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We describe spin correlations in the vicinity of a generalized impurity in a wide class of fractionalized spin
liquid states. We argue that the primary characterization of the impurity is its electric charge under the gauge
field describing singlet excitations in the spin liquid. We focus on two gapless U�1� spin liquids described by
�2+1�-dimensional conformal field theories �CFT�: the staggered flux �sF� spin liquid, and the deconfined
critical point between the Néel and valence-bond-solid �VBS� states. In these cases, the electric charge is
argued to be an exactly marginal perturbation of the CFT. Consequently, the impurity susceptibility has a 1/T
temperature dependence, with an anomalous Curie constant, which is a universal number associated with the
CFT. One unexpected feature of the CFT of the sF state is that an applied magnetic field does not induce any
staggered spin polarization in the vicinity of the impurity �while such a staggered magnetization is present for
the Néel-VBS case�. These results differ significantly from earlier theories of vacancies in the sF state, and we
explicitly demonstrate how our gauge theory corrects these works. We discuss implications of our results for
the cuprate superconductors, organic Mott insulators, and graphene.
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I. INTRODUCTION

The response of a strongly interacting electronic system to
impurities has long been a fruitful way of experimentally and
theoretically elucidating the subtle correlations in its many-
body ground-state wave function. The most prominent ex-
ample is the Kondo effect, which describes the interplay be-
tween a variety of impurities with a spin and/or “flavor”
degree of freedom and a system of free fermions with either
a finite1–3 or vanishing4 density of states at the Fermi energy.

More recently, the impurity responses of a variety of
“non-Fermi-liquid” bulk states have been studied.5–18 The
S=1/2 antiferromagnetic spin chain generically has a critical
ground state and displays interesting universal characteristics
in its response to impurities or boundaries.6 Universality was
also found in the general theory7,9,16 of impurities in “dimer-
ized” quantum antiferromagnets in spatial dimensions d�2
near a quantum critical point between a Néel state and a
confining spin gap state. Such dimerized antiferromagnets
have an even number of S=1/2 spins per unit cell, and con-
sequently, their bulk quantum criticality is described within
the conventional Landau-Ginzburg-Wilson �LGW� frame-
work of a fluctuating Néel order parameter.19–21 Away from
the impurity, such systems only have excitations that carry
integer spin.

It is the purpose of this paper to extend the above
theory7,9,16 to fractionalized “spin liquid” states in spatial di-
mensions d�2 with neutral S=1/2 excitations �“spinons”�
in the bulk. Such spinon excitations carry gauge charges as-
sociated with an “emergent” gauge force �distinct from the
electromagnetic forces�, typically with the gauge group22,23

Z2 or U�1�, and we will argue shortly that such gauge forces
play a key role in the response of spin liquid states to impu-
rities. Earlier analyses24–28 of the influence of impurities in
the U�1� “staggered-flux” spin liquid ignored the crucial
gauge forces; we will comment in detail on the relationship
of our results to these works in Sec. III B. An analysis of
impurities in a Z2 spin liquid state was presented recently by

Florens et al.,18 but for a particular situation in which a spin
moment was strongly localized on an impurity and gauge
forces could be safely neglected. We will comment further
on their work in Sec. IV B.

There are a number of experimental motivations for our
work. A large number of experiments have studied Zn and Ni
impurities in the cuprates,29–32 and much useful information
has been obtained on the spatial and temperature dependence
of the induced moments around the impurity. It would clearly
be useful to compare these results to the corresponding pre-
dictions for different spin liquid states, and for states proxi-
mate to quantum critical points. We will show here that there
are significant differences in the experimental signatures of
the different candidates, and this should eventually allow
clear discrimination by a comparison to experimental results.
A second motivation comes from a recent nuclear magnetic
resonance �NMR� study33 of the S=1/2 triangular lattice or-
ganic Mott insulator �-�ET�2Cu2�CN�3, which possibly has a
nonmagnetic, spin singlet ground state. The NMR signal
shows significant inhomogeneous broadening, indicative of
local fields nucleated around impurities. Our theoretical pre-
dictions here for Knight shift around impurities should also
assist here in selecting among the candidate ground states.

An important observation is that in situations with decon-
finement in the bulk, the bulk spinons are readily available to
screen any moments associated with an impurity atom �as
has also been noted by Florens et al.18�. Moreover, for a
nonmagnetic impurity �such as Zn on a Cu site�, there is no
a priori reason for the impurity to acquire a strongly local-
ized moment. Consequently, it is very useful to consider the
case where the impurity has local net spin S=0. Naively,
such a situation might seem quite uninteresting, as there is
then no local spin degree of freedom that can interact non-
trivially with the excitations of the spin liquid. Indeed, in a
Fermi liquid, a nonmagnetic impurity has little effect, apart
from a local renormalization of Fermi liquid parameters, and
there is no Kondo physics. However, in spin liquids the im-
purity can carry an electric gauge charge Q, and the primary
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purpose of this paper will be to demonstrate that a Q�0,
S=0 impurity displays rich and universal physics.

We will primarily consider U�1� spin liquids here: then an
important dynamical degree of freedom is a U�1� gauge field
A�, where � extends over the d+1 space-time directions,
including the imaginary time direction, �. Our considerations
here can also be easily extended to Z2 spin liquids, and this
will be described later in Sec. IV B. We normalize the A�
gauge field such that the spinons have electric charges ±1. In
the popular U�1� gauge theories of antiferromagnets on the
square lattice �which we will describe more specifically be-
low�, a vacancy will carry a gauge charge Q= ±1. Thus, a Zn
impurity on the Cu square lattice site has Q= ±1. This can be
understood by thinking of the impurity as a localized “holon”
in the doped antiferromagnet, which also carries such gauge
charges.26

We will consider theories here with actions of the
structure

S = Sb + Simp, �1.1�

where Sb is the bulk action of the spin liquid in the absence
of any impurity and Simp represents the perturbation due to
an impurity that we assume is localized near the origin of
spatial coordinates, x=0. We will argue that the dominant
term in Simp is the coupling of the impurity to the U�1� gauge
field

Simp = iQ� d�A��x = 0,�� . �1.2�

We will demonstrate that additional terms in the impurity
action are unimportant or “irrelevant.” The Simp above can be
regarded as the remnant of the spin Berry phase that charac-
terized the impurity in the previous theory7,9,16 of dimerized
antiferromagnets; the latter Berry phase for a spin S impurity
was iS times the area enclosed by the path mapped on the
unit sphere by the time history of the impurity spin. An ex-
plicit reduction in the spinon formulation of the spin Berry
phase to Eq. �1.2� was presented in Ref. 34.

We will consider a variety of realizations of the bulk spin
liquid Sb in this paper. Our primary results will be for U�1�
algebraic spin liquids,35 which are described by
�2+1�-dimensional conformal field theories �CFT� and we
specialize our presentation to these CFT cases in the remain-
der of this section. An algebraic spin liquid has gapless
spinon excitations which interact strongly with the A� gauge
field. An explicit realization appears in the deconfined quan-
tum critical point19–21 between Néel and valence bond solid
�VBS� states, in which the spinons are relativistic bosons
described by the CPN−1 field theory. Another is found in the
“staggered flux” �sF� phase of SU�N� antiferromagnets,
where the spinons are Dirac fermions.35–38 In all these cases,
the algebraic spin liquid is described by a �2+1�-dimensional
conformal field theory, and our primary purpose here is to
describe the boundary conformal field theory that appears in
the presence of Simp.

Our central observation, forming the basis of our results,
is that Simp in Eq. �1.2� is an exactly marginal perturbation to
the bulk conformal field theory. This nonrenormalization is a

consequence of U�1� gauge invariance, which holds both in
the bulk and on the impurity. We will verify this nonrenor-
malization claim in a variety of perturbative analyses of the
conformal field theory. The claim can also be viewed as a
descendant of the nonrenormalization of the spin Berry
phase term, found in Ref. 16.

The exact marginality of Simp has immediate conse-
quences for the response of the system to a uniform applied
magnetic field H. The impurity susceptibility �imp, defined as
the change in the total bulk susceptibility due to the presence
of the impurity, obeys

�imp =
C
T

�1.3�

at finite temperature T above a conformal ground state; this
can be extended by standard scaling forms �as in Ref. 9� to
proximate gapped or ordered phases, as we will describe in
the body of the paper. We set �=kB=1 and absorb a factor of
the magneton, g�B, in the definition of the Zeeman field.
With this, C is a dimensionless universal number, dependent
only upon the value of Q, and the universality class of the
bulk conformal field theory.

