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We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in
the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the
corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the
framework of random phase approximation. The dependence of excitation dispersion on various system pa-
rameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the
Coulomb interaction strength is investigated.
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I. INTRODUCTION

The emerging field of spintronics has generated an intense
interest in the effect of spin-orbit interaction �SOI� in low-
dimensional semiconductor structures.1–3 The Rashba SOI4

which arises from the inversion asymmetry of the confining
potential is of particular interest as its strength may be varied
in a controllable manner.5–10 The dependence of Rashba SOI
strength on the gate voltage has been studied experimentally
by analyzing the beating pattern in the Shubnikov-de Haas
�SdH� oscillations.6–10

The electron charge-density and spin-density excitations
in a two-dimensional electron gas �2DEG� are collective ex-
citations induced by the electron-electron �e-e� interac-
tion.11–18 In the presence of an external magnetic field, these
excitations are called magnetoplasmons.11 The energy and
other characteristics of these excitations can be measured in
optical experiments, for example, via infrared absorption14

and inelastic light scattering measurement.15–17

There are extensive theoretical11–13 and experimental
investigations17,18 on magnetoplasmons. However, in these
theoretical works, SOI is usually ignored for simplicity and
clarity. More recently, theoretical studies on collective exci-
tations in a 2DEG, where the spin-orbit coupling was taken
into account, were presented in the absence of an external
magnetic field.19–21 The intersubband spin-density excitation
in a quantum well at zero magnetic field was studied within
the local density-functional approach.22

In this paper, we wish to study theoretically the charge-
density excitation �CDE� and spin-density excitation �SDE�
in a 2DEG in the presence of a perpendicular magnetic field
within the framework of random phase approximation
�RPA�. The Rashba SOI is taken into account explicitly.
Complementary to previous theoretical works, we will study
in detail the dependence of excitation dispersion on various
system parameters, i.e., the Rashba spin-orbit interaction
strength, the electron density, the Zeeman spin splitting, and
the Coulomb interaction strength. In this work, the RPA is
employed for simplicity. In the case of no spin-orbit cou-
pling, RPA was found to give a correct description of the
dispersion relation of charge density excitations in the long
wavelength limit.23

The present paper is organized as follows: in Sec. II, the
formulation and calculation scheme for charge-density and

spin-density excitations are briefly reviewed. Although the
standard RPA approach can be found in textbooks,24 for clar-
ity purposes, it is still necessary to introduce some notations
which will be used throughout the paper. In Sec. III, we
present our numerical results and discuss the underlying
physics. Finally, a summary is presented in the last section.

II. FORMULATION AND CALCULATION

Let us consider a 2DEG in the xy plane with an external
magnetic field B applied along the z direction. The vector
potential is chosen as A= �0,Bx ,0� in the Landau gauge. The
interacting Hamiltonian can be written as

H = �
���

� dr��
†�r�H���

0 ����r�

+
1

2 �
���

� drdr���
†�r����

† �r��v�r − r������r�����r� ,

where ���r� is the field operator. H0 is the single-electron
Hamiltonian with Rashba SOI and it can be written as

H0 =
1

2m*�p +
e

c
A�2

+
�

�
��� � �p +

e

c
A��

z
+

1

2
g*�BB�z

with m* the effective mass of electrons, g* the effective
g-factor, �B the Bohr magneton, �� = ��x ,�y ,�z� the Pauli
spin matrix, and � the Rashba SOI strength. The analytic
solutions of the single-electron energy levels can be obtained
and they are given by

E0 = ���c − g�BB�/2,

El
± = l��c � 	E0

2 + 2l�2/lc
2, l = 1,2, . . . ,

with �c=eB /m*c the cyclotron frequency, lc=	�c /eB the
magnetic length. This analytical solution has also been ob-
tained by many others.

The charge-density correlation function 	
 and the spin-
density correlation functions 	�z��±� are defined for imagi-
nary time � as11

	
�r,r�,�� = − 

�r,��
�r�,0�� ,
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	�z
�r,r�,�� = − 
�z�r,���z�r�,0�� ,

	�±
�r,r�,�� = − 
���r,���±�r�,0�� ,

where the charge-density operator 
 and the spin-density op-
erator �� are defined as


�r,�� = �
�1

��1

† �r,����1
�r,�� ,

�� �r,�� = �
�1�2

��1

† �r,���� ��2
�r,�� ,

and �±= ��x± i�y� /2. Within the RPA, the correlation func-
tions in the momentum and frequency space can be written
as24

