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Low temperature wavelength-modulated reflectivity measurements of isotopically engineered ZnO samples
have yielded the dependence of their A, B, and C excitonic band gaps on the isotopic masses of Zn and O. The
observed dependence is analyzed in terms of the band gap renormalization by zero-point vibrations via
electron-phonon interaction and the volume dependence on isotopic mass. A simplified, two-oscillator model,
employed in the analysis, yields zero-point renormalizations of the band gaps, −154±14 meV �A�,
−145±12 meV �B�, and −169±14 meV �C�, for ZnO with natural isotopic composition.

DOI: 10.1103/PhysRevB.74.165203 PACS number�s�: 78.55.Et, 63.20.Kr, 78.40.Fy

I. INTRODUCTION

With access to monoisotopic as well as isotopically en-
riched semiconductors, it has recently become possible to
explore experimentally the dependence of their physical
properties on the isotopic composition.1,2 The dramatic in-
crease in the thermal conductivity of diamond upon the
elimination of the isotopic disorder involving the 13C and
12C isotopes3,4 and the influence of isotopic composition on
lattice dynamics5 are two illustrative examples of novel
physical phenomena which have come to light, thanks to the
advent of isotopically engineered crystals.

In the context of isotope-related effects, one must under-
score the fascinating renormalization of the band gaps ob-
served in isotopically engineered semiconductors. The ex-
periments on isotopically enriched elemental diamond,6

Ge,7–9 and Si �Ref. 10–12� have yielded with great precision
both the bare band gaps for the static lattice and the corre-
sponding renormalizations by zero-point vibrations through
electron-phonon interaction and volume change associated
with anharmonicity. These data provide invaluable informa-
tion for band structure calculations and the theory of
electron-phonon interaction. We note that a cogent interpre-
tation of these experimental investigations has been possible
because of the simplicity of the theoretical formulation for
the isotopic mass dependence of the band gaps in elemental
semiconductors.

In addition to those on elemental semiconductors, experi-
mental studies of the isotopic effects on the electronic band
gaps have been carried out in a number of III-V, II-VI, and
I-VII compound semiconductors.13 Isotope related phenom-
ena become considerably richer as one proceeds from the
elemental to compound semiconductors,14–16 since the mass
of each constituent element can affect the band gap and other
physical properties differently. However, the analysis of the
isotopic results in the compound semiconductors is more

complicated in comparison to that in the elemental semicon-
ductors.

In the context of phonon renormalization effects, ZnO is a
compound semiconductor most suitable for exploring isoto-
pic mass effects due to its light anion �O� and the heavier
cation �Zn�. In addition, its fundamental gap is direct; its
wurtzite structure, coupled with the crystal field and spin-
orbit splittings, produces three spectroscopically fully re-
solved direct excitons; and isotopically controlled ZnO
specimens have been fabricated recently.

The isotopic dependence of the band gaps of ZnO was
previously investigated by Kreingol’d and Kulinkin17 using
wavelength-modulated reflectivity for two samples with
natural isotopic composition of O but different Zn isotopes
and two samples with natural isotopic composition of Zn but
different isotopic compositions of O. Recently, Manjón
et al.18 reported isotopic and temperature effects on the A
excitonic band gap accessible in photoluminescence �PL�. In
the present investigation, we have exploited the modulated
reflectivity technique to observe all the three excitonic sig-
natures in ZnO samples with a significantly expanded range
of isotopic compositions. We present in this paper the com-
prehensive data thus obtained as well as their theoretical
analysis.

II. EXPERIMENT

The wurtzite ZnO single crystals studied in the present
investigation were grown by chemical vapor transport after
sublimation and oxidation of zinc �99.9995%� in a silica am-
poule using ammonium chloride as a transport agent. Table I
shows their nominal isotopic composition.35 Our isotopically
engineered samples have irregular shapes and their dimen-
sions do not exceed 2 mm. The sample with natural isotopic
content has a prismatic shape with a hexagonal base, its c
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axis being normal to it. All the samples belong to the same
batches as those investigated in Ref. 19.