It is remarkable that the response of the impurity has a
Curie-like T dependence, albeit with an anomalous Curie
constant C �which is likely an irrational number�. This
anomalous Curie response appears even though there is no
spin moment localized on the impurity. In contrast, the ear-
lier results for the LGW quantum critical point presented in
Ref. 9 had an unscreened moment present and so a Curie
response did not appear as remarkable. Here, it is due to the
deformation of a continuum of bulk excitations by the impu-
rity, and the 1/T power law is a simple consequence of the
fact that H and T both scale as an energy. Indeed, any other
external field, coupling to a total conserved charge, will also
have a corresponding universal 1 /T susceptibility.

A Curie-like response of an impurity in the staggered flux
phase was also noted early on by Khalliulin and
collaborators,24 and others.25,27 However, in their mean-field
analysis, they associated this response with a zero-energy
bound state, and hence argued that C=1/4. As noted above,
the actual interpretation is different: there is a critical con-
tinuum of excitations, and its collective boundary critical re-
sponse has a Curie temperature dependence as a consequence
of hyperscaling properties. Consequently, C does not equal
the Curie constant of a single spin and is a nontrivial number,
which is almost certainly irrational. We will discuss the
earlier work more explicitly in Sec. III B.

We will also consider the spatial dependence of the re-
sponse to a uniform applied field H in the presence of an
impurity, as that determines the Knight shift in NMR experi-
ments. The uniform magnetization density induced by the
applied field leads to a Knight shift HKu�x�; at T above a
conformal ground state this obeys �the scaling form is also as
in Ref. 9�

Ku�x� =
�T/c�d

T
�u� xT

c
� , �1.4�

where c is the spinon velocity in the bulk �we assume
the bulk theory has dynamic critical exponent z=1, and
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henceforth set c=1�, �u is a universal function, and the
Knight shift is normalized so that

� ddxKu�x� = �imp. �1.5�

The function �u�y� has a power-law singularity as y→0,
with the exponent determined by a “boundary scaling dimen-
sion:” this will be described in the body of the paper for the
various cases.

In addition to the locally uniform Knight shift, an impu-
rity in the presence of a uniform applied field also induces a
“staggered” moment, which typically oscillates at the wave
vector associated with a proximate magnetically ordered
state. This leads to a staggered Knight shift, HKs�x�, which
we will also consider here. Such a staggered Knight shift
does appear for the deconfined critical theory describing the
Néel-VBS transition, and it has a spatial distribution associ-
ated with that of the Néel state. However, the response for
the U�1� sF spin liquid is dramatically different. One of our
primary results is that for the scaling limit theory of the U�1�
sF spin liquid, an applied magnetic field in the presence of an
impurity induces none of the many competing orders37

associated with the spin liquid. Thus, there is no analog of
the staggered Knight shift. A subdominant induction of com-
peting orders can arise on including irrelevant operators as-
sociated with corrections to scaling; the primary response,
however, is just the induction of a ferromagnetic moment,
which has a slowly varying, space-dependent envelope in the
vicinity of the impurity specified by Ku�x�.

Our conclusions above for the impurity response of the
U�1� sF spin liquid differ from the earlier mean-field
theories.24–28 They found an induced moment that had a
strong oscillation between the two sublattices of the square
lattice. We demonstrate here that this oscillation disappears
in the continuum field theory, which accounts for the
gauge fluctuations. We are not aware of any reason why fluc-
tuation corrections to the mean-field predictions should be
considered small.

The outline of the remainder of the paper is as follows. In
Sec. II, we will consider the CPN−1 model field theory, which
describes the vicinity of the Néel-VBS transition. The U�1�
sF spin liquid will then be described in Sec. III. Other spin
liquids, not described by CFTs or by exactly marginal impu-
rity perturbations will be briefly discussed in Sec. IV. Finally,
experimental implications and a summary appear in Sec. V.

II. CPN−1 MODEL

The CPN−1 model describes the deconfined quantum criti-
cal point between the Néel and VBS states on the square
lattice.19–21 It is a field theory of complex scalars z�,
�=1, . . .N, with global SU�N� symmetry and a coupling to
the U�1� gauge field A�. Near the transition at which global
SU�N� symmetry is broken we can work with the effective
action

Sb =� dDy����� − iA��z��2 + s�z��2 +
u0

2
��z��2�2

+
1

2e0
2 �	�
��
A��2� , �2.1�

where y= �� ,x�� is a space-time coordinate, � extends over D
spacetime indices, D is the dimension of space-time, related
to the spatial dimensionality d by

D = d + 1. �2.2�

We are interested in the phases of the field theory in Eq. �2.1�
as a function of the tuning parameter s. For s�0, there is a
magnetically ordered phase with global SU�N� symmetry
broken, whereas for s0 we have a spin-gap phase with full
SU�N� symmetry. We are especially interested in the confor-
mally invariant critical point that separates these phases. We
will begin by reviewing the critical properties of the bulk
action Sb alone in Sec. II A and describe impurity effects in
Sec. II B–II E.

A. Bulk theory

We will restrict our analysis here to the 	 expansion where

	 = 4 − D . �2.3�

This was carried out by Halperin et al.39 some time ago,
in a different physical context. This section will merely re-
cast their results in our notation, using the field-theoretical
formulation.

As noted by Halperin et al., a stable fixed point is ob-
tained in the 	 expansion only for sufficiently large values of
N. However, it is expected that in the physical dimension of
	=1, the fixed point may well be stable down to the needed
values of N. Our purpose here is to understand the basic
features of the second-order critical point, and its response to
impurities; thus, we will assume that the value of N is large
enough to ensure stability of the fixed point. This will delin-
eate the essential scaling structure of the impurity response
but is not expected to be quantitatively accurate.

It is also possible to analyze this model using the 1/N
expansion, directly in D=3. We choose not to present this
here because the results are very similar to the 	 expansion,
and the methods are closely related to those used for the
1/Nf expansion in Sec. III.

The renormalization proceeds by defining renormalized
fields and coupling constants u and f by

z� = Zz
1/2zR�

u0 =
�	Z4

Zz
2SD

u

e0
2 =
�	Ze

SD
f , �2.4�

where
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SD =
2

��D/2��4��D/2 . �2.5�

We work in the Lorentz gauge, in which the A� propagator is
���
− p�p
 / p2� / p2. In this gauge, the renormalization con-
stants are

Z4 = 1 +
�N + 4�u
	

+
6f2

	u

Ze = 1 +
Nf

3	

Zz = 1 +
3f

	
. �2.6�

From this we can determine the anomalous dimension, �z of
the z�; note that this is gauge dependent,

�z = �
d

d�
ln Zz = − 3f , �2.7�

where this is to be evaluated at the fixed point of the �
functions in Eq. �2.8�.

The � functions are

��u� = �
du

d�
= − 	u + �N + 4�u2 + 6f2 − 6fu

��f� = �
df

d�
= − 	f +

N

3
f2. �2.8�

The renormalization of �z��2 determines the critical expo-
nent 
. This is associated with the renormalization constant

Z2 = 1 +
�N + 4�u
	

. �2.9�

In this gauge, there is no contribution to Z2 of order f . The
critical exponent 
 is given by

1



= 2 + �

d

d�
ln

Z2

Zz
= 2 − �N + 4�u + 3f , �2.10�

where, again, this is to be evaluated at the fixed point of the
� functions in Eq. �2.8�.

Finally, we consider the scaling dimensions of
gauge-invariant operators that characterize the observable
spin correlations. The Néel order parameter is defined by

�a = z�
*T��

a z�, �2.11�

where Ta is a N�N matrix, which is a generator of SU�N�.
We define its anomalous dimension � by

dim	�a
 =
�D − 2 + ��

2
. �2.12�

In the Lorentz gauge, �a has no additional renormalization
from A� fluctuations at leading order in 	. The anomalous
exponent � is then given, to this order, by

� = D − 2 + 2�z + 2u + O�	2� . �2.13�

Note that the value of � is gauge invariant, whereas that of
�z is not; the relationship �2.13� holds only in the Lorentz
gauge.

