��� � 	
p,k,��

eiRi·�k−p�Vk−p�lmn�km − pm�

���̌�p
+ �̌�k����

n � , �54�

with ¯� denoting a statistical average. Obviously, the right-
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hand side of Eq. �54� is just the AHC component Jl
imp. On the

other hand, taking the statistical average of Eq. �52� reduces

it to the kinetic equation for 
̌���p�= �̌�p
+ �̌�p�. Hence, from

Eqs. �52� and �54�, it follows that Jl
imp can be written in the

spin basis as

Jl
imp = − �e	

p
�lmnpm Tr„�n
eE · �p
̌�p� + i�Ȟ0, 
̌�p���… ,

�55�

where the contribution associated with ȞE is ignored because
it is of higher order in �. Jl

imp can also be determined in the
helicity basis by means of

Jl
imp = − �e	

p
�lmnpm Tr„Up

+�nUp
eE · �p
̂�p�

− eE · �
̂�p�,Up
+�pUp� + i�Ĥ0, 
̂�p���… . �56�

In the linear response regime, Eq. �56� reduces to

Jx
imp = − �e	

p

py

�p
�eEM�py

��
̂0�11�p� − �
̂0�22�p��

−
eE�2p

�p
2 M sin �p��
̂0�11�p� − �
̂0�22�p��

+ 4�p�p��0
I �p� + �II�p��sin �p�

= − �e	
p
�−

eEM

�p

nF��1�p�� − nF��2�p���

+ 4�ppy��0
I �p� + �II�p��sin �p� . �57�

To obtain the last equality in Eq. �57�, the momentum inte-
gral with integrand involving the derivative with respect to
py was performed by parts. Note that Sinitsyn et al. recently
investigated this component of the anomalous Hall current in
the absence of Rashba SO coupling by analyzing the effect
of impurity scattering on the coordinate shift of the electron
wave packet.15

Jx
E arises from SO coupling directly induced by the driv-

ing electric field. Considered to linear order in the electric
field, it takes the form

Jx
E = �e2E	

p

nF��1�p�� − nF��2�p��� . �58�

Obviously, this contribution to the anomalous Hall current is
independent of any electron-impurity scattering. If only one
of the parameters—the Rashba SO coupling constant or the
magnetization—is zero and other remains finite, Jx

E does not
vanish. In contrast to this, Jx

fd and Jx
fo, as well as Jx

imp reduce
to zero for just one of them vanishing, null � or M. Note that
in all previous studies, the contribution to anomalous Hall
current from the SO term due to the driving electric field has
been ignored. In the following numerical calculation, we will
show that Jx

E plays an important role, especially in the low
magnetization regime.

Thus, after all components of AHC are determined, the
total anomalous Hall current can be obtained from Eq. �9�.
We define the total anomalous Hall conductivity as �xy
=Jx /E. Obviously, �xy can be written as

�xy = �xy
sj + �xy

ss , �59�

with �xy
sj =Jx

sj /E=�xy
fo +�xy

imp+�xy
E and �xy

ss =Jx
ss /E=�xy

ss−L

+�xy
ss−F. Here, the quantities, �xy

fo, �xy
imp, �xy

E , �xy
ss−L, and �xy

ss−F,
are defined as �xy

imp,E=Jx
imp,E /E, �xy

fo =Jx
fo /E, �xy

ss−L=Jx
ss−L /E

and �xy
ss−F=Jx

ss−F /E.
It should be noted that, in our study, the diagonal part of

the distribution function, R̂0
s�p�, which is involved in all

disorder-related components of anomalous Hall current, was
evaluated in the self-consistent Born approximation. This im-
plies that our results correspond to that obtained in the Kubo
formalism by considering the “ladder-sum” vertex correc-
tions to the bubble diagrams.

III. RESULTS AND DISCUSSIONS

We have carried out a numerical calculation to investigate
the anomalous Hall effect in a InSb/AlInSb quantum well
with Rashba SO coupling. Such a system was recently ex-
amined experimentally.32 It is well known that the InSb
semiconductor is a good material for AHE observation be-
cause its band gap, E0=0.235 eV, spin-orbit splitting, �SO
=0.81 eV, and P=9.63 eV Å result in a pronounced spin-
orbit coupling constant �=5.31 nm2 �for GaAs, �
=0.053 nm2�.33 Also, the large g factor, g=−51.4, may lead
to a remarkably large magnetization. In our calculation, the
static dielectric constant, �, and the effective mass of InSb,
m*, are chosen to be �=17.54 and m*=0.0135m0 with m0 as
the free electron mass. The width of the InSb/AlInSb quan-
tum well is assumed to be a=20 nm and the density of elec-
trons is taken as Ne=1�1015 m−2. We consider an attractive
interaction between the electrons and the background impu-
rities in the quantum wells �the attractive and repulsive in-
teractions lead to differing anomalous Hall effects because
their contributions to AHC in the second Born approximation
have opposite signs�. Note that we have also estimated the
effect of scattering of electrons by remote impurities on
AHE, finding that it is relatively small and can be ignored.
Thus, the scattering potential Vq can be written as34