	A�q,�� = PA�q,���1 − v�q�D0�q,��/�−1, �1�

where the subscript A stands for 
, �z, or �±. v�q�
=2�e2 /0q with 0 the static dielectric constant. D0�q ,��
=��1�2

D�1�1,�2�2

0 �q ,��, with D�1�2,�3�4

0 �q ,�� the density cor-

relation function associated with ��1

† ��2
and ��3

† ��4
in the

absence of e-e interaction. This corresponds to the bubble
diagram in the language of the Feynman diagrammatic
method.24 This correlation function can be calculated in
terms of the single-particle Green’s functions

D�1�2,�3�4

0 �q,i�n� =
1

��
�

l1l2l3l4

�
kk�


l1k��eiq·r�l2k�

�
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� �
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0 �i�1�Gl4�4,l1�1

0 �i�1 − i�n� ,

where �lk� is the wave function for the single electron Hamil-
tonian without SOI, but Gl1�1,l2�2

0 �i�n� is the single-particle
Green’s function with SOI included. Functions PA�q ,�� can
be obtained as follows:

P
�q,�� = D0�q,�� ,

P�z
�q,�� = D↑↑,↑↑

0 + D↓↓,↓↓
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− 4
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It can be shown that the correlation functions 	A�q ,�� are all
independent of the direction of the wave vector q.

The pole of the charge-density and spin-density response
functions, �p�q�, gives the excitation dispersion of the sys-
tem. From Eq. �1�, one sees that the dispersion relation of
CDE and SDE is determined by the same equation

1 −
v�q�

�
D0�q,�p� = 0.

At the pole �p, one may introduce the functions

SA�q,�p� = � lim
�→�p

�� − �p�	A�q,��� .

It describes the relative intensities of the excitation. The
stronger the function SA�q ,�p� is, the more easily the exci-
tation spectrum can be observed at �p experimentally.

III. RESULTS AND DISCUSSIONS

In our numerical calculation, a set of dimensionless vari-
ables are adopted: energy levels are taken in the unit of the
cyclotron resonance energy ��c and length variables are
taken in the unit of the magnetic length lc. �*=� / �lc��c�
denotes the Rashba SOI strength. rc=e2 / �0lc��c�, where 0

is a dielectric constant, describes Coulomb interaction
strength, which is required to be a small value as RPA is a
perturbation theory. We limit ourselves to rc�1. The Zee-
man spin splitting is described by rz=g*�BB /��c
=g*m* /me with me the free electron mass in vacuum. The
value of electron density ne is represented by the filling fac-
tor � defined as �=ne /2�lc

2.
We will limit ourselves to the region ��1. In the region

��1, two-dimensional electrons may exhibit fractional
quantum Hall effect25 or Wigner crystal state.26 In these
cases, the electron correlation is very important,27 however,
the electron correlation is not included in RPA. In addition,
the kBT���c limit is considered for simplicity. All param-
eters used in our numerical calculation are chosen such that
they are in the experimentally accessible region.

First, let us examine the general feature of collective ex-
citations. The collective excitation may be viewed as a co-
herent superposition of single-particle excitations with tran-
sition energies renormalized by the Coulomb interaction.
When the spin-orbit coupling is taken into account, electrons
are allowed to make transitions between Landau levels with
different spins even in charge density excitations. In the case
that the two lowest levels are fully or partially occupied, four
excitation modes can be found in the vicinity of the cyclo-
tron frequency, as shown in Fig. 1 for rc=0.3, rz=−0.05, �
=1.3, and �*=0.06. For convenience, in Fig. 1, these modes
are marked as �1, �2, �3, and �4 in turn from top to bottom,
respectively. In the inset of Fig. 1, the lowest four energy
levels and four single-particle transitions associated with the
collective modes are shown schematically. The fully or par-
tially occupied levels are shown by solid lines, and empty
levels by dashed lines.

As the wave vector q increases, the mode �2 first in-
creases rapidly until it meets mode �1. At this wave vector
�about qlc=0.38� modes �2 and �1 form an anticross. How-
ever, the splitting is so small that one can hardly see from the
figure in its current scale. As q further increases, �2 becomes
almost q independent until qlc=1.73. After that �2 gradually
decreases and approaches �c from above as q increases.
Mode �1 first is almost q independent. When qlc�0.38, it
increases and reaches a maximum at qlc=0.95. Around qlc
=1.8, mode �1 forms an anticross with mode �2. Beyond
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this point, �1 is almost q independent. Unlike modes �1 and
�2, mode �3 has only a slight dependence on the wave vec-
tor, and mode �4 is almost q independent.