For the specimen with natural isotopic composition, un-
polarized measurements were performed on the flat surfaces
containing the c axis. Radiation from a Xe-arc lamp was
passed through a monochromator, focused on the sample and
retroreflected for detection with a Si-photodiode. Modulated
reflectivity was obtained using either electro-, photo-, or
wavelength-modulation in conjunction with phase-sensitive
lock-in amplification. The details of the modulation tech-
niques can be found elsewhere.20

The small size of the isotopically controlled samples re-
sulted in low power of the reflected light, necessitating the
use of a photomultiplier �PMT� as a detector. In order to
reduce the amount of stray light detected by the PMT, it was
directly coupled to the exit slit of a SPEX �model 1870�
monochromator, and the sample, mounted in a variable tem-
perature liquid helium cryostat, was placed in front of the
entrance slit. Broadband radiation from the Xe-arc lamp was
directly focused on the sample without passing through the
monochromator. Small facets, produced during the growth,
were identified in the samples under a magnifying glass and
used for retroreflection. The incident radiation was linearly
polarized with a Nicol prism.

III. THEORETICAL BACKGROUND

The variation in the band gap �EG� of a crystal with iso-
topic mass �M� at fixed temperature �T� and pressure �P� can
be expressed as

� �EG

�M
�

T,P
= � �EG

�M
�

T,V
+

D

V
� �V

�M
�

T,P
, �1�

where D=−B��EG /�P�T,M is the deformation potential for
hydrostatic strain and B is the bulk modulus. The first term
on the right-hand side of Eq. �1� results from the electron-
phonon interaction whereas the second is due to change in
volume with isotopic mass.

At fixed T and P, the frequencies of the lattice vibrations
and, therefore their amplitudes, are determined by M, the
average isotopic mass over the whole crystal. Consequently,
the electron-phonon interaction, treated as perturbation, leads
to an M-dependent renormalization of the band gap of a
static lattice. In addition, lattice vibrations coupled with an-

harmonicity of an interatomic potential result in an
M-dependent volume different from that of the static lattice,
which, in turn, also affects the band gap. Due to zero-point
vibrations, such isotopic mass dependence is expected for
the band gap even at absolute zero.

In the context of the dependence of any physical quantity
on the isotopic mass, the static lattice can be conveniently
represented by an infinitely massive isotope. Then, the renor-
malization of EG

�, the band gap of a static lattice, in a crystal
with the average isotopic mass M on the basis of Eq. �1� is
given by

EG
� − EG�T,P,M� = �

M

� � �EG

�M�
�

T,P
dM� = �

M

� � �EG

�M�
�

T,V
dM�

+ �
M

� D

V
� �V

�M�
�

T,P
dM�. �2�

The renormalization by the electron-phonon interaction,
i.e., the first term on the right-hand side of Eq. �2�, is given
by Eq. �3� of Ref. 14, i.e.,

�
M

� � �EG

�M�
�

T,V
dM� = �

j,q
� �EG

�nj,q
��nj,q +

1

2
� , �3�

where the sum is taken over all phonon modes, characterized
by wave vector q and the branch j, their population varying
with temperature according to Bose-Einstein statistics. The
renormalization due to the isotopic dependence of volume,
i.e., the second term on the right-hand side of Eq. �2�, can be
evaluated as follows:

�
M

� D

V
� �V

�M�
�dM� = − D ln

V�T,P,M�
V0

, �4�

where V0 is the volume of the static lattice and V�T , P ,M�
that of a crystal with the average isotopic mass M. An ana-
lytical expression for V�T , P ,M� is given in Eq. �2.3� of Ref.
21, i.e.,

V�T,P,M� = V0 +
1

B
�
j,q

� � j�q�� j�q��nj,q +
1

2
� , �5�

where � j�q� is the frequency of the phonon mode j ,q and

� j�q� = − � V0

� j�q�
�� j�q�

�V
�

V0

,

its mode Grüneisen parameter. Since under experimental
conditions relevant to the present investigation the second
term on the right-hand side of Eq. �5� is much smaller than
the first term, Eq. �4� can be approximated by

�
M

� D

V
� �V

�M�
�dM� � −

D

BV0
� j,q

� � j�q�� j�q��nj,q +
1

2
� .

�6�

Although a calculation of the coefficients ��EG /�nj,q� and
the Grüneisen constants � j�q� is possible,22 provided one has
good knowledge of the electron band structure and the lattice
dynamics, a much simplified, two-oscillator model allows a

TABLE I. Isotopic composition of ZnO samples investigated in
the present study.