Vq = U�q�F�q�/��q,0� , �60�

with U�q�=−e2 / �2�0�q� and the form factor F�q� deter-
mined by �u=qa�,

F�q� =
8�2

�4�2 + u2�u�1 +
u2

4�2 −
1 − exp�− u�

u
� . �61�

��q ,0� is a static dielectric function in random phase ap-
proximation and can be written as

��q,0� = 1 +
qs

q
H�q� , �62�

with qs=m*e2 / �2�	0�� and H�q� given by35
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H�q� = 3
1 − exp�− u�

u2 + 4�2 +
u

u2 + 4�2 −
1 − exp�− u�
�u2 + 4�2�2 �u2 − 4�2�

+
2

u
�1 −

1 − exp�− u�
u

� . �63�

Here, the effect of the Rashba SO coupling on the screening
of Vq is ignored. Further, to determine the impurity density,
we assume that for M =0 and �=0 the electron-impurity
scattering results in an electron mobility �0=5 m2/V s.

A. Anomalous Hall effect in a InSb/AlInSb quantum well
without Rashba SO coupling

We first analyzed the anomalous Hall effect in the absence
of Rashba SO interaction. In this case, the lowest order com-
ponent of Jx

fd in �, Jx
ss−L, vanishes, while the component Jx

ss−F

is nonvanishing and reduces to

Jx
ss−F = e2E	

p,�

p

m* cos2 �p�1�
c �p� , �64�

with �1�
c �p� determined by

�1�
c �p� = �− 1��4�2ni�1����0�

s �p�

�	
k,q

Vp−kVk−qVq−ppk sin��k − �p�

�����p − ��k�����p − ��q�

� �pk sin��k − �p� + qp sin��p − �q�

− qk sin��k − �q�� , �65�

and �0�
s �p�=−�1��

�nF����p��

����p�

����p�

�p . Since the contributions to

AHC from the off-diagonal elements of the distribution func-
tion, Jx

fo=Jx
fo�I+Jx

fo�II, vanish, the side-jump AHC involves
only the components Jx

imp and Jx
E: Jx

sj =Jx
imp+Jx

E. Here, Jx
imp

and Jx
E are equal to each other and take the form

Jx
imp = Jx

E = �e2E	
p


nF��1�p�� − nF��2�p��� . �66�

In Fig. 2, we plot the calculated total anomalous Hall
conductivity �xy =�xy

ss +�xy
sj , and its component �xy

sj =�xy
imp

+�xy
E as functions of magnetization, M. With increasing mag-

netization, �xy and �xy
sj increase linearly. A comparison be-

tween �xy and �xy
sj indicates that, for the given �0

=5 m2/V s, both the contributions from side jump and skew
scattering are of the same order of magnitude. Note that,
notwithstanding the large spin-orbit coupling constant �, the
anomalous Hall conductivity is still much smaller than the
ordinary one: the ordinary Hall conductivity is 34.6 e2 /h for
a magnetic field B=0.34 T �in the InSb/AlInSb quantum
well with g=−51.4, this magnetic field corresponds to a
magnetization M =1 meV�.

From Eqs. �65� and �66� we see that in the absence of
both the Rashba SO coupling and magnetization, the contri-
butions to anomalous Hall current from electrons with oppo-
site spins �or helicities� have opposite signs. As a result, the
total anomalous charge Hall current vanishes. However,
there is a nonvanishing spin-Hall current since electrons with
opposite spins move toward opposite sides of the sample. We
estimate the spin-Hall current in the studied InSb/AlInSb
quantum well for �=0 and M =0, finding that the spin-Hall
mobility �sH defined in Ref. 36 is �sH=0.013 m2/V s. �In
contrast to this, in a GaAs/AlGaAs quantum well with
charge mobility �0=0.6 m2/V s, the total spin-Hall mobility
is �sH=−2.0�10−5 m2/V s, and the contributions from side
jump and skew scattering, respectively, are �sH

sj =−1.6
�10−4 m2/V s and �sH

ss =1.4�10−4 m2/V s. They are of the
same order of magnitude as the spin-Hall mobilities in bulk
n-doped GaAs: in a bulk GaAs with the same �0, Engel et
al.25 found �sH

sj =−1.6�10−4 m2/V s and �sH
ss =3.5

�10−4 m2/V s.�

B. Anomalous Hall effect in a Rashba InSb/AlInSb
quantum well

We have also calculated the anomalous Hall conductivity
in a InSb/AlInSb quantum well with Rashba spin-orbit in-
teraction. In the case of nonvanishing �, one must consider
not only �xy

ss−F and �xy
imp,E, but also the anomalous Hall con-

ductivities, �xy
fo =�xy

fo�I+�xy
fo�II, and �xy

ss−L. The results are plot-
ted in Figs. 3 and 4.

