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Semiclassical solutions of two-dimensional Schrödinger equation with spin-orbit interaction and smooth
potential are considered. In the leading order, spin polarization is in-plane and follows the evolution of the
electron momentum for a given subband. Out-of-plane spin polarization appears as a quantum correction, for
which an explicit expression is obtained. We demonstrate how spin-polarized currents can be achieved with the
help of a barrier or quantum point contact open for transmission only in the lower subband.
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I. INTRODUCTION

Achieving spin manipulation in nanodevices by means of
electric fields �without using less selective magnetic fields�
represents the ultimate goal of spintronics. Spin-orbit inter-
action, which couples electron momentum to its spin, is one
of the most promising tools for realizing spin-polarized
transport.1,2 Several schemes leading either to spin accumu-
lation or to polarization of the transmitted current induced by
the spin-orbit interaction have been put forward. Predictions
of electric field induced spin accumulation at the boundaries
of a sample, which originates from asymmetric scattering
from impurities3,4 �extrinsic spin-Hall effect� or from spin-
orbit split band structure5,6 �intrinsic effect�, has recently
reached a stage of experimental realization.7 In-plane bulk
spin polarization appears in two-dimensional systems with
broken inversion symmetry.8 Spin polarization in quantum
wires with low carrier density has been shown to occur due
to the interfaces of spin-degenerate and spin-split regions.9

Interfaces between two-dimensional regions with different
spin-orbit splitting have also been used for that purpose, in
the case of a sharp10,11 or an arbitrary12 interface, as was the
scattering from a sample edge.13,14 Other proposals include
polarization due to tunneling through a double-barrier
structure15,16 and tunneling between two quantum wires.17

Reference 18 suggested a three-terminal device with a spin-
orbit split central region as a spin filter, which was numeri-
cally tested by Refs. 19 and 20. Reference 21 pointed to a
possibility of generating spin-polarized currents by utilizing
crossings of spin-orbit-split subbands belonging to different
transverse channels. These proposals are still lacking experi-
mental realization.

In the present paper we suggest a way to polarize electric
currents by passing them through a region where, by increas-
ing the external electrostatic potential, the upper spin-orbit-
split subband is locally positioned above the Fermi level. The
proposed method utilizes electric gating whose effect is two-
fold: �i� it completely suppresses transmission via the upper
spin-orbit-split subband, and �ii� it allows transmission only
in a narrow interval of incident angles in the lower subband.
In contrast to the proposals which advocate strong variations
of the spin-orbit coupling and, thus, rely on strong gate volt-
ages, our method requires only weak potentials of the order
of a few millivolts �which is a typical scale of the Fermi
energy�. In addition, we predict a specific pinch-off behavior

of the conductance, which would allow to detect polarized
currents without actual measurement of spin.

We consider ballistic electron transport in gated two-
dimensional electron gas with the Hamiltonian

H =
p2

2m
+ ��py�x − px�y� +

m�2

2
+ V�x,y� . �1�

For the sake of simplicity we concentrate on the case of the
“Rashba” spin-orbit interaction �the same method, however,
can be used for more complicated interactions�. Construction
of semiclassical solutions of the Schrödinger equation with
the Hamiltonian �1� follows the reasoning of the conven-
tional WKB approach,22–25 which is valid for a smooth po-
tential, ���V � �min�p3 /m , p2��. The advantages of semi-
classics are twofold. First, it allows us to obtain approximate
analytical solutions for otherwise complicated problems.
Second, as we will see, it turns out to be especially simple to
achieve strong polarization of electron transmission in the
semiclassical regime.

The Mexican hat shape of the effective kinetic energy in
the case of spin-orbit interaction leads to a variety of unusual
classical trajectories �see Fig. 2 below�, which have never
been investigated before. Our approach employs strong spin-
orbit interaction �or smooth external potential� sufficient to
affect individual electron trajectories, in contrast to previous
semiclassical treatments26,27 which consider spin-orbit inter-
action as a perturbation. Still we do not require the spin-orbit
interaction to be comparable with the bulk value of the Fermi
energy. To produce spin-polarized current, it will be suffi-
cient to make spin-orbit interaction comparable with the ki-
netic energy at some particular area of the system, for ex-
ample, near the pinch-off of a quantum point contact.