64Zn16O
natZnnatO
68Zn16O

natZn16O0.5
18O0.5

68Zn16O0.5
18O0.5

64Zn18O
natZn18O
68Zn18O
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good physical description of the renormalization
effects.14,16,23 It must be pointed out, however, that at very
low temperatures, the two-oscillator model cannot satisfacto-
rily describe the temperature dependence of the band gap
renormalization and the Debye model must be employed in-
stead. Indeed, at low temperatures, the Debye model predicts
a T4 dependence of the band gap, which was recently pro-
posed and demonstrated experimentally for Si.24

In the two-oscillator model, the lattice dynamics of the
semiconductor is approximated by two harmonic oscillators,
usually an average acoustic and an average optic mode. For
binary compounds with a large difference in the masses of
the anion and the cation, as in the case of ZnO, the amplitude
of the acoustic mode is dominated by the heavy mass �Zn�
and that of the optic mode by the light mass �O�. Hence Eqs.
�3� and �6� can be written as

�
M

� � �EG

�M�
�

T,V
dM� =

pZnAZn

�ZnMZn
� 1

exp���Zn/kBT� − 1
+

1

2
�

+
pOAO

�OMO
� 1

exp���O/kBT� − 1
+

1

2
� ,

�7�

and

�
M

� D

V
� �V

�M�
�dM� = −

pZnD � �Zn�Zn

BV0

�� 1

exp���Zn/kBT� − 1
+

1

2
�

−
pOD � �O�O

BV0

�� 1

exp���O/kBT� − 1
+

1

2
� . �8�

Here �Zn and �O are the average frequencies of the Zn-
dominated modes36 and the optic, O-dominated modes, re-
spectively; �Zn, �O, the corresponding average Grüneisen pa-
rameters; pZn, pO, the degeneracies of the average optic and
the average acoustic oscillators; MZn and MO represent aver-
age isotopic masses of Zn and O; and AZn and AO,
parameters14 describing the corresponding electron-phonon
interactions. We note that upon the transition from Eq. �6� to
Eq. �8�, V0 becomes the volume of the primitive cell. While
it is doubly as large in wurtzite as in zinc blende, pZn= pO
=6 in wurtzite and pZn= pO=3 in zinc blende.

Since �Zn and �O scale like the inverse of the square root
of the corresponding mass and the Grüneisen constants are
mass independent, it follows from Eqs. �7� and �8� that the
isotopic mass dependence is most pronounced at low tem-
peratures and tends to zero for kBT� ��Zn, ��O. In this
context, the present studies at liquid He temperatures corre-
spond to the low temperature case.

Combining Eqs. �2�, �7�, and �8� for T=0 K, the zero-
point renormalization of the band gap is described by

EG�T = 0,MZn,MO� = EG
� +

CZn

MZn
1/2 +

CO

MO
1/2 , �9�

where

C = −
pA

2�M1/2 +
pD � ��M1/2

2BV0
.

Thus the two-oscillator model provides a simple analytical
expression for the dependence of the band gap on isotopic
mass in the binary compound semiconductor under consid-
eration, provided the cation and anion masses are signifi-
cantly different.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Taking into account the crystal field and spin-orbit
interactions25 appropriate to the wurtzite structure, the va-
lence band of ZnO near its �-point maximum is split into
three doubly degenerate subbands, two of them belonging to
the �7 and the third to the �9 symmetry of the C6v point
group of wurtzite. The conduction band minimum, also at the
�-point, has �7 symmetry. The polarization selection rules
derived from group theory indicate that the �9→�7 transi-
tions are allowed for polarization perpendicular to the c axis
and the �7→�7 transitions for both parallel and perpendicu-
lar polarizations. Liang and Yoffe26 observed in transmission
experiments two strong transitions �A and B� for the perpen-
dicular polarization and one �C� for the parallel, the order of
the transitions with increasing energy being A, B, and C. In
addition, the A line was observed as a weak transition in the
parallel polarization and the C line in the perpendicular po-
larization. Based on these polarization features, they deduced
the order of the valence band maxima with increasing energy
to be �7, �9, and �7 as shown in Fig. 1�a�.