In Fig. 3, we plot the total anomalous Hall conductivity,
�xy, and the skew scattering and side-jump Hall conductivi-
ties, �xy

ss and �xy
sj , as well as their components, �xy

ss−L, �xy
fo, �xy

E ,
and �xy

imp, as functions of magnetization M for various
Rashba spin-orbit coupling constants. We find that, as mag-
netization increases, the total anomalous Hall conductivity
�xy increases for �=5, 10, and 20 meV nm, but it first in-
creases and then decreases for �=50 meV nm.

Such complicated behavior of the magnetization depen-
dence of �xy arises from competition of the side-jump and
skew scattering contributions to anomalous Hall conductiv-
ity. From Figs. 3�b� and 3�c� it is obvious that �xy

ss varies
monotonically with the magnetization, but in the magnetiza-
tion dependence of �xy

sj there is always a small dip �when
�=50 meV nm, this dip is shifted out of the studied magne-
tization range�. In �xy

ss , �xy
ss−F is dominant for small �, leading

to an increase of �xy
ss with increasing M. However, when �

�30 meV nm, �xy
ss−L is important: �xy

ss becomes negative and
its magnetization dependence exhibits a decrease with in-

FIG. 2. Magnetization dependencies of �xy and �xy
sj in a

InSb/AlInSb quantum well without Rashba spin-orbit coupling.
The width of the quantum well a is a=20 nm. The electron density
is Ne=1�1015 m−2. The lattice temperature is T=0 K and the mo-
bility in the absence of magnetization is �0=5 m2/V s.
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creasing magnetization. Among the contributions to �xy
sj , �xy

fo

is dominant for large magnetization, while �xy
E is important

for small M and results in a nonvanishing �xy
sj when ��0 but

M =0.
In Fig. 4, we plot �xy, �xy

ss , and �xy
sj as functions of the

spin-orbit coupling constant. We find that, as � increases, �xy
increases monotonically for M =0 meV, while for M
=0.5–2 meV, �xy first decreases and then increases. It is also
evident from Figs. 4�b� and 4�c� that, with increasing Rashba
spin-orbit coupling constant �, �xy

sj increases while �xy
ss de-

creases. Since the rate of increase or decrease depends on M,
the � dependence of the total anomalous Hall conductivity
behaves differently for different magnetizations.

IV. CONCLUSIONS

We have employed a kinetic equation approach to inves-
tigate the anomalous Hall effect in Rashba 2D electron sys-
tems based on narrow band semiconductors. The Rashba SO
coupling was considered nonperturbatively, while the extrin-
sic spin-orbit interaction and the SO coupling directly in-
duced by an external driving electric field were taken into
account in the first order of the coupling constant. Consider-
ing electron-impurity scattering up to the second-Born ap-
proximation, we found that the various components of the
anomalous Hall current can fit into two classes: the side-
jump and skew scattering anomalous Hall currents. The side-
jump anomalous Hall current involves contributions not only
from the extrinsic SO coupling, but also from SO coupling
directly induced by the driving electric field. It also contains
a component which arises from Rashba SO coupling and
relates to the off-diagonal elements of the helicity-basis dis-
tribution function. The skew scattering AHE arises from the
anisotropy of the diagonal elements of the distribution func-
tion, and it is a result of the Rashba and extrinsic SO inter-
actions. We also performed a numerical calculation to inves-
tigate the anomalous Hall effect in a InSb/AlInSb quantum
well. We found that the contributions to anomalous Hall con-
ductivity from both the side-jump and skew scattering terms
are of the same order of magnitude, leading to complicated
dependencies of the total anomalous Hall conductivity on
magnetization and on the Rashba spin-orbit coupling con-
stant. It is also clear that the component arising from the SO
coupling due to the driving electric field is dominant for
small magnetization.
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APPENDIX: EXPLICIT FORM OF Î„1…

The diagonal elements of Î�1�, �Î�1����, can be written as

sums of four terms: �Î�1����=I�
a �
̂1

I �+I�
b �
̂1

I �+I�
c �
̂1

I �

FIG. 3. Magnetization dependencies of �a� the total anomalous
Hall conductivity, �xy, �b� the skew scattering and �c� side-jump
Hall conductivities, as well as their components, �d� �xy

ss−L, �e� �xy
fo,

�f� �xy
E , and �g� �xy

imp in a InSb/AlInSb quantum well with different
Rashba SO couplings, �=5, 10, 20, and 50 meV nm. The other
parameters are the same as in Fig. 2.