II. SEMICLASSICAL WAVE FUNCTION

Without the external potential V, the electron spectrum
consists of the two subbands, E±�px , py�= �p±m��2 /2m. The
subbands meet at only one point, p=0, and the spin in each
subband is always aligned with one of the in-plane directions
perpendicular to the momentum p� . The semiclassical elec-
tron dynamics22 naturally captures the essential features of
this translationally invariant limit. The classical motion in
each subband is determined by the equations of motion
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which follow from the effective Hamiltonian:

Heff =
�p ± m��2

2m
+ V�x,y� . �2�

Despite the fact that spin does not appear in this equation,
one can easily construct semiclassical wave functions, which
have spin pointed within the xy plane perpendicular to the
momentum:

�0 = ueiS/�, u =� �

2p
� �py + ipx

±�py − ipx
� . �3�

Here the action S is related to the momentum by p� =�S, and
�=u†u is the classical density for a family of classical trajec-
tories corresponding to a given energy E. The action S obeys
the classical Hamilton-Jacobi equation, ���S � ±m��2 /2m+V
=E. Application of the Hamiltonian �1� to the approximate
wave function �0 gives, after some algebra,

H�0 = E�0 −
i�

2�
�� · �v���0 + � �F�z�0, �4�

where �summation over repeating indices is assumed�

F =
p � m�

2m�p3 �pypi�ipx − pxpi�ipy� ±
py�x� − px�y�

2p�
. �5�

The second term in the rhs of Eq. �4� vanishes due to the
continuity equation

� · �v� = 0, v� = p� /m ± �p� /p . �6�

The last ���z� term in �4� indicates that the spin of an ac-
celerated electron cannot exactly stay in the plane of propa-
gation and acquires a small ���V projection onto the z
axis. To take into account this out-of-plain spin precession
one has to go beyond the approximation of Eq. �3�, which is
done by

� = �1 + � f�z��0. �7�

Since �H−E�f�z�0= �2�pf�z�0, to the lowest order in �,
one can relate the functions F and f

f = ± F/2p , �8�

and find the out-of-plane spin density �F is found from Eq.
�5�	

�†�z� = ±
��

2p
F . �9�

Note that Eq. �9� does not describe the nonadiabatic tran-
sitions between subbands. After the electron leaves the re-
gion with nonzero potential gradient, �V�0, the in-plain
spin orientation is restored.

The out-of-plane polarization of the electron flow in the
external potential is a subject of the rapidly developing field
of the spin-Hall effect.3–7 Our result, Eqs. �5� and �9�, incor-
porates previous calculations of Ref. 6 which were restricted
to the one-dimensional form of the potential, V�x�, with py

being the integral of motion. The validity of Eq. �9�, how-
ever, is not restricted to a simple one-dimensional case and

describes the out-of-plain polarization for any smooth two-
dimensional potential �including confining potentials which
create quantum wires, quantum dots, etc.�. In particular, Eq.
�9� may serve as a good starting point for an analytical cal-
culation of the edge spin accumulation in ballistic quantum
wires.28,29 We leave further investigation of these interesting
effects for subsequent research.

Solutions of the form, Eq. �3�, have clear and important
consequences. During its motion, an electron changes the
momentum p but always remains in the same spin-subband.
To change the subband the electron trajectory should pass
through the degeneracy point where both components of mo-
mentum vanish simultaneously, p� =0, which is generically
impossible. Moreover, with the proper use of potential barri-
ers, one may realize a situation where electrons of only one
subband are transmitted and the others are totally reflected.
This leads to strong polarization of the transmitted electron
flow.