FIG. 1. �Color online� �a� Schematic representation of the con-
duction and valence bands of ZnO, showing their symmetries and
associated A, B, and C band gaps. �b� Modulated reflectivity spectra
of ZnO with constituents having natural isotopic composition, ob-
tained with unpolarized light using electro-, photo-, and
wavelength-modulation. The feature labeled “from Xe lamp” is due
to the radiation from the source.
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Figure 1�b� shows the modulated reflectivity spectra of
ZnO with constituents having natural isotopic abundance, re-
corded with unpolarized light at T=10 K, using different
modulation methods. The spectra display Lorentz-derivative-
like signatures associated with the ground �n=1� and first
excited �n=2� excitonic states of A, B, and C. Wavelength-
modulated reflectivity spectra obtained with polarized light
are displayed in Fig. 2. While the A and B features are ob-
served for polarization perpendicular to the c axis, C is seen
for parallel polarization. Although A and C are allowed for
both polarizations, in our measurements A is not observed
for the parallel polarization, nor is C for the perpendicular
polarization. This is not surprising considering the weakness
of the transitions for these polarizations, as reported in Ref.
26.

The isotopic shift of the A, B, and C excitonic band gaps
at 8 K is displayed in Fig. 3 as an illustrative example. Fea-
tures labeled BX are due to bound-exciton PL,18 excited by
the broadband radiation source. Since the isotopic samples
investigated have irregular shapes, the incident light does not
necessarily propagate perpendicular to the c axis, but rather
at an arbitrary nonzero angle to it. Under these circum-
stances, the incident ordinary ray, with the polarization per-
pendicular to the c axis, can be chosen by rotating the linear
polarizer until C disappears. The extraordinary ray obtained
by further rotation of the polarizer by 90° may also have
polarization perpendicular to the c axis in addition to the
parallel one, thus explaining the appearance of A and B for
the extraordinary ray in some of the samples.

The line shape of the observed wavelength-modulated re-
flectivity spectra of ZnO cannot be accounted for by the
expressions27 for Lorentzian excitonic resonance, but re-
quires the polariton model.28,29 In this model, the strong in-
teraction of excitons with the electromagnetic field inside a
semiconductor requires a description in which “the coupled
exciton-radiation field” propagates as a combined mode
called “polariton.” Following Ref. 29, we consider the dis-
persion of the polariton

k2c2

�2 = 	� + �
j=1

r
4
Fj� j

2

� j
2 − �2 + � � jk

2/Mj − i�� j

, �10�

where k and � are the wave vector and angular frequency of
the polariton, and Fj and � j the zero-frequency polarizability
and frequency of the excitonic resonance labeled j, respec-
tively. The center-of-mass masses Mj, i.e., the translational
masses �the sum of electron and hole mass�, determine the
spatial dispersion28 of the excitons and the exciton damping
parameters � j are assumed to be frequency independent. The
summation in Eq. �10� is taken over r exciton resonances in
the vicinity of � and the background dielectric constant 	�

represents the sum over all other resonances, including elec-
tronic interband transitions which take place above the fre-
quencies of the A, B, and C excitons.

In ZnO, the A and B resonances are separated by only
5 meV, whereas B and C are separated by 40 meV; thus for
a polariton in the vicinity of A and B �Fig. 2� one needs to
consider their contributions to Eq. �10� simultaneously, i.e.,
r=2. The resulting dispersion relation of Eq. �10� is cubic in
k2, implying three polariton modes with different k for a
given �. In contrast, a single isolated excitonic resonance C
�Fig. 2� contributes to the polariton in its vicinity, resulting in
two polariton modes according to Eq. �10�. We note in addi-
tion that the polariton must have a nonzero electric field
perpendicular to the c axis in order to couple to A and B and
parallel to it to couple to C.

After solving Eq. �10� for ki
2���, the polarization Pij, as-

sociated with the polariton i and the excitonic resonance j,
can be written as

Pij��� =
Ei���Fj� j

2

� j
2 − �2 + � � jki

2���/Mj − i�� j

, i = 1, . . . ,r + 1,

�11�

where Ei��� is the electric field of the polariton. The reflec-
tivity at � can now be obtained considering incident and

FIG. 2. �Color online� Wavelength-modulated reflectivity of
natZnnatO for light polarized parallel and perpendicular to the c axis. FIG. 3. �Color online� Wavelength-modulated reflectivity spec-

tra of 64Zn16O and 68Zn18O, recorded for the ordinary and extraor-
dinary rays and T=8 K.

TSOI et al. PHYSICAL REVIEW B 74, 165203 �2006�

165203-4



reflected electromagnetic waves with amplitudes E0��� and
ER���, respectively, outside the semiconductor and r+1 po-
lariton modes with amplitudes Ei��� inside. The usual Max-
well boundary conditions for the electric and magnetic field
yield

E0 + ER = �
i=1

r+1

Ei,

E0 − ER = �
i=1

r+1

niEi, �12�

where ni=cki /� and the semiconductor is assumed to be in
vacuum.

