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Universality of AC conductivity: Random site-energy model with Fermi statistics
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The universality of the frequency-dependent (AC) conduction of many disordered solids in the extreme-
disorder limit has been demonstrated experimentally. Theoretically, this universality has been established with
different techniques and for various models. A popular model that has been extensively investigated and for
which AC universality was established is the symmetric random-barrier model without Fermi statistics. How-
ever, for the more realistic model of random site-energies and Fermi statistics AC universality has never been
rigorously established. In the present work we perform a numerical study of the latter model for a regular
lattice in two dimensions. In addition, we allow for variable-range hopping. Our main conclusion is that AC
universality appears to hold for this realistic model. The obtained master curve for the conductivity and the one
obtained for the random-barrier model in two dimensions appear to be the same.
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I. INTRODUCTION

For a large class of different disordered solids data on the
frequency-dependent conductivity exhibit remarkable simi-
larities.! The real part o'(w) of the complex conductivity
o(w)=0'(w)+icd”"(w) is found to be constant below a critical
frequency w,, o' (w)=da(0)=0pc for w<w,, while for w
>w,, o'(w) increases monotonously with ® until typical
phonon frequencies ,,~10'?s™!, above which vibrational
contributions become dominant. Throughout this paper we
will denote ¢’ (0)=o0pc=0(0). For frequencies far above w;,
o'(w) exhibits an approximate power-law behavior ¢’ (w)
~ ", with n<1. A more detailed analysis shows a weak
temperature and frequency dependence for n.

The critical frequency w, after which the AC conduction
starts to rise can be identified as the frequency of the
dielectric-loss peak, which shows up if we plot [o'(w)
-0(0)]/w vs w. This frequency w,, the dielectric-loss
strength Ae= e(sz)—e(conO)z—eal lim,_ 0" (w)/ w, and
the DC conductivity o(0) are connected by a relation found
by Barton, Nakajima, and Namikawa (Refs. 2—4):

0(0) = pAecyay, (1)

where €, is the permittivity of vacuum and p a material-
dependent constant of order unity. We will refer to this rela-
tion as the BNN relation.

At low temperatures the disorder becomes more and more
important, and we enter the “extreme-disorder limit.” At
such temperatures it turns out to be usually possible to con-
struct a master curve, consisting of the scaled AC conductiv-
ity 2(w)=0(w)/0(0) as a function of a scaled frequency
Q)= w/ w,. The fact that the shape of this master curve does
not depend on temperature anymore means that the AC con-
ductivity obeys the “time-temperature superposition prin-
ciple.” Furthermore, this master curve appears not to depend
on the specific disordered system considered, hence the name
“AC universality.”

The construction of a master curve has been discussed
quite extensively in literature®~!! and basically starts from
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the following expression, which is often called the Taylor-
Isard scaling relation (Refs. 12 and 13):

- ) 2)

S(w) =F(Cm

with F a universal function. From the above definition of the
scaled frequency () it follows that Taylor-Isard scaling im-
plies w;=c(0)/C. Via the BNN relation Eq. (1), which re-
lates w; and o(0), the constant C can be identified: C
=pAee,. The first proof of the BNN relation was given by
Sidebottom.'* He supported his arguments by considering
the hopping motion within a Debye model for the rotation of
permanent dipoles. Later, the relation C=A€g, was proven
mathematically by Schrgder and Dyre.'> However, the rel-
evance of the small-frequency Taylor expansion to the scal-
ing properties was questioned by Dieterich and Maass.'
That the issue about how to scale correctly is a subtle one is
clear from literature. Sometimes it is found that
Qo w/o(0)!71? drastically increases the quality of the scal-
ing curve as compared to Q= w/o(0)T.%® The latter finding,
Qxw/o(0)T, can be interpreted as a manifestation of the
“Curie law” with C=Ae~ 1/T.! However, it has been shown
that Ae can decrease with temperature much more rapidly
than 1/7.%

In order to describe the frequency-dependent conductivity
with quantitative models, the processes governing the re-
sponse to an AC field are, in literature, distinguished in three
different frequency regimes (Ref. 21): Regime I is the high-
frequency pair-hopping regime, wy << w,;, where conduc-
tion is between isolated pairs of sites. Regime II is the
multiple-hopping regime, w,<® < w,; conduction occurs in
isolated clusters of sites. Regime III is the low-frequency
regime, approaching DC, 0 < w < w; conduction takes place
in large clusters consisting of up to an infinite amount of
sites.