We will also be interested in correlations of the magneti-
zation density Ma. This is defined by the response of the
system to a uniform and staggered magnetic fields Hu and
Hs, under which the action is modified by

���� − iA��z�2 → ���� + iA��z�
* + Hu

aT��
a* z�

*�

����� − iA��z� − Hu
aT��

a z�� − Hs
a�a.

�2.14�

The magnetization density is given by

Ma = T
� ln Z
�Hua

, �2.15�

where Z is the partition function. Because Hu couples to a
conserved “charge,” it scales as an energy, and therefore,

dim	Ma
 = d . �2.16�

B. Impurity exponents

We now turn to an analysis of spin correlations in the
vicinity of the impurity. The general method is very similar
to that followed in Ref. 16.

We assume here that monopole tunneling events remain
irrelevant at the impurity at the quantum critical point, as
they do in the bulk.19–21 Such monopole tunneling events are
defined only in d=2, and thus, their scaling dimensions are
not easily estimated in the 	 expansion. However, the mono-
poles are irrelevant at large N in the bulk because their action
is proportional to N, and the same reasoning applies also in
the presence of the impurity.

As in Refs. 9 and 16, the staggered and uniform magne-
tizations operators ��a and Ma� acquire additional renormal-
izations as they approach the impurity at x=0. Let us denote
the corrections by modifying �2.12� to

dim	�a�x → 0�
 = dim	�a
 + �imp
� �2.17�

and similarly for Ma. We will compute these additional
renormalizations to order 	2 below and find that to this order
�imp
� =�imp

M .
It is also useful to restate the above results in the notation

of Refs. 9 and 16. We find that the excitations near the im-
purity are characterized by a spin operator Sa, where a is the
index of SU�N� generators, and we denoted its scaling
dimension by �� /2, or, equivalently,

Sa���Sb�0�� �
�ab

�����
�2.18�

at the quantum critical point. Assuming that Sa is obtained as
�a approaches the impurity, we obtain from �2.12� and �2.17�
that
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�� = D − 2 + � + 2�imp
� . �2.19�

These scaling relations imply40 that at the quantum critical
point the temperature dependence of the NMR relaxation
rate is

1

T1
� T−1+��, �2.20�

near the impurity, while 1 /T1�Td−2+� in the bulk. Finally,
we note that we can also express the above relations using
the operator product expansion

lim
x→0
�a�x,�� �

Sa���

�x�−�imp
� . �2.21�

It is also useful to consider time-dependent correlations of
the magnetization density, Ma, as one approaches the impu-
rity. The initial guess would be that these acquire the addi-
tional anomalous dimension �imp

M . However, we will see in
our computations below that the dominant correlations are
instead given by “mixing” between the �a and Ma operators
near the impurity. As was also found in Ref. 9, the impurity
Berry phase allows such mixing, and so the operator product
expansion of Ma near the impurity has a dominant term
given by the same operator Sa introduced above to describe
the behavior of �a. This assertion is encapsulated in the
operator product expansion

lim
x→0

Ma�x,�� �
Sa���

�x�d−��/2
. �2.22�

The relations �2.18�, �2.21�, and �2.22� are keys to our analy-
sis and will allow us to deduce the structure of spin correla-
tions near the impurity. Their validity will be supported by a
number of perturbative results we will obtain below.

Now we turn to a determination of the exponents �imp
� and

�imp
M . These are most easily specified by determining the ad-

ditional renormalization factor needed to cancel poles in 	 in
correlators of �a and Ma as one approaches the impurity. The
simplest correlator of �a that allows us to achieve this is the
vertex operator

�a�x = 0,� = 0�z��k = 0,��z�
*�k = 0,��� , �2.23�

where the external z� legs will be truncated, and similarly for
the Ma. Here the external frequency � is needed to control
the infrared singularities.

The leading contribution to �2.23� at order 	 is shown in
Fig. 1�a�, and it renormalized the vertex by the factor

2iQe0
2�� ddq

�2��d

1

q2�q2 + �2�
. �2.24�

The same expression also applies to the renormalizations of
the vertex associated with Ma. The q integral is easily evalu-
ated, and no pole in 	 appears; this is fortunate because the
expression in �2.24� is purely imaginary.

The determination of the O�	2� corrections involves a
more difficult computation. There are a number of graphs
that contribute, shown in Fig. 1. Figure 1�b� is simply the
square of Fig. 1�a� and, therefore, contributes no pole in 	.

The value of Fig. 1�c� �and its symmetry related partner� is

− 8Q2e0
4�2� ddq

�2��d

ddk

�2��d

1

q2�q2 + �2��k2 + �2��q + k�2

= no pole in 	 . �2.25�

The contribution of Fig. 1�d� �and its symmetry related
partner�, for both the �a and Ma vertices is

2Q2e0
4T��

a � ddq

�2��d

ddk

�2��d

1

q2�k2 + �2��q + k�2

= Q2T��
a 4�2f2

	
+ . . . . �2.26�

Figures 1�e�–1�j� are all purely imaginary, so it must be that
the poles in 	 in their sum cancel. We have verified that this
is, indeed, the case. Figures 1�e� and 1�f� yield a pole in 	
which cancels against the second-order contribution from
Fig. 1�b� after the charge renormalization in �2.6� is ac-
counted for. The self-energy and vertex corrections in Figs.
1�g�–1�i� cancel against each other, as usual. And finally,
Fig 1�j� represents an ‘interference’ between two first order

FIG. 1. Feynman diagrams which contribute to the impurity-
dependent renormalization of vertices such as those in Eq. �2.23�.
The full line is the z� propagator, the wavy line is the A� propaga-
tor, and the filled square is the source term in Simp 	also in Fig.
2�e�
.
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contributions, the bulk renormalization of the vertex and the
finite impurity contribution in Fig. 1�a�, and so requires
no additional renormalizations. Collecting these results, and
using the fixed point value of f from �2.8�, we obtain

�imp
� = �imp

M = −
72�2Q2

N2 	2 + O�	3� , �2.27�

although �imp
� and �imp

M are not expected to be equal at higher
orders.

C. Linear response to a uniform applied field

We will be interested in the spatially dependent magneti-
zation response to an external static uniform magnetic field
Hu=H. Let us start with the calculation of the impurity sus-
ceptibility �imp, which characterizes the total excess magne-
tization arising due to the impurity in response to the applied
field.

1. Impurity susceptibility

The susceptibility can be defined as

�imp =
T

N2 − 1�
a

�2 ln Z
�Hua�Hua

, �2.28�

where the prefactor stems from averaging over the “spin”
space of SU�N� generators. Using the action �2.1�, modified
according to �2.14�, one can see that the presence of a uni-
form magnetic field leads to three new vertices shown in
Figs. 2�a�–2�c�. The impurity-related diagrams must contain
at least one impurity “source” vertex shown in Fig. 2�e�.

It is easy to show that the leading-order correction to the
free energy is given by Figs. 3�a�–3�g�. Note that the leading
contribution is of the second order in the impurity charge Q,
since all first-order diagrams happen to be odd in Matsubara
frequency and, thus, are identically zero. The A� propagator
enters those diagrams only as D�0�k ,�=0�=��0 /k2, and the
latter expression is valid for any choice of gauge, which
ensures that our final results will be gauge independent.
Summing up the contributions of Figs. 3�a�–3�g�, one obtains

�imp = 2Q2�e0
2�2S̃� ddk

�2��d

ddk�

�2��d

1

�k��4g��k,�k+k�� ,

g�x,y� = T�
�n

� 2

��n
2 + x2���n

2 + y2�
+

1

��n
2 + x2�2 −

4�n
2

��n
2 + x2�3

+
8�n

4

��n
2 + x2�2��n

2 + y2�2 −
16�n

2

��n
2 + x2�2��n

2 + y2�

+
16�n

4

��n
2 + x2�3��n

2 + y2�
−

4�n
2

��n
2 + x2�2��n

2 + y2�� ,

�2.29�

where �k��k�, and the sum in g�x ,y� runs over bosonic Mat-

subara frequencies �n=2�nT. The overall factor of S̃ comes
from a trace over the components of the field z and is defined
as

S̃ =
1

N2 − 1
tr �

a=1

N2−1

�Ta�2 �
C̃

N2 − 1
, �2.30�

where C̃ is the eigenvalue of the Casimir operator of
SU�N�, which depends on the specific representation of the
group. In the SU�2� case, this factor takes the familiar form

S̃=S�S+1� /3. It is worth noting that all the diagrams are
symmetric with respect to the exchange of k and k+k�; thus,
only the symmetric part of g�x ,y� yields a finite contribution
to the susceptibility.