Equations �12� are not sufficient to uniquely determine E0
and ER. For this purpose Pekar introduced30 the additional
boundary condition �ABC� for the case of a single excitonic
resonance, viz. the net polarization of the polaritons must
disappear at the semiconductor boundary. Skettrup and
Balslev29 extended the additional boundary condition to mul-
tiple resonances by requiring the cancellation of the net po-
lariton polarization at the surface, including all resonances:

�
i=1

r+1

Pij��� = 0, 1 � j � r . �13�

A system of r+2 equations �12� and �13�, with the polariza-
tions Pij expressed in terms of Ei by means of Eqs. �11�, can
be solved for ER in terms of E0, thus yielding the complex
reflectance r���=ER��� /E0���.

Hopfield and Thomas28 pointed out that the exciton polar-
izations Pij should disappear inside a surface layer of thick-
ness l which they labeled as dead layer, rather than at the
boundary of the semiconductor. The dead layer has been at-
tributed to the finite size of the exciton in the semiconductor,
characterized by its Bohr radius, which results in the electro-
static repulsion of the exciton from the surface layer. Conse-
quently, one must consider reflection of the light from a
double-layered surface, including interference31 of the rays
reflected from the two interfaces. The problem involves the
incident �E0� and reflected �ER� electromagnetic waves out-
side the semiconductor, the incident �E0�� and reflected �ER��
electromagnetic waves inside the dead layer, characterized
by the background dielectric constant 	�, and r+1 polariton
modes in the rest of the semiconductor. The resultant com-
plex reflectance is given by31

r��� =
r12 + r23e

i4
l/�

1 + r12r23e
i4
l/� , �14�

where r12= �1−		�� / �1+		�� is the reflectance from the
vacuum-dead layer interface, r23 the reflectance from the
dead layer-semiconductor interface, and � the wavelength of
the electromagnetic wave inside the dead layer.

Figures 4 and 5 show ��R /���, the derivatives of the re-
flectivity, measured using wavelength modulation in differ-
ent isotopic ZnO crystals and the corresponding fits obtained
with the polariton model and the ABCs described above. For
the purpose of finding the best fits, the polarizabilities Fj, the

damping parameters � j, the background dielectric constant
	�, the thickness of the dead layer l, and the energies of the
excitonic resonances �� j are treated as fitting parameters.
During the fitting procedure it was established that the exci-
ton masses Mj did not significantly affect the line shape; they
were fixed at Mj =1.8m0 �Ref. 29� �j=A,B,C�, m0 being the
free electron mass. Table II shows the energies of excitonic
resonances deduced from the fitting procedure.

Absent or weak features associated with the C polariton in
Fig. 4 indicate that these spectra were obtained for the trans-
verse polaritons, polarized perpendicular to the c axis. Thus
the excitonic energies deduced in the fits represent transverse
excitonic energies ��A

T and ��B
T. In a similar fashion, the

spectra with the absent or weak A and B features in Fig. 5 are
attributed to transverse polariton polarized parallel to the c
axis. In contrast, the rather distinct A and B polariton fea-
tures seen in Fig. 5 for 64Zn16O are evidence of the polariton
electric field having nonzero projections parallel and perpen-
dicular to the c axis. This occurs when the polariton propa-
gates at an arbitrary angle �i.e., other than 0° and 90°� to the
c axis with the polarization in the plane containing the c axis
and the propagation direction of the polariton. Under such
circumstances, the polariton has a mixed, transverse-
longitudinal character.32 Since the line-shape analysis em-

FIG. 4. �Color online� Derivative reflectivity spectra of isotopi-
cally controlled ZnO for the ordinary rays, obtained with wave-
length modulation �dots�, and corresponding fits �lines� obtained
with the polariton model. The energies of the transverse A and B
excitonic band gaps Egx

A and Egx
B are deduced from the fits. PL

denotes bound-exciton photoluminescence excited by the broad-
band radiation from the source. Xe is a feature associated with the
radiation from the xenon lamp.
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ployed in the present work is not valid for a mixed
transverse-longitudinal polariton,28 it was not possible to re-
liably determine the transverse excitonic energy ��C

T for
64Zn16O from the recorded spectrum.