The crossovers between these three regimes are gradual.
The reason why it is possible to distinguish these three dif-
ferent regimes is the following. By considering frequencies
> wq such that only hopping between pairs of isolated sites
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needs to be considered, one immediately arrives at the so-
called pair-hopping approximation. This approximation logi-
cally breaks down if the transition rates are such that a
charge carrier can hop across more than two sites during a
period of the applied field, which happens at lower frequen-
cies. This defines the frequency w,. For frequencies w < w a
carrier can make multiple hops, which explains the name of
this so-called multiple-hopping regime. Finally, if the fre-
quency is so low that hopping on basically infinite clusters
starts to occur regime I is encountered.

The first who developed a theory to deal with the fre-
quency-dependent conductivity using the pair-hopping ap-
proximation were Pollak and Geballe in 1961.2% In their ap-
proach they assumed thermally activated hopping between
pairs of sites with a random distribution of pair spacings to
describe impurity conduction at high temperatures. As a re-
sult they found a frequency-dependent conductivity indepen-
dent of temperature. Later (1969), Austin and Mott>>?* ad-
dressed the same approximation, but they considered
variable-range hopping between sites, with energy differ-
ences of the order of kT or less from the Fermi energy. The
equation derived by these authors predicts the slope n in a
double-logarithmic plot of conductivity vs frequency to be a
decreasing function of frequency. However, as pointed out
first by Jonscher in 1977,% the slope tends to increase with
increasing frequency if monitored from the onset w; till the
frequency wy. Because such an increasing slope as a function
of frequency cannot be understood within the pair-hopping
approximation, another theory, valid for frequencies w,<w
< wy, a “multiple hopping” theory, is required. In this regime
n is known to develop with temperature as 1-n
% (T/To)V @) (Refs. 21 and 26), where d is the dimension-
ality of the system (without variable-range hopping one can
formally put d=0 in this equation). Such a behavior of n is a
direct consequence of the Taylor-Isard scaling relation Eq.
(2) and the fact that for variable-range hopping ¢(0) is pro-
portional to exp[—(T/T;)"¢*V], apart from an algebraic de-
pendence on temperature.?’” Assuming that F(x) o x" for large
argument x of the universal function in Eq. (2) we have

o(B,w) = U(,B,O)(C #(5.0) )

«[0(B,0)]'"e"
o exp[— (1 — n)(Ty/T) " V", 3)

with B=1/kT and k Boltzmann’s constant. Since for finite
frequency o(B,w) should be finite if T—0, we find 1-n
% (T/To) V) (excluding the trivial solution n=1).

In the low-frequency regime the conductivity shows a
flattening, which at first appearance might look uninteresting.
Nevertheless, it is in this regime where differences between
theoretical predictions from effective-medium theories by
Ganter and Schirmacher,”® o(w)=0(0)(1+Q%?), and from
percolation-based  theories by Hunt,” o(w)=0(0)(1
+(I'/D)FTQED2 (1 11)7Q0Y%) appear, where [ is the separa-
tion of critical resistances and !’ the correlation length of the
percolation cluster (which only slightly differ). In this regime
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FIG. 1. A schematic view of the random-barrier model and the
site-energy disorder model. (a) The random-barrier model: only
nearest-neighbor jumps are allowed, and it is clear that the transi-
tion rates of the particle are symmetric. (b) The site-energy disorder
model: jumps over variable distances are allowed, and the transition
rates are clearly asymmetric (we have to distinguish between jumps
upward and downward in energy).

there is the ongoing discussion about the issue whether the
conductivity should have the term with the power (d—1)/2,
as predicted by the latter theory, or not.?!