Obviously, the expression �2.29� contains a singularity
at k ,k�→0. At T=0, this singularity is formally unimportant,
since at T→0 the function g�x ,y� becomes fully
antisymmetric

FIG. 2. Vertices appearing in the calculation of response to ap-
plied field; Hu and Hs denote uniform and staggered magnetic
fields, respectively.

FIG. 3. Feynman diagrams determining the leading-order con-
tribution to the free energy in presence of uniform 	�a�–�g�
 and
staggered 	diagrams �h�, �i�
 magnetic fields.
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lim
T→0

g�x,y� →
x − y

2xy�x + y�2 , �2.31�

so at T=0 the impurity susceptibility is identically zero. Al-
ternatively, one may note that the expression under the sum
sign in �2.29� is a full derivative in �n, which implies that
�imp vanishes at T=0 when the sum in �n is replaced by an
integral.

At finite T, however, the symmetric part
g̃�x ,y�=1/2	g�x ,y�+g�y ,x�
 is finite

g̃�x,y� =
x�3y2 + x2�cosh�y/2T�

16xy�x2 − y2�T2 sinh2�y/2T�
+ �x ↔ y�

�2.32�

and the infrared singularity becomes dangerous 	the inte-
grand in �2.29� behaves as k−4�k��−4 at k ,k�→0
. Such finite-
T infrared divergencies in massless theories are well known41

and can be cured by incorporating the thermal “screening
mass” into free propagators. The thermal masses mp and mb
�for the “photon” A� and for the boson z, respectively� can
be easily found to the first order in the coupling constants e0

2

and u0 by computing the temperature-dependent contribution
to the self-energy diagrams shown in Fig. 4,

mp
2 =

e0
2N

6
T2, mb

2 = � �N + 1�u0

12
+

e0
2

4
�T2. �2.33�

At the critical point e0
2 and u0 are both proportional to

	=4−D, so that we can write

mp,b
2 = �p,bT2	 , �2.34�

where �p,b can be found from the � functions �2.8�; one
obtains �p=4�2, and the expression for �b is rather
complicated42 but simplifies in the large-N limit:

�p = 4�2, �b →
�2

6
, N → � . �2.35�

Taking into account the thermal masses amounts to
replacing �k��2� �k��2+mp

2 and x2�x2+mb
2, y2�y2+mb

2

in Eq. �2.29�. It is easy to see that the main contribution to
the integral in �2.29� comes from small momenta
k ,Q�mb,p�T; thus, one can replace g̃�x ,y� by

lim
y,x→0

g̃�x,y� �
1/2

�x2 + mb
2�2 +

1/2

�y2 + mb
2�2 +

2

�x2 + mb
2��y2 + mb

2�
.

�2.36�

This means that the main contribution to the susceptibility
comes from the zero Matsubara frequency ��n=0� part of the
expression �2.29� and, thus, is determined by the first two
diagrams in Fig. 3. Evaluating the momentum integrals in
�2.29� in d=3, and substituting e0

2 by its fixed-point value
24	�2

N , one readily obtains the Curie-like law �1.3� for the
impurity susceptibility, with the anomalous Curie constant C
given by

C =
9	Q2S̃�p

2

2�2N2 � 1

�p + 2��p�b

+
1

4��p�b
� . �2.37�

It is worthwhile to note that the resulting expression for �imp
is proportional to 	 and not to 	2, as is apparent from �2.29�,
because of the partial cancellation caused by 	 dependence of
the thermal masses �2.34�.

2. Knight shift

The magnetization response to a uniform magnetic field is
space dependent due to the presence of an impurity; experi-
mentally, this can be detected in NMR experiments by mea-
suring the Knight shift. It is not difficult to generalize the
calculation of Sec. II C 1 to the space-dependent case; the
“uniform” �slowly varying on the scale of a lattice constant�
component of the Knight shift Ku�x� is given by

Ku�x� =� ddx��u�x,x�� , �2.38�

where �u�x ,x�� is a generalization of �2.28�,

�u�x,x�� =
T

N2 − 1�
a

�2 ln Z
�Hua�x��Hua�x��

. �2.39�

This uniform Knight shift obeys the scaling form in Eq.
�1.4�. A direct application of Eq. �2.22� to this scaling form
implies, as in Ref. 9, that in the quantum-critical region

Ku�x → 0� �
1

T1−��/2

1

�x�d−��/2
. �2.40�

One can see that �u�x ,x�� is determined by the same set of
diagrams of Figs. 3�a�–3�g� but with momenta flowing into
the external vertices. To obtain the Knight shift from Eq.
�2.38�, it is useful to define the Fourier transform �u�q� by

Ku�x� =� ddq

�2��d�u�q�eiqx, �2.41�

and then the diagrams have momentum q flowing out of one
external vertex. Obviously, �imp=�u�q=0� and the normal-
ization �1.5� is satisfied. Similarly to the case of susceptibil-
ity considered above, one can show that the Knight shift is
identically zero at T=0. At finite temperature, the main con-
tribution to �u�q� is given by Figs. 3�a� and 3�b� with
the Matsubara frequency in each propagator replaced by the
corresponding thermal mass �2.34�, yielding

FIG. 4. Self-energy diagrams determining the thermal screening
masses �2.33� for the “photon” A� �a� and for z boson �b�.
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�u�q� � 2Q2�e0
2�2S̃T�I�q,mp�I�q,mb�

+ 2� ddk

�2��d

I�k,mb�
�k2 + mp

2�	�k − q�2 + mp
2
� ,

�2.42�

where we have denoted

I�q,m� =� ddk

�2��d

1

�k2 + m2�	�k + q�2 + m2

.

We will only need the expression for I�q ,m� in d=3,

Id=3�q,m� =
1

4��q�
arctan

�q�
2m

. �2.43�

Asymptotic expressions for �u�q� can be easily obtained.
For small wave vectors q�2mb, one recovers the results for
the impurity susceptibility from the previous subsection,
�u�q�2mb���imp, whereas for large wave vectors qmp,
one has

�u�q� � S̃T�12�Q	

N
�2 ln�q/mp�

q2 , q mp. �2.44�

At large distances rmp
−1, the Knight shift decays exponen-

tially as e−mpr due to the finite photon mass mp. At small
distances, the Knight shift has the following behavior:

Ku�r� � 36�S̃T�Q	

N
�21

r
ln� 1

mpr
�, mpr� 1.

�2.45�

Note that mp
2�	T2, so at low temperature the condition mpr

�1 will be valid for a wide range of r. Apart from the log
correction, �2.45� is consistent with the general scaling forms
�1.4�, �2.22�, and �2.40�; the logarithm is likely an artifact of
the integer-valued exponents that appear at low orders in the
computation.

In a similar manner, one can calculate the staggered
Knight shift

Ks�x� =
T

N2 − 1�
a

�2 ln Z
�Hua�Hsa�x�

. �2.46�

This obeys a scaling form analogous to Eq. �1.4�

Ks�x� =
T�D−2+��/2

T
�s�Tx� , �2.47�

where the behavior as x→0 analogous to Eq. �2.40� is

Ks�x → 0� �
1

T1−��/2

1

�x�−�imp
� . �2.48�

The staggered Knight shift is computed by the Fourier
transform of the momentum-dependent staggered suscepti-
bility �s�q�, which is in the leading order determined by Figs.
3�h� and 3�i�, with an uncompensated momentum q being
“injected” in the staggered magnetic field vertex of Fig. 2�d�.
Note that for the staggered susceptibility, the first nonvanish-

ing contribution appears already in the first order in the im-
purity charge Q. As in the uniform case, the staggered sus-
ceptibility can be proven to be identically zero at T=0. At
finite temperature, the result is again determined by the zero
Matsubara frequency term and, thus, by Fig. 3�i�, with the
zero frequency replaced in each propagator by the respective
thermal mass. This yields

�s�q� =
48	�2QS̃T

N

I�q,mb�
q2 + mp

2 . �2.49�

Using �2.43�, one can easily deduce the asymptotic behavior
of the staggered Knight shift at small distances r�mp

−1,

Ks�r� =
3	QS̃T

N
ln� 1

mpr
�, mpr� 1. �2.50�

Again, apart from the logarithmic correction, this result is in
accord with the scaling form suggested by �2.21� and �2.48�.
It is worthwhile to note that in CPN−1 model for small
	=4−D and large N the staggered magnetization response
Ks�x� to an external magnetic field is much stronger than the
uniform response Ku�x�.