The longitudinal-transverse splittings of the excitons can
be calculated �Table III� following Ref. 32 and using the
parameters obtained from the fits. The splittings thus deter-
mined are comparable to the values measured in natural ZnO

for the A and B excitons by Hopfield and Thomas in
transmission32 and for the C exciton by Lagois and Hümmer
in reflection.33 We note that they exhibit no significant de-
pendence on isotopic mass, a fact that was also noticed for
CdS.13

The low-temperature energies of the A, B, and C trans-
verse excitonic band gaps, deduced from the fits, are plotted
in Figs. 6–8 as a function of the total mass �in amu� of the
ZnO molecular unit, i.e., MZn+MO. Within the small range
of available masses, the predicted isotopic dependence of Eq.
�9� can be approximated by a linear dependence on the
masses of Zn and O. The resulting linear fits, with the mass
of either Zn or O fixed, are shown by solid lines, with the
corresponding slopes given in meV/amu in parenthesis. The
isotopic dependences of Egx, obtained by taking into account
the data for all the samples, are given in the rows
��Egx /�MZn�T,P and ��Egx /�MO�T,P of Table IV. They are in
agreement with the values �0.37±0.06� and
�3.38±0.38� meV/amu, respectively, measured for all three

FIG. 5. �Color online� Same as in Fig. 4 for extraordinary rays.
The energies of the transverse C excitonic band gaps Egx

C are de-
duced from the fits. Xe is a feature associated with the radiation
from the xenon lamp.

TABLE II. Energies of the A, B, and C excitonic resonances
determined for isotopically controlled ZnO samples from the fits to
their wavelength-modulated reflectivity spectra using the polariton
procedure described in the text. For additional parameters see Ref.
20.

��A

�eV�
��B

�eV�
��C

�eV�

64Zn16O 3.3758 3.381
natZnnatO 3.3760 3.3813 3.4213
68Zn16O 3.3768 3.3816 3.4219
natZn16O0.5

18O0.5 3.3785 3.3839 3.4250
68Zn16O0.5

18O0.5 3.3799 3.3855 3.4264
64Zn18O 3.3819 3.3875 3.4275
natZn18O 3.3825 3.3876 3.4278
68Zn18O 3.3835 3.3883 3.4288

TABLE III. Longitudinal-transverse splittings of the A, B, and C
excitons in ZnO, determined from the fitting parameters listed in
Table II.

��A
LT

�meV�
��B

LT

�meV�
��C

LT

�meV�

64Zn16O 2.5 11.2
natZnnatO 1.9 9.7 12.5
68Zn16O 1.9 8.7 11.5
natZn16O0.5

18O0.5 1.0 10.0 12.5
68Zn16O0.5

18O0.5 2.3 8.7 10.0
64Zn18O 2.3 10.5 13.0
natZn18O 2.9 9.8 11.0
68Zn18O 2.8 9.7 12.0

FIG. 6. �Color online� Dependence of the A excitonic band gap
of ZnO on isotopic masses plotted as a function of the sum of the
masses of Zn and O. The dots represent experimental data, the lines
are linear fits, and the numbers in brackets give the slopes of the fits
�in meV/amu�.
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band gaps by Kreingol’d and Kulinkin,17 and with
�0.41±0.05� and �3.22±0.10� meV/amu, respectively, mea-
sured by Manjón et al.18 for the A excitonic gap.

The contributions �D /V���V /�M�T,P due to the volume
dependence on isotopic mass can be easily estimated using
Eq. �8� for T=0 K, assuming, for the sake of simplicity, the
zinc-blende modification of ZnO �i.e., pZn= pO=3�

1

V� �V

�MZn�O�
�

T,P,MO�Zn�

= −
3 � �Zn�O��Zn�O�

4BV0MZn�O�
. �15�

The average Grüneisen parameters as well as the average
of the energies of acoustic and optical phonons can be esti-
mated from Table VII of Ref. 34, i.e., �Zn�−0.9, �O�1.6,
��Zn�20.1 meV, and ��O�63.2 meV. Using V0

=24.65 Å �Ref. 3� and B=160.8 GPa,34 appropriate for the
cubic ZnO, and MZn=65.4 amu, MO=16 amu, we obtain
�1/V���V /�MZn�T,P,MO

=8.4�10−6 amu−1 and �1/V�
���V /�MO�T,P,MZn

=−1.9�10−4 amu−1. Note that the deriva-
tive with respect to the oxygen mass is about half that ob-
tained for diamond �4.5�10−4 amu−1�. We also notice that
the derivative with respect to the Zn mass is much smaller
and has the opposite sign. It would be interesting to measure
these derivatives by x-ray diffraction and check whether they
have opposite signs. The Grüneisen parameter �Zn has a
small magnitude, a fact which results from a compensation
of the various contributing acoustic branches. The average
value can thus end up being either positive or negative if a
fine mesh sampling over the Brillouin zone is made.