Now let us study the behavior of the dispersion curves in
the long wavelength limit. For simplicity and clarity, we will
limit ourselves to the case that the filling factor � is limited
within 1 and 2. Without the loss of generality �g* and �
should not be too large�, we may assume that two lowest
levels are E0 and E1

+, respectively, and they are fully or par-
tially occupied. �1 denotes the filling fraction of E0, and �2
represents the occupation of E1

+. Thus �=�1+�2. Omitting
terms in the fifth and higher powers of qlc, one can obtain
analytic expressions for these four modes in the long wave-
length limit:

�1/�c = �E1
− − E1

+�/��c +
rc�2�1

2

4�1 + �1
2�2 �qlc�3,

�2/�c = �E1
− − E0�/��c +

rc�1

2�1 + �1
2�

qlc,

�3/�c = �E2
+ − E1

+�/��c +
rc�2

2�1 + �1
2��1 + �2

2�
qlc,

�4/�c = �E2
+ − E0�/��c +

rc�1�2
2

8�1 + �2
2�

�qlc�3.

Here �n= �	2� / lc� / �E0+	E0
2+2n�2 / lc

2�. One observes that
all four modes approach energy differences of single-particle
energy levels, as q→0.

In the absence of SOI, it is well-known that the charge
density excitation energy �p around �c always approaches
�c as q→0, as required by Kohn’s theorem.28 This well-
known theorem states that the cyclotron resonance frequency
is not affected by the e-e interaction in a translational invari-
ant system. When SOI is taken into account, Kohn’s theorem
is no longer applicable as the electric current contains a con-
tribution from spin motion. However, our above q→0 result
indicates that the Coulomb interaction still vanishes in the
long wavelength limit. This is accidently because here only
the direct Coulomb energy is considered due to the restric-
tions of the RPA method. We wish to point out that the dif-
ferences of energy levels �single-particle transition energies�,
which give the excitation energies as q→0, are singly deter-
mined by the Zeeman spin splitting and Rashba SOI strength
since energy levels are calculated within a single electron
picture.

In Fig. 1, we also plot the dispersion curve ��q� in the
case of no SOI. It is plotted as open dots. As q increases, �
shifts away and back to �c, and this frequency shift ��=�
−�c is proportional to the e-e interaction strength.11 In the
case that SOI is taken into account, we may define frequency
shifts ��i �i=1,2 ,3 ,4� as follows: ��i=�i−�i0, where ��i0

denotes the corresponding single particle transition energy.
From Fig. 1, one sees that the sum of these frequency shifts
���=�i��i as a function of qlc follows a behavior similar to
that ���� in the absence of SOI. This observation suggests
that one may view four modes shown in Fig. 1, in particular,
the anticrossing behavior between the modes, as a conse-
quence of coupling between mode ��q� and four single-
particle transitions �i0 when they cross each other. This pic-
ture suggests that the existence of anticrosses requires a
stronger e-e interaction for a fixed Zeeman splitting, or a
smaller Zeeman splitting for a fixed e-e interaction strength.
This will be discussed in more detail later.

To characterize collective excitations further, we study the
intensities of these modes. In Fig. 2, functions SA�q ,�p� are
plotted as a function of qlc for these four modes. In each of
four panels of Fig. 2, A stands for 
, �z, �+, and �−, respec-
tively. In each panel, we also mark a mode with a mode

FIG. 1. Excitation spectra in the vicinity of the cyclotron fre-
quency �c as a function of the wave vector qlc. These four modes
are marked as mode �1, �2, �3, and �4 in turn from top to bottom,
which correspond to solid, dashed, dash-dotted, and dotted lines,
respectively. Parameters used are Coulomb interaction strength rc

=0.3, Zeeman splitting rz=−0.05, Rashba SOI strength �*=0.06,
and the filling factor �=1.3. The dispersion curve in the absence of
SOI is also plotted as open dots. The inset shows schematically the
lowest four energy levels and four single-particle transitions asso-
ciated with the collective modes. The fully or partially occupied
levels are shown by solid lines, and empty levels by dashed lines.