To study the above-mentioned dependencies and espe-
cially the discussion about the universal behavior of the AC
conductivity, computer simulations have been carried out in
the past, of which we mention in particular those by Dyre
and Schrgder.!> They have investigated the AC conductivity
for a model with only energy disorder and symmetric transi-
tion rates, the so-called symmetric hopping model or
random-barrier model. These authors studied the low-
temperature limit, which is equivalent to the extreme-
disorder limit. Their results clearly point to the existence of a
universal master curve.'> However, it would be more realistic
to take into account the Pauli exclusion principle for the
charge carriers, and to allow the carriers to hop over variable
distances and with asymmetric transition rates, instead of
considering only nearest-neighbor hopping with symmetric
transition rates. In Fig. 1 we have drawn a schematic picture
indicating the differences between the random-barrier model
and the site-energy disorder model. A logical question is
then: does a model with asymmetric transition rates and
Fermi statistics also show AC universality? First attempts
toward treating this more realistic model have been made by
Baranovskii and Cordes, and Porto et al., who included
Fermi statistics and site-energy disorder, but at relatively
high temperatures and taking nearest-neighbor hopping
only.’*3! Within effective-medium theory, the site-energy
disorder model with Fermi statistics and nearest-neighbor
hopping has been treated by Maas, Rinn, and Schir-
macher.>>3% Another question is: how does this AC master
curve (if it exists) compare with the one obtained for the
symmetric hopping model? These two open questions'-* are
the main focus of this work.

The present work is a numerical study of AC universality
for the more realistic model of Fig. 1(b). We will examine
the case of a two-dimensional system, because calculations
for a three-dimensional system turned out to be unfeasible
computationally. A drawback of studying a two-dimensional
system is that the knowledge about two-dimensional systems
is not as large as that about three-dimensional systems. In
particular, the scaling properties of two-dimensional systems
have not been analyzed.>> However, by comparing our re-
sults with a numerical study of the two-dimensional symmet-
ric hopping model*® we can still draw very useful conclu-
sions. We want to make the important remark that, although
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the discussion about AC universality has been stimulated
very much by (nearest-neighbor) ionic conduction in disor-
dered solids, we focus here on electronic conduction, for
which variable-range hopping is important at low tempera-
tures.

II. NUMERICAL APPROACH

The incoherent motion of noninteracting charge carriers
on a lattice of sites can be described by the Pauli master
equation:

_=_2[ Wini(1=n) = Win;(1 - ny)], (4)

JFi

where n; is the occupational probability of site i with position
vector R; and energy ¢;, and W;; is the transition rate for hops
from site i to j. The factors 1—-n; account, in a mean-field
approximation, for the fact that only one carrier can occupy a
site (implying Fermi statistics). For the case of interest, W;; is

suggested by Miller and Abrahams?’ as
v exp[— 2a|Rij| - Be;j—e)], € > g,

g <eg.

Wij =

()

Here vy is an intrinsic rate and &;—¢; includes a contribution
—eE-R;; from an external time-dependent electrical field E
=XE, exp(iwf), which we apply in the x direction; e is the
particle charge and « is the inverse decay length of the wave
functions of the localized states involved in the hopping. In
the above-stated form the master equation is nonlinear and
thus difficult to handle. However, upon linearization in the
electric field and the change in the occupational probabilities
n! = (ni—n?)exp(—iwt), with n? the equilibrium Fermi-Dirac
distribution, one arrives at the following equation:
> [W;)l(l - n?) + W?]n?]nj' -1> [W?j(l - n?) + W(])ln(,)
J#i J#i
+iw|n =2 [Wnd(1 - n;)) - W]fin;-)(l -], (6)