D. Néel-ordered phase

In the Néel phase, one of the components of the z field
gets condensed. Assuming z�����1, we can parametrize

z� = ����s�/u + ��ei� for � = 1

��e
i� for � � 1,

� �2.51�

where � is a real field, and ��, �=2, . . . ,N, are N−1 com-
plex fields. The overall phase � can be gauged away, and we
can set �=1. Then A� becomes a massive gauge boson, with
the “mass” �2e0

2�s� /u acquired by the Higgs mechanism. In-
serting �2.51� in Sb+Simp, we can obtain a straightforward
perturbative expansion for all physical properties in powers
of u0 and e0

2.
First we describe the behavior of the Néel order near the

impurity. We expect this to obey the scaling form

�a�x�� = �s��F��x/�s�
� , �2.52�

where �= �D−2+��
 /2. For large x, we expect that F� ap-
proaches a constant that characterizes the bulk order,
whereas for small x near the impurity, we may deduce from
�2.22� that

lim
y→0

F��y� �
1

y�D−2+�−���/2
. �2.53�

Explicitly, computing �a� by the perturbative expansion de-
fined above, we find that there are no impurity-dependent
corrections at first order beyond tree level. Thus, to this or-
der, F��y� is independent of y, but y-dependent terms do
appear at higher orders in 	. The spatially independent
response at this order is also consistent with the exponent
relation �2.19� and �2.53�.

Turning next to the uniform magnetization, we now
expect from the scaling relations in Sec. II B that
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Ma�x�� = �s�d
Fm� x

�s�
� , �2.54�

where now the scaling function obeys

lim
y→0

Fm�y� �
1

yd−��/2
. �2.55�

It is easy to compute Ma to one-loop order, and we find

Ma�x�� =
QT11

a 2e0
2�s�

u
� ddq

�2��d

eiqx

q2 + 2�s�e0
2/u

. �2.56�

This obeys the scaling form in �2.54� with a magnetization
that decays exponentially on a scale set by the
“photon” mass. For small x, note that to leading order in
	, Ma�x���1/x, and this is consistent with �2.55� and the
value of ��.

An interesting property of �2.56� is that the total magne-
tization near the impurity is given by

� ddxMa�x�� = QT11
a . �2.57�

As in Ref. 9, this relation is expected to be exact, and the
total magnetization near the impurity is therefore quantized.
The quantization is a consequence of the conservation of
total spin. Here it may be viewed as an interesting conse-
quence of Meissner flux expulsion induced by the condensa-
tion of the z�. In the presence of an applied field Ha, the fact
that the z� condensate is polarized along the �=1 direction,
the Meissner effect implies from �2.14� that iA�+HaT11

a will
fluctuate around zero. Thus setting A�= iHaT11

a , we obtain
from �1.2� a term in the effective action which is linear in Ha,
and whose coefficient is the total magnetization in �2.57�.

E. Spin gap phase

Finally, we turn to the spin gap phase which appears for
sufficiently large s. We will not include “dangerously irrel-
evant” monopole effects here,19–21 which are believed to lead
to VBS order and confinement at the longest length scales.
We will restrict our attention to length scales of order 1 /�,
where � is the spin gap. We will argue that in d=2 a spinon
is necessarily bound to the impurity, and thus, the onset of
confinement at longer scales does not have a significant
influence on the behavior of the impurity.

It is straightforward to extend the 	 expansion to the spin
gap phase. The spinons experience the Coulomb potential of
the impurity �1/rd−2. This potential may form bound state,
but because of the bulk spin gap, these states are above the
ground state. Thus, the spin gap is preserved in the presence
of the impurity and all magnetic response functions vanish
exponentially at low temperature.

We now argue that these conclusions of the 	 expansion
are strongly modified in d=2. The key point is that the Cou-
lomb potential �ln�r� in d=2, and this increases without
bound as r→�. Consequently, the self energy of a naked
impurity with nonzero charge diverges logarithmically with
system size. Therefore, it always pays to create a spinon

above the spin gap, bind it to the impurity, and neutralize its
charge. The scale at which this occurs can be estimated using
the 1/N expansion.43 In this expansion, the Coulomb inter-
action is screened by the vacuum polarization of spin-anti-
spinon pairs to a value of order �Q2� /N� ln�R��. The
spinons obey a Schrödinger equation in this potential with a
mass �, and from this we obtain an estimate for the size of
the bound state of order R��N /Q�1/2 /�. At length scales
larger than this R, the impurity will just appear as an isolated
spin moment and will therefore contribute the ordinary Curie
susceptibility=1/ �4T� �for a Q= ±1 impurity�.

Thus, the impurity simply behaves as a free local moment
in the spin gap phase. Note that we did not have to appeal to
confinement physics to reach this conclusion; confinement,
and VBS order, appears at the parametrically larger scale43 of
order a�a /���̃N, where a is the short-distance cutoff.

III. STAGGERED FLUX SPIN LIQUID

This section will examine the response of a second alge-
braic spin liquid to impurities: the staggered flux spin liquid
with fermionic spinon excitations.35–38 We will see that the
scaling structure is rather similar to that of the critical CPN−1

model examined in Sec. II, although there will be some
crucial differences in some physical properties.

The low-energy excitations of the spin liquid are de-
scribed by Nf flavors of two-component Dirac fermions,  ,
coupled to the U�1� gauge field A� with the action

Sb =� d3y ̄	− i����� + iA��
 . �3.1�

As before, y= �� ,x�� is the space-time coordinate, and � ex-
tends over the D=3 space-time indices. The Dirac matrices
��= ��3 ,�2 ,−�1�, where �� are the Pauli matrices, and the

field  ̄= i †�3—we follow the notation of Hermele et al.37

The number of flavors is Nf =4 for the staggered flux state,
and our results are also extended to the so-called �-flux state,
which has Nf =8. Our analysis will be carried out, as in the
previous works, in a 1/Nf expansion. We have not included a
bare Maxwell term for the gauge field in Sb because it turns
out to be irrelevant at all orders in the 1/Nf expansion.

A. Bulk theory

The structure of the bulk theory has been described in
some detail in Refs. 35 and 37, and we will not repeat the
results here. In the large Nf limit, the propagator of the gauge
field in the Lorentz gauge is

D�
�p� = ���
 −
p�p


p2 � 16

Nfp
. �3.2�

This propagator arises from the vacuum polarization of the
fermions. Note that it is suppressed by a power of 1 /Nf; thus,
the 1/Nf expansion can be set up as a perturbation theory in
the fermion-gauge field interaction.

A large number of order parameters can be constructed
out of fermion bilinears, and a detailed catalog has been
presented.37 Among these are the SU�Nf� flavor currents
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J�
a = − i ̄��Ta , �3.3�

certain components of which are the magnetization density
and current. Conservation of this current implies the scaling
dimension

dim	J�
a 
 = 2, �3.4�

which is the analog of the relation �2.16� in d=2 �we will
restrict all discussion in this section to d=2�.