FIG. 2. CDE and SDE intensities �SA�q ,�p� for each dispersion
curve in Fig. 1 as a function of qlc. In each panel, A stands for 
, �z,
�+, and �−, respectively.
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identifier if this mode has a relatively strong intensity. The
mode identifier marked has the same meaning as in Fig. 1.
We wish to point out that by examining the strength, one
may know the characteristic of a particular mode. For in-
stance, if a mode has a relatively large value of S
, then it
should be easier to detect this mode via the charge density 

response of the system. In this case, one may say that this
mode is of CDE character.

Let us first examine the S
 panel of Fig. 2. For qlc less
than 0.38, the mode �2 has a larger intensity. When qlc falls
between 0.38 and 1.73, the mode �2 loses its intensity, while
mode �1 becomes dominant. The intensity of mode �1
reaches a maximum at qlc=1.3 and beyond this it falls mono-
tonically. When qlc becomes larger than 1.73, the mode �1
loses its intensity and the mode �2 regains intensity. The
intensity of mode �2 reaches a maximum at qlc=1.92 and
then it falls as q further increases. The mode �3 only gains a
weak intensity at large q. By comparing this panel with the
behavior of dispersion curves shown in Fig. 1, one sees that
when a mode exhibits a larger shift from the corresponding
single-particle transition energy, then it usually has a larger
intensity in S
. Such a correlation is qualitatively true for
modes �1 and �2, but is only partly true for the mode �2.
The intensity of mode �2 shows two peaks while the disper-
sion curve of �2 only shows one broad peak.

Let us now turn to the S�z
panel of Fig. 2. One sees that

except in a narrow small q region, mode �3 is the strongest
one among four modes. It is interesting to note that �3 has no
dramatic frequency shift in its dispersion curve as shown in
Fig. 1. Modes �1 and �2 only show weak intensities in the
regions where two modes have relatively large frequency
shifts in their dispersion curves. Our numerical calculation
shows �though not displayed in the figure� that mode �3 gets
stronger, and modes �1 and �2 become weaker as the filling
factor increases from �=1, a completely spin polarized state,
to �=2, a spin nonpolarized state.

From the S�+
panel of Fig. 2, one sees that only mode �4

displays a relatively large intensity. From the S�−
panel in

Fig. 2, one sees that the q dependence of mode �1 �mode �2�
resembles the q dependence of mode �2 �mode �1� in the S


panel. These two modes have strong intensities in the flat q
regions of their dispersion curves. The S�−

intensity of modes
�3 and �4 are very small.

Our above observations suggest that the mode �4 is pri-
mary of �+-SDE character, the mode �3 is primary of
�z-SDE character, and modes �1 and �2 show either CDE or
�−-SDE character depending on the wave vector q. In the
region where the mode �1 has CDE character, the mode �2
is of �−-SDE character. When the mode �1 becomes �−-SDE
character, the mode �2 becomes CDE character.

It should be pointed out that in the above discussion for
the general feature of CDE and SDE, the e-e interaction
strength is assumed to be relatively strong. In the case that rc
is small or the absolute magnitude of rz is large, the mode �2
will exhibit a relatively smooth dispersion curve, and there
will be no anticross behavior between �1 and �2 modes. In
this case, the mode �2 will exhibit a large S
, and the mode
�1 shows a large S�−

. Thus the mode �2 is primary of CDE
character, and the mode �1 is primary of �−-SDE character.

Next let us study the general feature of collective excita-
tions when the electron density is higher. In Fig. 3, the dis-
persion curves of excitation modes around �c are shown for
the case �=2.7 and rz=0.05. The corresponding intensities of
these excitation modes are shown in Fig. 4. For this filling
factor, the lowest three energy levels are occupied, and there
are six modes around �c. In Fig. 3, these modes are marked
as �1 to �6 in turn from top to bottom. The inset of Fig. 3
shows schematically the lowest six energy levels and six
single-particle transitions associated with the collective
modes. The fully or partially occupied levels are shown by
solid lines, and empty levels by dashed lines. Among the top
three modes, anticrosses appear between mode �2 and �3 at
qlc=0.04 and 2.9, and between mode �1 and �2 at qlc
=0.08 and 2.04. The mode �1 develops a large peak and
reaches maximum at qlc=0.74. Other modes show small
wave vector dependence.

The top three modes show the CDE characteristics in the
regions where they have large frequency shifts in their dis-

FIG. 3. Excitation spectra near �c as a function of qlc for rc

=0.3, rz=0.05, �*=0.06, and �=2.7. The modes are marked as �1,
�2, �3, �4, �5, and �6 in turn from top to bottom, respectively. The
inset shows schematically the lowest six energy levels and six
single-particle transitions associated with the collective modes. The
fully or partially occupied levels are shown by solid lines, and
empty levels by dashed lines.