ij'i
JFi

where W/, exp(lwt) is the change in the transition rate to first
order in the applied field. In our numerical calculations, we
first generate randomly distributed energies &; on each site of
a two-dimensional square array of lattice constant R, and
size N=L?, by sampling from an interval —g,/2 <g;<e&/2,
with £,/2=(2R;0,)"", @ being the density of states (DOS).
Charges are introduced by setting the chemical potential in
the Fermi-Dirac distribution equal to zero. This means that
our DOS is always half-filled, independent of the tempera-
ture. For comparison, we also consider the case of a Gauss-
ian DOS where we sample from a normalized Gaussian dis-
tribution with a width o and introduce charges by setting the
chemical potential equal to a desired value. We perform our
simulations on a 200 X 200 array. We use periodic boundary
conditions, taking a “circular” electric field in the x direction.
We choose a=3.5/R,. For this value of « and for the tem-
peratures we have considered, it is sufficient to take into
account hopping to 624 neighbors in a square area of 25
X 25 sites around a central site. We solve Eq. (6) for n] with
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FIG. 2. (Color online) Frequency dependence of the conductiv-
ity for the asymmetric hopping model with Fermi statistics and
variable-range hopping, at different temperatures.

standard matrix routines, after which the total current and the
frequency-dependent conductivity can be straightforwardly
determined. We apply an averaging over different realiza-
tions of the disorder such that the error bars are always
smaller than or equal to the symbol size in the figures pre-
sented in the next section. In recent work we studied the DC
conductivity of the present model.*® We checked that the AC
conductivity in the limit w— 0 agrees with the DC conduc-
tivity found in that work. For very low temperatures we
could not always reach the DC limit, because of numerical
instabilities. For these cases we calculated the DC limit from
an extrapolation of the higher-temperature data.

The use of the master equation (4) is the standard way in
literature to consider hopping transport in disordered solids
(see, e.g., Ref. 27). However, an important question is
whether the mean-field approximation inherent to the master
equation properly takes into account the Pauli exclusion
principle, since correlations between the occupational prob-
abilities of different sites are neglected. For the situation of a
Gaussian DOS we recently calculated the DC charge-carrier
mobility as a function of charge-carrier density with the
same master equation.39 More recently, we considered the
validity of the mean-field approximation in this context by
taking into account the correlations between nearest-
neighbor pairs.*’ We found that these correlations suppress
the mean-field mobility by only a few percent, even at
charge-carrier concentrations of 0.5 per site, which is the
situation considered here. We expect that this result also
gives an indication for the (un)importance of correlations for
the present case of AC transport in a constant DOS.

III. RESULTS

In the numerical results shown in this section we have
taken units such that e=Ry=1v,=¢gy=1 for the particle charge
e, the lattice constant R, the intrinsic rate v, and the width
of the DOS g (g, should not be confused with the vacuum
permittivity €,). In particular, this implies the redefinition
B=¢eq/kT. In Fig. 2 we give a typical example of the “raw”
data for the real part of the AC conductivity as a function of
frequency for different temperatures in the case of a constant
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FIG. 3. The temperature dependence of the slopes of the curves
as presented in Fig. 2, evaluated in the frequency range w=107°
—1073. The inset shows the extrapolation to T=0.

DOS. The overall behavior of ¢'(w) compares fairly well
with the universal trend as found in experiments. There is a
crossover from o' (w)=0c(0) to a regime where o'(w) in-
creases monotonously as a function of frequency, showing an
approximate power-law behavior with power n. One can
clearly see that n is a function of temperature. In the case of
two-dimensional variable-range hopping a temperature de-
pendence of n of the form 1—no 37'/3 should develop, if a
fixed frequency range is considered [see Eq. (3)]. In Fig. 3
we check this, and it is seen to be well obeyed. In the inset
we show an extrapolation to zero temperature, which is com-
patible with n approaching 1 in the 7=0 limit.'