III. SHARVIN CONDUCTANCE

To give an example of such a spin-polarized current let us
consider transmission through a barrier, V�x�, varying along
the direction of a current propagation. We assume periodic
boundary conditions in the perpendicular direction �y+L

y�. As such a condition makes py the integral of motion,
mixing of orbital channels, which is strongly suppressed for
generic smooth potential �2�, is now absent exactly. For a
smooth potential V�x� the conduction channels may either be
perfectly transmitting or completely closed. The conserved
transverse momentum takes the quantized values, py

n

=2��n /L. Consider the functions

E±
n�px� =

�pn ± m��2

2m
, pn = �px

2 + py
n2. �10�

For n�0 the function E±
n�px� splits into two distinct

branches. At any point x the equation

E±
n�px� = EF − V�x� �11�

yields solutions px
L and px

R, corresponding to left- and right-
moving electrons. Application of a small bias implies, e.g.,
the excess of right movers over left movers far to the left
from the barrier. Particles are transmitted freely above the
barrier if Eq. �11� has a solution, px

R, for any x. Let 	=EF
−Vmax be the difference between the Fermi energy and the
maximum of the potential. The nth channel in the upper
branch opens when

	 = �2� � �n� + m�L�2/2mL2. �12�

For the lower branch E−
n�px� Eq. �11� has four solutions �two

for right and two for left movers� for �n � 
m�L /2�� and x
close to the top of the barrier. However, far from the barrier
�where the excess of right-movers is created� there are still
only two crossings described by Eq. �11�, one for right and
one for left movers. As a result, all the extra electrons in-
jected at x=−� follow the evolution of a solution of Eq. �11�
with the largest positive px. For all �n � 
m�L /2�� such a
solution does exist for any positive 	. Thus, at 	=0 as many
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as n0=m�L /�� channels open up simultaneously. The chan-
nels with higher values �n � �m�L /2�� in the lower subband
E−

n open when

	 = �2� � �n� − m�L�2/2mL2. �13�

According to the Landauer formula, ballistic conductance is
given by the total number of open channels multiplied by the
conductance quantum G0=e2 /h

G = G0
L

��
��2	m + m� , 0 
 	 
 m�2/2

2�2m	 , 	 � m�2/2.
�14�

This dependence G�	� is shown in Fig. 1. The striking evi-
dence of the presence of spin-orbit interaction is the huge
jump of the conductance at the pinch-off point, as opposed to
the conventional square-root increase in the absence of spin-
orbit coupling. This jump is a consequence of the “Mexican-
hat” shape of the spectrum E−�px , py�. Accuracy of Eqs. �12�
and �13� is sufficient to resolve the steps in the conductance
due to the discrete values of �n � =0,1 ,2 , . . . , �conductance
quantization�, as shown in Fig. 1. The steps in G�	� are
abrupt in the limit dV /dx→0.

Close to the pinch-off, at 	
m�2, the conserved py com-
ponent of the electronic momentum varies for different trans-
mitted channels within the range �py � 
m�. Therefore, far
from the barrier, where the Fermi momentum is large
pF�m�, we have px�py and transmitted electrons propa-
gate in a very narrow angle interval �� � 
�m�2 /2EF�1.
Since the electron spin is perpendicular to its momentum, we
conclude that the current due to electrons from each of the
subbands is almost fully polarized. The total polarization of
the transmitted current is given by the difference of two cur-
rents

��y
 = ��†�yvx�
/��†vx�
 = min�1,�m�2/2	� , �15�

which is also depicted in Fig. 1. This current polarization
may also be viewed as a creation of in-plain nonequilibrium
spin density, maximal on the barrier.

Vanishing transmission for electrons from the upper band
for 0
	
m�2 /2 �14� resembles the total internal reflection
suggested for creation of polarized electron beams in Ref.
12. Unlike the latter case, in our proposal there is no need to
collimate incident electron flow, since the upper band elec-
trons are reflected at any angle.

Semiclassical formulas �14� and �15� are valid provided
that there are many open transmission channels, and account
correctly for the electrons with py

n�0. The case n=0, how-
ever, requires special attention. The curve E±

0�px� does not
split into the lower and upper branches, but instead consists
of two crossing parabolas shifted horizontally. Right movers
from both parabolas are transmitted or reflected simulta-
neously. The electron flow due to the channels with n=0 is,
therefore, unpolarized. For small n�0 the crossing of two
parabolas is avoided. However, the electrons from the upper
subband E+

n may tunnel into the lower branch E−
n in the vi-

cinity of the point px=0, which results in the decrease of
spin-polarization of the current. Let the barrier near the top
has a form V�x�=−m�2x2 /2. Simple estimation shows that
classically forbidden transition between the subbands do not
change the net polarization of the current as long as
���m�2.