Also considered were the following quantities:

Na = − i ̄Ta , M = − i ̄ , �3.5�

which relate to additional order parameters, including the
Néel order �note that M does not correspond to the physical
magnetization�. Their scaling dimensions have been
computed in the 1/Nf expansion,

dim	Na
 = 2 −
64

3�2Nf
+ O� 1

Nf
2� . �3.6�

B. Relationship to earlier work

Before describing the results of our analysis of the impu-
rity in the U�1� sF phase, it is useful to describe the earlier
analyses in Refs. 24–28. They ignored the A� fluctuations,
but instead considered a theory of fermionic spinons f i� on
the sites, i, of the square lattice; � is a spin index. These
spinons obey ��f i�

† f i��=1 on every lattice site except at the
impurity i=0. Here, they inserted a vacancy �representing,
e.g., a Zn impurity� by including a potential term in the
Hamiltonian

Himp = V�
�

f0�
† f0� �3.7�

and taking the limit V→� to prohibit any spinons from re-
siding on the vacancy. The key physical ingredient in these
analyses is the difference in the spinon occupation number
between the impurity and the bulk

�
�

f i�
† f i�� − 1 = − �i0. �3.8�

In our approach, the analog of the V=� limit is obtained
by the functional integral over A�. In the bulk theory, the
continuum field  is defined so that  † �=0 in the ab-
sence of the impurity, and the continuum analog of Eq. �3.8�
is

 † �r�� = − Q�2�r� , �3.9�

where the right-hand side has a Dirac � function. The con-
straint in Eq. �3.9� is imposed not by adding a potential en-
ergy, but by the functional integral over A�, which appears in
the Lagrangian density of Sb+Simp 	with Sb given in Eq.
�3.1�
 as iA� 	 † +Q�2�r�
. Our treatment of gauge fluctua-
tions ensures that the constraint on the spinon occupations is
imposed not just on the average, but dynamically on all
states and on all sites. The equality in Eq. �3.9� holds to all
orders in the 1/Nf expansion: this follows from the “equation
of motion” for A�

� �

�A�
�Sb + Simp�� = 0. �3.10�

It is instructive to also test Eq. �3.9� by explicitly evaluating
the left-hand side of Eq. �3.9� in the 1/Nf expansion. The
corresponding Feynman diagrams are shown in Fig. 5. At
leading order, we have the diagram Fig. 5�a�, which is easily
evaluated to yield the rhs of Eq. �3.9�. At order 1 /Nf, the
diagrams shown in Figs. 5�b�–5�g� contribute. Of these, Fig.
5�b� vanishes by Furry’s theorem.44 Of the remaining, it is
easy to show that they cancel in pairs: this requires only the
knowledge that the photon propagator is the inverse of the
fermion vacuum polarization bubble. Thus, Figs. 5�c�–5�h�,
all cancel against each other, and Eq. �3.9� is thus established
to this order. It is not difficult to extend these arguments to
all orders in 1/Nf. Note that it is possible to satisfy Eq. �3.9�
in a perturbative treatment of gauge fluctuations, without the
need to appeal to bound states: the � function at r=0 arises
from a superposition of the contribution of many extended
states, rather than from a bound state claimed earlier.24–26

It is clear that our approach yields a systematic and con-
trolled treatment of the spinon deficit at the impurity, in con-
trast to the earlier ad hoc mean-field approaches.24–28 Our
analysis implies that the Curie constant C is a nontrivial num-
ber, with contributions at all orders in 1/Nf, and is not given
simply by the Curie constant of a single spin.

FIG. 5. Feynman diagrams to order 1 /Nf for the lhs of Eq. �3.9�.
The full line is the Dirac fermion propagator, the wave line is the
photon propagator, the filled square is the impurity source term in
Simp, and the filled circle is  † vertex. As noted in the text, �b�
has an odd number of photon vertices and, thus, vanishes by Furry’s
theorem.44 Here, and henceforth, we do not show a number of other
diagrams, which vanish because of Furry’s theorem.
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The proper analysis of a potential term like that in Eq.
�3.7� requires the scaling analysis of perturbations to the con-
formal field theory defined by Sb+Simp. The action for such
a perturbation takes the form

Sb� = V� d� † �x = 0,�� . �3.11�

A simple analysis of scaling dimensions shows that

dim	V
 = − 1 + O� 1

Nf
� . �3.12�

Thus, potential scattering is an irrelevant perturbation at all
orders in the 1/Nf expansion.

A further distinction between our results and the earlier
work24–28 appears in the response to a uniform magnetic
field. This has significant experimental consequences and
will be discussed in Sec. III D.

C. Impurity exponents

The analysis is analogous to that carried out in Sec. II B
for the CPN−1 model. As there, and for similar reasons, we
neglect the possible influence of monopoles.

Here, we will determine the impurity renormalization to
the order 1 /Nf

2. To this order, we find that all the operators
introduced above, the J�

a and Na acquire a common correc-
tion, �imp, to their bulk scaling dimension. This correction is
given by the single diagram in Fig. 1�c�, which �along with
its symmetry related partner� evaluates to

512Q2

Nf
2 � d2q

�2��2

d2k

�2��2

�− i� + q� · ���	− i� + �k� + q�� · ��

kq�q2 + �2�	�q + k�2 + �2


=
128Q2

Nf
2�2 ln�!

�
� , �3.13�

where �� = ��1 ,�2� and ! is an ultraviolet cutoff; here and
henceforth, we are using the fermion lines to represent the
propagator �i�+�� ·q��−1 from  to  † �rather than the Dirac

propagator from  to  ̄�. There are a number of other
diagrams, such as those shown in Fig. 1, which could con-
tribute to the vertex renormalization; however, they do not
contribute either for reasons as discussed for the CPN−1

model or because of Furry’s theorem. From this we obtain
the impurity correction to the scaling dimension

�imp = −
128Q2

Nf
2�2 + O� 1

Nf
3� . �3.14�

We expect that the higher-order corrections will not be the
same for the J�

a and Na.

D. Linear response to a uniform applied field

Again, we proceed in analogy to the analysis in Sec. II C.
We apply a uniform magnetic field Ha, associated with the
SU�Nf� generator Ta, which couples linearly to the conserved
total spin density J�

a. In principle, in the presence of the im-
purity, the linear response to this applied field can induce

time-independent, space-dependent average values of not
only the spin density, J�

a, but also of the other order param-
eters M and Na. This would be analogous to the nonzero
averages of the uniform and staggered magnetizations in-
duced by an applied magnetic field on the CPN−1 model
�which led to the uniform and staggered Knight shifts�. How-
ever, here we will find a crucial difference. In the scaling
limit of the algebraic spin liquid represented by Eq. �3.1�, Ha
induces only a nonzero J�

a, and average values of all the Na

and M are zero. Thus there is only a uniform Knight shift,
Ku�x�, and all the “staggered” Knight shifts, Ks�x�, associated
with the many competing orders are zero. The staggered
Knight shift can appear only if some corrections to scaling
are included, associated with irrelevant operators �which re-
duce the symmetry of the conformal theory to that of the
lattice model�, and, thus, can be expected to be weaker than
the uniform Knight shift.

The vanishing of M�x�� and Na�x�� in the presence of Ha

can be established by a careful consideration of the symme-
tries of the Dirac fermion theory. First M�=0, to linear order
in Ha, simply by SU�Nf� symmetry. Establishing the value of
Na� requires more complicated considerations. Let us con-
sider the leading contribution to Na�, to linear order in Ha,
in the 1/Nf expansion, represented by the graph in Fig. 6�a�.
The value of the fermion loop is proportional to

T�
�n

� d2k

4�2Tr	�i�n + �� · k��−1�3�i�n + �� · k��−1

��i�n + �� · �k� + q���−1
 . �3.15�

Evaluating the trace over the Dirac matrices, we obtain an

FIG. 6. Feynman diagrams for the impurity susceptibility and
Knight shifts of the staggered flux spin liquid. The gray circle ver-
tices depend on the correlator being evaluated: they equal �i� Ta��
for the ferromagnetic spin density J�

a, �ii� Ta for the order parameter
Na, and �iii� unity for M.
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identical zero. This can be understood as a consequence of
time-reversal invariance. Both Ha and Na are odd under the
time reversal,36 as is the charge of the impurity Q. Thus, an
expansion of Na� /Ha can only involve even powers of Q.
Proceeding to order 1 /Nf

2, we obtain diagrams, such as those
shown in Figs. 6�b�–6�d�, which have a prefactor of Q2, and,
thus, are potentially nonzero. However, these diagrams have
a fermion loop with an odd number of �� vertices and, thus,
vanish by Furry’s theorem.44 By a combination of Furry’s
theorem and time-reversal invariance, we can now easily see
that all terms vanish and, thus Na�=0. Because of the Ta

matrices in the definitions of Na and J�
a, there must be a

single fermion loop that connects the external vertices. By
Furry’s theorem, this loop must have an odd number of pho-
ton vertices. All other fermion loops can only have an even
number of photon vertices. Consequently, there must be an
odd number of photon vertices remaining to connect to the
external impurity source term. However, by time reversal,
there must be an even number of impurity terms; hence, the
result.