The influence of finite-size effects was checked by con-
sidering the result for the case 8=350 and w=10"'# in Fig. 2.
For this case these effects are expected to have the largest
influence. We checked that reducing the square area within
which we allow hopping from 25X25 to 21X21 sites
changes the result for the conductivity by only 0.2%. Aver-
aging over 50 different disorder configurations, we checked
that reducing the system size from 200 X 200 to 150 X 150 or
100 X 100 sites leads to the same results within the error bar
of about 20%. We can therefore say that the error bar due to
finite-size effects is smaller than the symbol size in Fig. 2.

As mentioned in the Introduction, there has been a debate
in literature about how to scale the frequency in order to find
the proper master curve. Sometimes it is found that ()
«w/a(0) gives better results,'””!° but in other cases ()
< w/a(0)T does.>® We show in Fig. 4 the effect of scaling
the frequency with ¢(0) only. The result is unambiguous: we
do not find a proper master curve. It is also evident, however,
that in order to obtain a common onset of the AC conductiv-
ity a further scaling of the horizontal axis is needed.

We will now discuss how we obtain a better scaling. We
use the method discussed in Ref. 41 to obtain w,; w, is
chosen to be the characteristic frequency defined by
logolo(w,)/ a(0)]=0.5 (the value 0.5 is somewhat arbitrary).
In Fig. 5 we show the results for both the real and imaginary
part of the scaled conductivity 2’ and %" at low tempera-
tures, obtained with this definition of w,. The results suggest
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FIG. 4. (Color online) Results for the frequency dependence of
the AC conductivity with frequency scaled with o' (0).

that both the real and imaginary part of the conductivity
approach a master curve. Regarding the imaginary part, this
demonstrates that the BNN relation Eq. (1) is indeed obeyed.
For comparison, we have also included the real part of the
scaled conductivity for the case of Gaussian disorder, with
o/kT=9 (o is the width of the Gaussian) and the chemical
potential at —20. The fact that the data fall on the same curve
(for not too high frequencies) demonstrates the existence of
real universality, since the master curves for different types
of onsite energy disorder are apparently the same. This indi-
cates that the mean carrier concentration does not appear to
play an important role in this context, since this concentra-
tion is 0.023 per site for this case, whereas it is 0.5 per site
for the half-filled square-shaped DOS. The inset in Fig. 5(a)
shows the dependence of w, on temperature: w, iS propor-
tional to o(0) times a power-law dependence on temperature
with a power close to two. In terms of the dependence of the
dielectric-loss strength Ae on temperature (see the Introduc-
tion) this is in agreement with the finding that A€ can have a
stronger dependence on temperature than 1/7.204!

A very sensitive way to study the slopes of the curves is
by plotting n=d log,o(X')/d log;((}) as a function of 3'.
The result is shown in Fig. 6. Again we see a tendency to
universal behavior when lowering the temperature. Some
structure develops at low temperatures and large values of
3. This structure can be attributed to the crossover to reso-
nant pair hopping and is caused by the discreteness of our
system. The two different peaks that develop can be traced
back to resonant pair hopping between nearest and next-
nearest neighbors. Probably, more structure would be ob-
served if we could reach even lower temperatures in our
simulations.

We will now address the interesting issue of how the con-
cept of universality enters in the very-low frequency regime.
To get a better view of the behavior of 2({)) at low frequen-
cies, we plot [0’ (w)—0(0)]/0(0) as a function of ) in Fig.
7. The universality is seen to hold very well at low frequen-
cies. A recent derivation for the conductivity based on
effective-medium theory?® leads to a low frequency behavior
of the form Q%2. Figure 7 shows that this is fully in agree-
ment with our findings for d=2. We also conclude that we do
not appear to find any dependence of the form Q@12 as
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FIG. 5. (Color online) Results for the scaled complex frequency-dependent conductivity %(w)=0"'(w)/o’(0) for different temperatures.
(a) The real part of the scaled conductivity 3’ as a function of the scaled frequency Q=w/w,. The drawn line through the data represents
the scaled conductivity 3’ for the case of a Gaussian energy disorder (see the main text for the details). The inset shows the scaling
frequency w, divided by o(0) as a function of B. The drawn line is a fit to a power law. (b) The imaginary part of the scaled conductivity

> as a function of ().

predicted by percolation-based theories.?’ On the other hand,
such a dependence would not be easily observable in systems
with variable-range hopping, since it would require very low
frequencies.*?