Our results Eqs. �14� and �15� were obtained for the peri-
odic boundary conditions. However, the boundary conditions
do not play important role for the conductance �G�L� if the
width of the “wire” is large compared with the width of the
barrier, i.e., if L��� /m�� � /m�. If the transverse con-
finement in the wide wire is ensured by the smooth
potential30 the semiclassical transmitted scattering states may
be constructed explicitly using the method of Ref. 34. How-
ever, since the spin-orbit interaction in our approach appears
already in the classical Hamiltonian �2�, calculation of
smoothed conductance �14� requires only a simple counting
of classical trajectories.35 Our next example below demon-
strates such semiclassical treatment of realistic boundary
conditions.

IV. QUANTUM POINT CONTACT

Let us consider probably the most experimentally relevant
example of a quantum point contact, described by the poten-
tial

V�x,y� = −
m�2x2

2
+

m�2y2

2
. �16�

We will see that even in this simple model the electron flow
in the presence of spin-orbit interaction acquires a number of
interesting and peculiar features. Classical equations of mo-
tion follow in the usual manner from the effective Hamil-

tonian �2�: r�̇=�Heff /�p� , p�̇ =−�Heff /�r�. We consider quantum
point contact �QPC� close to the opening with only the lower
E− subband contributing to the conductance. A crucial prop-
erty of the Hamiltonian Heff, Eq. �2�, is the existence of a
circle of minima of the kinetic energy at �p � =m�. Expanding
around a point on this circle, px0

=m� cos �, py0
=m� sin �,

one readily finds the equations of motion for P= pxcos �
+ pysin �−m��m�,

FIG. 1. Conductance �in units of e2 /h�, and spin polarization of
the current vs gate voltage �in units of m�2 /2�. Dashed lines show
the smoothed curves �14� and �15�, solid lines show the quantized
values for m�L / � =10.5�. Dotted line shows the conductance
without spin-orbit interaction.
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P̈ + �− �2cos �2 + �2sin �2�P = 0, �̇ = 0. �17�

The trajectory is found from the relations, ẋ=P cos � /m, ẏ
=P sin � /m. We observe from Eq. �17� that only the trajec-
tories within the angle

tan��� 
 tan �0 = �/� �18�

are transmitted through QPC. Trajectories with larger angles
are trapped �oscillate� within the point contact. Examples of
both types of trajectories are presented in Fig. 2. Quantiza-
tion of trapped trajectories would give rise to a set of �ex-
tremely� narrow resonances in the conductance, specific for
spin-orbit interaction. We leave the detailed investigation of
these narrow features for future research. Below we consider
only the smoothed conductance.

To calculate the current J through QPC one has to inte-
grate over the phase space of the states which are transmitted
from left to right,

J =� dy� evx
d2p

�2� � �2 = GV , �19�

and have the energy within the interval 	−eV /2
E−
	
+eV/2, with V standing for the applied voltage. In this sec-
tion we define 	 as the difference between the Fermi energy
and the value of the potential at the saddle point 	=EF
−V�0,0�. The integral is most simply evaluated at x=0 �with
the velocity given by vx=P cos � /m�. The allowed absolute
values of the momentum are