Employing D=−B��Egx /�P�T,M, together with
��Egx

A /�P�T,M =23.6 meV/GPa, ��Egx
B /�P�T,M =24.4 meV

/GPa, and ��Egx
C /�P�T,M =26.5 meV/GPa,25 we estimate the

values of �D /V���V /�MZn�T,P and �D /V���V /�MO�T,P given
in Table IV. In accordance with Eq. �1�, the electron-phonon
contributions ��Egx /�MZn�T,V and ��Egx /�MO�T,V are ob-
tained by subtracting the volume related term �D /V�
���V /�M�T,P from ��Egx /�M�T,P.

Fitting the deduced low-temperature band gaps with Eq.
�9� yields the unrenormalized band gaps for the static lattice
as well as the coefficients CZn, CO, shown in columns 2–4 of
Table V, respectively. The last column of Table V displays
the zero-point renormalizations in ZnO with natural
isotopic composition, obtained using expression
–CZnMZn

−1/2–COMO
−1/2. The renormalization is the same,

within experimental errors, for all three band gaps and the
value determined for the excitonic gap A is in excellent
agreement with �−164±9� meV obtained by Manjón et al.18

CONCLUSIONS

The present paper reports the isotopic mass dependence of
the A, B, and C direct excitonic band gaps of ZnO at low
temperatures, deduced from wavelength-modulated reflectiv-
ity measurements on isotopically engineered ZnO. The line-
shape analysis of the reflectivity spectra based on the polar-
iton model has allowed us to obtain the A, B, and C
transverse exciton energies as functions of the isotopic
masses of Zn and O. The dependence is analyzed in terms of
zero-point renormalization of the band gap by electron-
phonon interaction and the dependence of volume on isoto-

TABLE IV. Isotopic mass dependence of the A, B, and C exci-
tonic band gaps of ZnO at 10 K.

Excitonic band gap A B C

��Egx /�MZn�T,P �meV/amu� 0.35±0.09 0.27±0.14 0.40±0.12

�D /V���V /�MZn�T,P �meV/amu� −0.032 −0.033 −0.036

��Egx /�MZn�T,V �meV/amu� 0.38±0.09 0.30±0.14 0.44±0.12

��Egx /�MO�T,P �meV/amu� 3.24±0.21 3.36±0.20 3.27±0.31

�D /V���V /�MO�T,P �meV/amu� 0.72 0.75 0.81

��Egx /�MO�T,V �meV/amu� 2.52±0.21 2.61±0.20 2.46±0.31

FIG. 8. �Color online� Isotopic mass dependence of the C exci-
tonic band gap of ZnO plotted as in Fig. 6. The dots represent
experimental data, the lines are linear fits, and the numbers in
brackets give the slopes of the fits �in meV/amu�.

FIG. 7. �Color online� Isotopic mass dependence of the B exci-
tonic band gap of ZnO plotted as in Fig. 6. The dots represent
experimental data, the lines are linear fits, and the numbers in
brackets give the slopes of the fits �in meV/amu�.
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pic mass, which are approximated for binary ZnO by a two-
oscillator model involving a Zn-dominated and an
O-dominated Einstein oscillator. Fitting the isotopic depen-
dence of the A, B, and C excitonic band gaps to the simple
analytical expression, predicted by the two-oscillator model,
allows us to determine their values for the static lattice and
corresponding zero-point renormalizations. All three band
gaps experience the same amount of zero-point renormaliza-
tion within the experimental errors.

Analysis of the two renormalization mechanisms shows
that electron-phonon interaction accounts for 
80% of the
total zero-point renormalization of the A, B, and C excitonic

band gaps in ZnO. In addition, treatment of the dependence
of volume on isotopic mass at zero temperature in the spirit
of the two-oscillator model predicts an increase of volume
with the mass of O and an anomalous decrease with the mass
of Zn, subject to theoretical and experimental verification.
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