FIG. 4. The dependencies of �a� the total anomalous Hall con-
ductivity �xy, �b� the skew scattering, and �c� the side-jump anoma-
lous Hall conductivities, �xy

ss and �xy
sj , on the Rashba spin-orbit cou-

pling constant for different magnetizations, M =0, 0.5, 1.0, 1.5, and
2.0 meV. The other parameters are the same as in Fig. 2.
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+I�
d �
̂1

I � ��
̂1
I � denotes that I�

a,b,c,d depend on the specific
form of the distribution function 
̂1

I �. I�
a �
̂1

I � and I�
b �
̂1

I � are
the terms of the first Born approximation and can be written
as

I�
a �
̂1

I � = �ni	
k

�V�p − k��2
a+�p,k�

���
1
I ����p� − �
1

I ����k��

���� + a−�p,k���
1
I ����p� − �
1

I ��̄�̄�k�����̄� ,

�A1�

and

I�
b �
̂1

I � = 2�ni��2	
k

�V�p − k��2
k2p2

�p�k
sin2��k − �p�

� 
��
1
I ����p� − �
1

I ����k�����

− ��
1
I ����p� − �
1

I ��̄�̄�k�����̄� , �A2�

with ���������p�−���k�� and a±�p ,k����p�k±M2

±�2kp cos��p−�k�� /�p�k. I�
c �
̂1

I � and I�
d �
̂1

I � are the terms
of the second Born approximation. I�

c �
̂1
I � is explicitly inde-

pendent of the spin-orbit coupling constant � and takes the
form

I�
c �
̂1

I � = �2Mni�
2	

k,q
Vp−kVk−qVq−p

1

�p�k

� �c�+�p,q,k�����
1
I ����k�

+ c�−�p,q,k����̄�
1
I ��̄�̄�k�� , �A3�

while I�
d �
̂1

I � is linear in � and can be written as

I�
d �
̂1

I � = �2�Mni	
k,q

Vp−kVk−qVq−p
1

�p�k

� �d�+�p,q,k�����
1
I ����k�

+ d�−�p,q,k����̄�
1
I ��̄�̄�k�� . �A4�

The parameters c�±�p ,k ,q� and d�±�p ,k ,q� are defined as

c�±�p,q,k� = �
�− 1��

�q
C�p,q,k�
�����p� − ���q��

− �����p� − ��̄�q��� , �A5�

d�±�p,k,q� =
1

�q
„D�±

m �p,q,k�
�����p� − ���q��

− �����p� − ��̄�q��� + D�±
p �p,q,k�

�
�����p� − ���q�� + �����p� − ��̄�q���… ,

�A6�

with

C�p,q,k� = pq sin��p − �q� − qk sin��k − �q�

+ pk sin��k − �p� , �A7�

D�±
m �p,q,k� = �− 1��+1�±M2 + �k�p��pk sin��k − �p�

+ qp sin��p − �q� − qk sin��k − �q��

± �− 1��+1�2
pk sin��k − �p�

��pq cos��p − �q� + qk cos��q − �k�

− kp cos��k − �p�� + qp sin��p − �q�

��− pq cos��p − �q� + qk cos��q − �k�

+ kp cos��k − �p�� + qk sin��k − �q�

��− pq cos��p − �q� + qk cos��q − �k�

− kp cos��k − �p��� , �A8�

and

D�±
p �p,q,k� = �− 1��+1�q��k ± �p��pk sin��k − �p�

+ qp sin��p − �q� − qk sin��k − �q�� .

�A9�

Since the off-diagonal elements of the collision term Î�1�

are simply related by Î12
�1�=−�Î21

�1��*, it suffices to consider the

element Î12
�1�. In the first-Born approximation, Î12

�1� can be ex-

pressed as a sum of two terms: Î12
�1�=Sa�
̂1

I �+Sb�
̂1
I � with

Sa�
̂1
I � and Sb�
̂1

I � as the terms in the lowest- and first order
of �, respectively, and determined by

Sa,b�
̂1
I � =

ni

2 	
k

�V�p − k��2ga,b�p,k�

�
��Ĝ0k
r �11��2p� − �Ĝ0k

r �22��2p���
̂1
I �22�p�

− ��Ĝ0p
a �22��2k� − �Ĝ0p

r �11��2k���
̂1
I �22�k�

− ��Ĝ0k
a �11��1p� − �Ĝ0k

a �22��1p���
̂1
I �11�p�

+ ��Ĝ0p
a �22��1k� − �Ĝ0p

r �11��1k���
̂1
I �11�k�� .

�A10�

Here, ga�p ,k��
�k�p sin��p−�k�+ i�M�p−k cos��p
−�k��� / ��k�p� and gb�p ,k��−2 sin��p−�k��iM sin��p
−�k�+�p cos��p−�k����k2p / ��k�p�.
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