FIG. 4. CDE and SDE intensities for each dispersion curve in
Fig. 3.
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persion curves. The mode �5 is of �z-SDE character. The
S�+

-SDE intensity is strong for the top three modes in re-
gions where their dispersion curves are almost q indepen-
dent, and the lowest mode is of S�−

-SDE character.
It is interesting to note that the lowest mode is primarily

of �−-SDE character in Fig. 4, while it is primarily of
�+-SDE character in Fig. 2. By examining Figs. 1 and 3, one
finds that the lowest excitation mode is almost q indepen-
dent, and its excitation energy is close to the single particle
transition energy. In Fig. 1, rz=−0.05, the lowest excitation
mode is related to the single particle transition energy E2

+

−E0, and the mode is of S�+
-SDE character. In Fig. 3, rz

=0.05, the excitation energy of the lowest mode is close to
E1

−−E1
+, and the mode is of S�−

-SDE character. From this
observation, one may conclude that a mode showing a �+ or
�−-SDE character depends on the relative spin orientations
of participating single particle transition energy levels, as the
excitation may be viewed as a coherent superposition of the
single particle excitation with e-e interaction renormaliza-
tion.

Having in mind the general picture of excitation spectra in
the presence of Rashba SOI, we now turn to discuss the
influences of various system parameters. First, the effect of
Rashba SOI strength on excitation spectra will be investi-
gated. In Fig. 5, dispersion curves of excitation modes
around �c are plotted for �*=0.05,0.1,0.15,0.2, rc=0.03,
and �=2.0. Left panels are for rz=−0.05, and right panels are

for rz=0.05. As in Fig. 1, these modes are named �1, �2, �3,
and �4 in turn from top to bottom.

Let us discuss the case of rz=−0.05 first �see left panels of
Fig. 5�. The energy differences between these modes in-
crease as �* increases. The q distance between two anticross
points due to the coupling among the top two modes gradu-
ally becomes smaller, as �* increases starting from �*

=0.05. When �*=0.2, the anticrossing behavior no longer
exists. Additionally, the increase of �* induces a more pro-
nounced wave vector dependence for the mode �3.

In the case of rz=0.05, however, the excitation modes
around �c vary in a different way �see right panels of Fig. 5�
compared to the case of rz=−0.05. At �*=0.1, the mode �1
is a smooth curve, and no anticross is found between the top
two modes. Instead, two anticrosses emerge between the
lowest two modes at qlc=0.1 and 2.3. At �*=0.15, both
modes �1 and �3 are smooth curves. As �* further increases,
the anticross behavior occurs between the top two modes
again.

Next, we turn to discuss the effects of the filling factor on
excitations spectra. Figure 6 shows dispersion curves around
�c for various values of filling factor �. The excitation en-
ergy in the q→0 limit is equal to the single electron transi-
tion energy, thus the frequency of each mode at long wave-
length limit or when qlc�1 is independent of filling factor �.
The number of modes around �c depends on the filling fac-
tor. When 1���2, there are four modes. When 2���4,
there are six modes. At �=2 and �=4 there are four modes.

FIG. 5. Excitation spectra in the vicinity of �c as a function of
qlc for �*=0.05, 0.1, 0.15, and 0.2 with rc=0.3 and �=2.0. Left
panels are for rz=−0.05, and right panels are for rz=0.05.

FIG. 6. Excitation spectra around �c as a function of qlc for var-
ious values of the filling factor �. rc=0.3, rz=−0.05, and �*=0.06.
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The number of modes can be estimated by counting all pos-
sible single particle transitions. This simple estimation
should work when the Rashba SOI is weak and the Zeeman
splitting is not too large. From Fig. 6, one sees that the an-
ticross behaviors occur between the top two modes or top
three modes depending on the filling factor. The wave vec-
tors where these anticrosses occur depend on the filling fac-
tor. However, the splitting size of anticross seems to vary
little as filling factor changes. Similar to the discussion about
Fig. 1, one observes that the sum of frequency shifts of these
modes closely follows the behavior of dispersion curve in the
case of no SOI as Rashba SOI strength is taken as a small
value here.