Our conclusion that Na�=0 is starkly different from the
mean-field prediction24–28 of an induced moment that
oscillated strongly between the two square sublattices. Such
oscillations can only appear upon including irrelevant
operators.

It remains only to compute the uniform Knight shift
Ku�x�, or equivalently, its Fourier transform �u�q� defined
in Eq. �2.41�. The scaling analysis of Sec. III C implies that
this Knight shift obeys the scaling form in Eq. �1.4�, with the
x→0 behavior given by

Ku�x → 0� � Td−1+�imp
1

�x�−�imp
. �3.16�

Here we expect that the �imp exponent is that associated with
J�

a, and not �unlike the situation with the CPN−1 model� that
associated with the Na because there is no “mixing” between
the staggered and uniform magnetizations near the impurity
for the sF spin liquid.

At first order in 1/Nf, �u�q� is given by the diagram in
Fig. 6�a�, which vanishes by Furry’s theorem. The leading
nonvanishing contribution is at order 1 /Nf

2 and given in Figs.
6�b�–6�d� �a number of order 1 /Nf

2 diagrams that vanish be-
cause of Furry’s theorem are not shown�. The sum of these
diagrams can be written in the following compact form:

�u�q� = Q2S̃T�
�n

� d2k

4�2

d2p

4�2

�

��i�n�
Tr��i�n + �� · k��

�	i�n + �� · �k� + q��
	i�n + �� · �k� + p��
�−1

�D���p�D����q� − p� �� . �3.17�

Here, D�� is the � component of the photon propagator,
representing the external lines connecting to the impurities,

and S̃ is the constant proportional to the SU�N� Casimir ei-
genvalue as defined in �2.30�. Note that the expression is a
total frequency derivative; this immediately implies that
�u�q�=0 at T=0, when the frequency summation can be

converted to an integration. This vanishing is a consequence
of the conservation of total spin.

A nonzero �u�q� is obtained at T�0, and we now com-
pute this. First, we need the photon propagator at T�0. This
is given by a single fermion loop, and at this order, we only
need the � ,� component at a spatial momentum q� ,

D��
−1�q� = − NfT�

�n

� d2k

4�2Tr��i�n + �� · k��

�	i�n + �� · �k� + q��
�−1. �3.18�

We first combine the denominators in Eq. �3.18� using the
Feynman parameter u, perform the frequency summation,
and finally, integrate over k. This yields

D��
−1�q� =

NfT

�
�

0

1

du ln�2 cosh� q

2T
�u�1 − u��� .

�3.19�

Equation �3.19� interpolates between Nfq /16 for T�q,
which agrees with the T=0 result in Eq. �3.2�, to �T /�� ln 2
for q�T.

Inserting Eq. �3.19� into Eq. �3.17�, we conclude that
�u�q� obeys the scaling form

�u�q� =
1

T
�̃u� q

T
� , �3.20�

where the scaling function �̃u is the Fourier transform of the
scaling function �u in Eq. �1.4�. Furthermore, C, the anoma-

lous Curie constant appearing in Eq. �1.3�, equals �̃u�0�. To

determine the scaling function �̃u, we need to evaluate Eq.
�3.17�. We combined the Green’s functions using two Feyn-
man parameters u, v, evaluated the integral over k, differen-
tiated with respect to frequency, and finally, evaluated the
summation over �n. This yields

�u�q� = −
Q2S̃

�
�

0

1

du�
0

1−u

dv� d2p

4�2� f����

+ �2�2 − uq2 − vp2 − 	1 − 2�u + v�
p� · q��

�
f����
4�

�D���p�D����q� − p� �� , �3.21�

where

�2 = q2u�1 − u� + p2v�1 − v� − 2uvp� · q� �3.22�

and f is the Fermi function

f��� =
1

e�/T + 1
. �3.23�

The remaining integrals have to be evaluated numerically.
From such an evaluation at q=0, we found
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C =
1.0460�5�S̃Q2

Nf
2 + O� 1

Nf
3� �3.24�

for the universal Curie constant appearing in Eq. �1.3�. The

calculated shape of the scaling function �̃u�y� is shown in
Fig. 7. From the numerical analysis of its behavior for large

arguments, we deduce that �̃u�y� has a power-law decay

�̃u�y��1/y� at y1, where the exponent ��2 within the
accuracy we were able to achieve when calculating the four-
dimensional integral in �3.21�. Therefore, we obtain that at
small distances the uniform Knight shift Ku�x� tends to a
�lattice cutoff-dependent� constant as x→0, which is consis-
tent, to the leading order in 1/Nf, with Eq. �3.16� and the fact
that �imp vanishes at this order 	see Eq. �3.14�
.

IV. OTHER SPIN LIQUIDS

This section will discuss the extension of our results to
some other examples of spin liquids. The cases considered
below do not share the high degree of universality found in
the critical CPN−1 and sF spin liquids above: some aspects
depend on microscopic details. We will consider the spinon
Fermi surface in Sec. IV A and Z2 spin liquids in Sec. IV B.

A. Spinon Fermi surface

This spin liquid differs from the sF spin liquid by having
a Fermi surface of gapless spinon excitations, with a nonzero
density of states. The bulk theory is not a CFT, and the bulk
action for the fermionic spinons f� is

Sb =� d�� ddk

�2��d� f�
†�k,��� �

��
+ iA� + 	�k� − A� ��� f��k,�� .

�4.1�

Here � is a SU�N� spinor index, 	�k�� is the spinon disper-
sion, and the Fermi surface defined by 	�k��=0 has a finite
density of zero energy spinon excitations. The properties of

this spin liquid can be computed by a combinations of
previous methods45,46 and the methods introduced here.

In the absence of the impurity, the spin susceptibility is
finite as T→0, equal to the density of states at the Fermi
level. The impurity introduces a “Coulomb” potential for the
spinons. In the small momentum limit, k→0, this interaction
is screened to a constant value by the Fermi surface excita-
tions. Evaluating the response to an applied magnetic field
using a diagram such as that in Fig. 6�a�, we conclude that
�imp�T→0� is finite and proportional to the energy derivative
of the density of states at the Fermi level.

Upon considering the spatial dependence of the Knight
shift, again using the diagram in Fig. 6�a�, we find that the
dominant response oscillates at the 2kF wave vector.45 The
transverse gauge interactions strongly enhance the impurity-
spinon vertex, and this leads to a singular response at 2kF
decaying with a power law of x determined in Refs. 45 and
46. Again, this response is finite as T→0, although the
singular portion will have strong corrections at T�0.

B. Z2 spin liquid

We will describe the Z2 spin liquid accessed from the
CPN−1 model of Sec. II by condensing a charge-2 Higgs sca-
lar, �.22,47 We add a term like ����−2iA����2 to the full
action of the CPN−1 model and assume we are deep in the
phase with ���0. This condensation gaps out the A� exci-
tations, and thus, it is useful to completely integrate out the
A�. The result is an effective action for bosonic spinons z�
that describes a bulk transition from an ordered state with
noncollinear magnetic order to a Z2 spin liquid. This is pro-
posed as a possible model for the triangular lattice
antiferromagnet.48–50 The effective action obtained by this
method has the bulk action

Sb =� dDy����z��2 + s�z��2 +
u0

2
��z��2�2 + v1�z�

*��z��2

+ v2�z�
*��z��2 + c.c.� , �4.2�

and an impurity term that descends from its U�1� charge

Simp =� d���1z�
*�x = 0,����z��x = 0,�� + �2�z��x = 0,���2� .

�4.3�

Here the coefficient �1 is proportional to the impurity charge
Q, but the value of �1 is not quantized. An initial derivation
does not immediately yield the �2 term, but it is clearly al-
lowed by the symmetries and is evidently more relevant than
the �1 term: it represents a potential scattering term for the
bulk spinons. The critical point of the bulk theory alone is a
CFT, and it is expected that the v1,2 are irrelevant at this
critical point, leading to global O�2N� symmetry.48,51 How-
ever, as we will see below, the perturbations in Simp are not
exactly marginal.