2	 − eV − m�2y2 
 P2/m 
 2	 + eV − m�2y2. �20�

The angle interval of transmitting trajectories consists of two
domains: �� � 
�0, P�0, and ��−� � 
�0, P
0. The ap-
pearance of the latter range of integration is highly non-
trivial. A simple reasoning shows that the particles with the
velocity antiparallel to the momentum �vx�0, px
0� should
not contribute to the conduction in the case of a transition
through a one-dimensional barrier V=V�x�, see Eq. �14�. De-

spite corresponding to the right-moving electrons, these
states do not originate in the left lead. Indeed, they exist only
in the vicinity of x=0, but disappear as x→−� and, thus,
cannot be populated by the excess electrons �except due to
the tunneling transitions which are irrelevant in the semiclas-
sical regime�. Such trajectories, however, do exist in QPC,
Eq. �16�, as demonstrated in Fig. 2. After passing through
QPC the trajectory bounces at the wall reversing its velocity.
This kind of classical turning points, where both components
of the velocity vanish simultaneously, are specific for the
effective Hamiltonian �2�. The existence of transmitting tra-
jectories with ��−� � 
�0, �
0 results in the doubling of
the conductance. Simple calculation yields

G = G0
4m� sin �0

� � �
�2	

m
. �21�

The presence of a threshold angle �0, as well as the square-
root dependence of G�	�, are in a sharp contrast to the well-
known result G=G0	 /���, in the absence of spin-orbit in-
teraction.

Equation �21� is valid in the case of many open channels.
Since Eq. �17� describes only the linearized electron dynam-
ics, Eq. �21� is formally valid if 	�m�2. Nevertheless, the
current remains totally polarized for 0
	
m�2 /2 �similar
to Eq. �15�	

��y
 = ��†�yvx�
/��†vx�
 = 1. �22�

With increasing the chemical potential, 	�m�2 /2, transmis-
sion via the upper subband E+ kicks in and the degree of
polarization gradually decreases, similarly to Eq. �15�,
though with different, more complicated, dependence of
spin-polarization on 	. Note that transmission of different
orbital channels through QPC is independent as long as the
confining potential �16� is smooth over a distance of the
characteristic spin-orbit length � /m�. It is easy to see that
this requirement is equivalent to the condition that
�� ,���m�2 /�. This is also a condition of large conduc-
tance G�G0.

V. DISCUSSION

In both analyzed systems �of ballistic Sharvin conduc-
tance and of QPC� polarization of current is achieved when
many channels are transmitting. As a consequence of the
Kramers degeneracy, transmission eigenvalues always ap-
pear in pairs in the presence of time-reversal symmetry, lead-
ing to the prohibition of the spin-current in the lowest �n
=0� conducting channels �cf. Ref. 18�. In the case of higher
channels, however, the degenerate transmission eigenvalues
belong to the same spin-orbit subband and carry, respec-
tively, the same spin polarization. For example, in the case of
the QPC any transmitted trajectory x�t� ,y�t� �e.g., one of the
two shown in Fig. 2� is accompanied by its mirror reflection
x�t� ,−y�t� with identical transmission.

In InAs-based heterostructures, typical value of spin-orbit
coupling36 is �� =2�10−11 eV m. Characteristic spin-orbit
length lR= � /m*�=100 nm and energy m*�2 /2=0.1 meV. In
order to have strongly spin-polarizing QPC, the latter should

FIG. 2. Three kinds of trajectories in the point contact. a, trans-
mitted trajectory whose momentum is always collinear with the
velocity. b, trajectory bouncing inside the QPC. This trajectory is
periodic in the linearized approximation described in the text, while
the exact calculation for finite amplitude shows its slow drift. c,
transmitted trajectory whose momentum inside the contact is oppo-
site to the velocity. Electrons flow from left to right. Arrows show
momentum and spin orientations. Few equipotential lines are also
shown.
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support many transmitting channels at chemical potential 	
�m*�2 /2� ��. This condition can, equivalently, be written
in terms of the width of the point contact �y, see Eq. �16�, as
�y� lR. This is a realistic condition for typical ballistic con-
strictions.

To conclude, we have proposed a way to polarize currents
in the ballistic regime by means of using electric gates to
suppress transmission in the upper spin-orbit-split subband.
The polarization is stronger when there are many transmit-
ting channels in the lower subband. This is exactly the con-
dition when the semiclassical expansion in powers of � is
applicable. An obvious advantage of our scheme is that we

do not require the spatial modulation of the strength of spin-
orbit interaction. Neither do we need a restricted angle of
incident electrons in order to have a polarized current.
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