IV. COMPARISON WITH THE SYMMETRIC
HOPPING MODEL

Nowadays, one of the standard works about AC univer-
sality is that of Schrgder and Dyre."'!> These authors per-
formed computer simulations of the AC conductivity for a
random-barrier model and demonstrated AC universality for
this model in d=3 and d=2. We now focus on the question
whether the random-barrier model and our more realistic
model have the same AC master curve. We can only make a
comparison for d=2, but it is reasonable to assume that the
conclusions reached for d=2 can be transferred to d=3. In
Fig. 8 we show the comparison. The AC conductivity results
for the two-dimensional simulations of a random-barrier
model are taken from Ref. 36.
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FIG. 6. (Color online) n=dlog;((X')/dlog;((2) as a function
of 3.

It is found that in the regime up to w/w,~ 10* the agree-
ment is very good for the lowest temperature that we could
reach. For higher frequencies the correspondence becomes
worse: our curve has a smaller slope. However, from the
extrapolation shown in Fig. 3 we see that for lower tempera-
tures our slope would be larger. This means that also at high
frequencies we tend to retrieve the same universal curve as
found for the random-barrier model. There is also a theoret-
ical reason to expect that the universal curves for the
random-barrier model and the present model should be the
same. Very recently, we studied the structure and conductiv-
ity of clusters generated by variable-range hopping percola-
tion, for basically the same model as the present one.*> The
main conclusion from that work is that the structure of the
percolation clusters of the present model is the same as that
following from “ordinary percolation,” such as obtained with
the random-barrier model.

10" T T . . ,
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-
o
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FIG. 7. (Color online) [’ (w)—0(0)]/c(0) as a function of Q
for different temperatures. The numerical data at low frequencies
are very well approximated by [¢” (w)—a(0)]/0(0) % Q¥?, derived
from an effective-medium theory approach with d=2 (Ref. 28). The
drawn line is a fit of this form to the low-frequency data.
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FIG. 8. (Color online) Our results for the scaled real part of the
conductivity %’ compared with the results obtained by Schrgder
and Dyre (Ref. 36) for simulations of the two-dimensional symmet-
ric hopping model in the extreme-disorder limit.

It is an experimental finding, reproduced by simulations
for the random-barrier model, that the AC conductivity in
two dimensions is very similar to that in three dimensions,
with a slightly smaller frequency dependence in two dimen-
sions than in three.>3® In Ref. 15 a comparison is made
between a three-dimensional master curve obtained for the
random-barrier model and experiments, showing a good cor-
respondence. Given the good agreement between the master

PHYSICAL REVIEW B 74, 165209 (2006)

curves of the random-barrier model and our more realistic
model, it can therefore be expected that simulations for our
model in three dimensions would also be in agreement with
the experiment.

V. CONCLUSIONS

We have numerically investigated the existence of scaling
for the AC conductivity of a model with variable-range hop-
ping on a two-dimensional regular lattice with random site
energies and Fermi statistics, leading to asymmetric hopping
rates. A clear trend toward a universal AC conductivity mas-
ter curve is observed in the extreme-disorder limit at low
temperatures. The master curve of this model appears to be
the same as that of the less realistic random-barrier model
with symmetric hopping rates. At low frequencies we find a
frequency dependence in agreement with predictions from
effective-medium theory. At the frequencies and tempera-
tures studied we do not find a term in the frequency depen-
dence that was predicted from percolation theory.
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