The effect of Zeeman splitting on the excitation is illus-
trated in Fig. 7. As rz increases, the top mode moves to
higher energy, the bottom mode moves to lower energy, and
two modes in the middle show no significant change except
in the region of anticrosses. One sees that the overall depen-
dence of dispersion curves on the Zeeman spin splitting is
quite similar between rz�0 �left panels� and rz�0 �right
panels�. As we discussed before, one may consider the four
modes shown in Fig. 7 resulted from the coupling between
four single particle transitions and the charge density mode
without Rashba SOI. Similarly, one may use this qualitative
picture to understand the influence of e-e interaction on the
collective excitations. In Fig. 8, dispersion curves around �c
are shown for various values of e-e interaction strength. The
increase of rc induces a frequency shift of top mode, and the
positions of the two anticrosses become wider as rc in-
creases.

Next, the dispersion curves of low-lying excitations are
shown in Fig. 9. Two cases are shown: rz=−0.05 and �
=1.3 in panels �a� and �b�, rz=0.05 and �=2.7 in panels �c�
and �d�. The corresponding excitation intensity is shown in

panels �b� and �d�, respectively. The other variables are rc
=0.3 and �*=0.06. One finds that the dispersion curves have
negligible frequency shift when the filling factor or Zeeman
spin splitting varies. However, the mode shown in panel �a�
is of �−-SDE character as shown in panel �b�. The mode
shown in panel �c� is of �+-SDE character as shown in panel
�d�. This is because low-lying modes originate from single
particle energy level transitions with different spin orienta-
tions, as the Zeeman spin splitting takes opposite value in
panels �a� and �c�.

Finally, we wish to point out that our calculation is based
on the RPA for simplicity. In this approximation, one ne-
glects the exchange and correlation correction to the electron
self-energy. The dispersion curve becomes unreliable for
very large wave vectors. In the case of no spin-orbit interac-
tion, the electron density correlation function and magneto-
plasmon modes were investigated beyond RPA for a two-
dimensional electron gas.11 It shows that the dispersion will
change slightly in the long wavelength limit. One also ob-
tains the correct dispersion for large wave vectors. It is pos-
sible to extend the present calculation along the same line. In

FIG. 7. Excitation spectra around �c as a function of qlc for a
various values of Zeeman spin splitting rz. rc=0.3, �*=0.04, and
�=1.3.

FIG. 8. Excitation spectra around �c as a function of qlc for
various values of Coulomb interaction strength rc. rz=−0.05, �*

=0.04, and �=1.7.

FIG. 9. Low-lying excitation spectrum and its corresponding
intensities as a function of qlc for rz=−0.05 and �=1.3 in �a� and
�b�, and for rz=0.05 and �=2.7 in �c� and �d�. In panels �b� and �d�,
functions S
, S�z

, S�+
, and S�−

correspond to solid, dashed, dash-
dotted, and dotted lines, respectively. Other parameters used are
rc=0.3 and �*=0.06.
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doing so, similar to the case of no spin-orbit coupling, the
dispersion curve should be modified for large wave vectors.
Moreover, one would expect that the collective mode asso-
ciated with transitions between different spins will be more
strongly modified by the electron-electron interaction. Our
preliminary investigation indicates that the collective mode
below the cyclotron resonance may display a mode softening
behavior driven by the Rashba spin-orbit interaction
strength. This behavior is not present within the RPA ap-
proach as shown in Fig. 9. In our numerical calculations, the
dimensionless parameter rc ranges from 0.2 to 0.8. For a
quantum well made of InAs �the effective mass is m*

=0.023me and the dielectric constant is �0=14.5�, this corre-
sponds to a magnetic field between 14.8 and 0.9 T, experi-
mentally accessible in a laboratory. The parameter �* has
been chosen between 0.05 and 0.2, and this corresponds to �
ranging from 16.5 to 66.3 meV nm. This is largely within
the experimentally accessible range.10 We wish that our the-
oretical study will inspire some experimental investigations.

IV. SUMMARY

In summary, we have studied charge- and spin-density
excitations in a two-dimensional electron gas in the presence

of a perpendicular magnetic field with the Rashba spin-orbit
interaction taken into account. Electrons are allowed to make
transitions between energy levels with different spins, and
four or six collective modes in the vicinity of the cyclotron
resonance frequency can be found when more than one en-
ergy level is occupied. It is found that each mode approaches
the single-electron transition energy in the long wavelength
limit. The intensity of these modes are analyzed, and it is
found that some modes may have either CDE or SDE char-
acter and their character may vary depending on the wave
vector. It is also found that the dispersion curves and the
corresponding intensities may be substantially affected by
the strength of electron-electron interaction, the Zeeman spin
splitting, the Rashba spin-orbit coupling, and system occupa-
tions.
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