It is useful to compare this theory to that of the recent
work of Florens et al.18 Unlike us, they include an explicit
spin degree of freedom at the impurity. In our approach, such

FIG. 7. �Color online� Numerically calculated scaling function

�̃u�y� defined by �3.19�–�3.23�. The inset shows large-y behavior
together with the least-squares fit �dashed line� to a power law for

y�40: the fit yields �̃u�y��C� /y� with C�=24.7�1� and �
=2.070�5�.

THEORY OF QUANTUM IMPURITIES IN SPIN LIQUIDS PHYSICAL REVIEW B 74, 165114 �2006�

165114-13



a situation would be appropriate when the couplings �1,2 are
large enough to bind a spinon in the ground state at the
impurity. In a Z2 spin liquid, there are no long-range gauge
forces �the Z2 gauge forces are short range�, unlike the
situation in Sec. II E, and thus, it is not required that the
ground state have nonzero spin for a vacancy impurity, e.g.,
Zn on a Cu site. For a magnetic impurity, such as Ni on a Cu
site, a finite spin ground state may be more likely, but is also
not required when the bulk system is in a gapped Z2 spin
liquid. We will restrict our discussion here to the small �1,2
region of �4.2�+ �4.3�, and this is equivalent to being in the
Kondo-screened phases of Florens et al.18

Let us now describe the phases of Sb+Simp as the value of
the tuning parameter is scanned.

For s0, we have the gapped spin liquid phase in the
bulk. The bulk spinons will experience a potential from the
�1,2 terms, and in the attractive case in d=2, such a potential
always has a bound state. However, the binding energy can
be less than the bulk spin gap, and hence, the ground state
remains a singlet and the spin gap is preserved. All magnetic
response functions will therefore be exponentially small at
low T.

At the bulk critical point, we need to examine the scaling
dimensions of the perturbations in Simp. In the 	=4−D ex-
pansion, simple power counting shows that both �1,2 are ir-
relevant. Consequently, we do not expect a Curie spin sus-
ceptibility, but a suppressed response determined by the
scaling dimensions of �1,2. In the D=2+	 expansion,16 we
work with the constraint �z��2=1, and hence, the �2 term
disappears. The �1 term is marginal at the tree level, and a
more complete renormalization group analysis is needed to
understand the flow of �; this, however, is beyond the scope
of the present paper.

Finally, for s�0, in the magnetically ordered phase with
collinear order, we can carry out an analysis of the magnetic
properties as in Sec. II D. We apply the ansatz in Eq. �2.51�
to Sb+Simp above and compute all physical properties as a
perturbation series in u0, v1,2, and �1,2. The result shows that
a spatial dependence of the noncollinear order and the uni-
form �ferromagnetic� magnetization is induced near the im-
purity by �1,2. The uniform magnetization requires the
“particle-hole” symmetry-breaking term �1 and is nonzero,
even in the absence of an applied magnetic field. However,
unlike the situation in Sec. II D, this ferromagnetic moment
is not quantized and takes a value dependent upon the bare
values of the couplings: this is because spin rotation symme-
try is completely broken in the noncollinear ordered phase.50

V. CONCLUSIONS

Let us summarize the basic physical characteristics of the
impurity response of the following various spin liquid states
considered in this paper:

�i� Néel-VBS transition: The impurity characteristics
across this transition are qualitatively very similar to those
found for impurities in confining antiferromagnets,7,9,16 al-
though the underlying field theory is quite different, as are all
the exponents and scaling functions. The spin gap phase has
the conventional Curie response of a local moment at the

impurity; for the confining antiferromagnets this local
moment is induced by confinement physics, whereas for the
Néel-VBS transition it is induced by the logarithmic Cou-
lomb interaction associated with the U�1� gauge field. The
Néel-VBS quantum critical point has an anomalous Curie
response, with a Curie constant C specified in Eq. �2.37� to
leading order in the 	=4−D expansion. The response of the
Néel phase is as found in the earlier case: a spatial varying
staggered and uniform moment is found near the impurity,
with the moment in the latter quantized as in Eq. �2.57�. The
Knight shift has both staggered and uniform components,
with its behavior in the vicinity of the impurity specified
by the impurity exponents determined in Sec. II B. At the
critical point, the induced staggered moment is much stron-
ger than the uniform magnetization component and, thus,
represents the dominating response to an external field.

�ii� Staggered flux spin liquid: This spin liquid is generi-
cally critical and, thus, has an anomalous Curie response; the
Curie constant is given, to the leading order in the 1/Nf
expansion, by Eq. �3.24�. The Knight shift now has only a
uniform component, but no staggered component in the scal-
ing limit. The absence of any staggered Knight shift is a
defining characteristic of the sF spin liquid and a conse-
quence of its large emergent symmetry.37 There is a large
number of competing order parameters, and the leading im-
purity action Simp has no natural way of choosing among
them, leading to a response that is restricted to the ferromag-
netic moment alone. The behavior of the ferromagnetic
Knight shift upon approaching the impurity is specified by
the impurity exponent �3.14� found in Sec. III C; to the lead-
ing order in 1/Nf, the Fourier transform of the ferromagnetic
Knight shift is computed in Sec. III D.

�iii� Spinon Fermi surface: This case has a finite magnetic
response as T→0, unlike the divergent Curie susceptibility
of the sF phase. The response decays with a power law away
from the impurity, with the dominant response being at the
2kF wave vector.

�iv� Z2 spin liquid: The spin liquid itself has an exponen-
tially suppressed impurity response because the spin gap
is preserved in the presence of the impurity. The proximate-
ordered noncollinear state has a response similar to that
of the Néel state, but with no quantization of the total
magnetization.

Apart from their applications to spin liquids, the results in
Sec. III also have a direct application to the physics of
charged impurities in two-dimensional graphene. It is well
known that the low-energy electronic excitations in graphene
are described by two species of Dirac fermions. There is no
fluctuating gauge field A�, as in Eq. �3.1�. However, in the
presence of charged impurity, the three-dimensional Cou-
lomb potential the electrons experience has the form C /r,
where C is a constant. Interestingly, this is exactly the form
of the static potential found in Sec. III in the presence of an
impurity, where A���1/r. Thus, as long as we ignore
quantum-electrodynamic loop corrections, the results of Sec.
III apply also to graphene; specifically, in Figs. 5�a� and 5�b�
apply to graphene, whereas 5�c�–5�h� do not. One of our
important results for this system was Eq. �3.9�: that the in-
duced charge density due to the Coulomb potential is a �
function, with Q a nontrivial universal function of C. This
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result, therefore, also applies to graphene. It disagrees with
the earlier result of Ref. 52, which found a 1/r2 decay in the
induced charge density. We believe their results suffers from
a cavalier treatment of the ultraviolet cutoff, which does not
preserve gauge invariance. Next, we discuss possibilities for
future theoretical work.

For the sF and CPN−1 spin liquids, an alternative 1/Nf �or,
respectively, 1 /N� expansion could give a useful comple-
mentary picture. We have used an expansion here in which
the Nf →� was taken at fixed Q. However, it is also possible
to study the limit Nf →� limit at fixed Q /Nf. The saddle-
point equations are straightforward to obtain for this case,
but much more difficult to solve: they have the advantage of
including the spinon-impurity Coulomb interaction at all or-
ders already at Nf =� and, thus, allow for spinon states be-
low, or at the edge of, the bulk spinon continuum. We will
report on the results of such an analysis in future work.

It would also be useful to have a more complete under-
standing of the spinon Fermi surface case, by extending the
work of Refs. 45 and 46 to determine the gauge-invariant
response functions near a single impurity. Finally, we
comment on the experimental implications of our work.

For the cuprates, NMR experiments29,30 show a large
Knight shift response at the Néel wave vector in the vicinity

of the impurity, and strong temperature-dependent enhance-
ment of such correlations. These features are consistent with
the Néel-VBS transition considered in Sec. II, but also with
the transition in dimerized antiferromagnets considered
earlier.7,9,16 The absence of a staggered response for the sF
case is potentially a serious deficiency of the model of Sec.
III. It remains to be seen if corrections to scaling 	such as
those in Eq. �3.11�
 can remedy the situation.

For the organic Mott insulator �-�ET�2Cu2�CN�3, the
NMR Knight shift33 has an appreciable T independent com-
ponent at low T. This can potentially be fit either by the
spinon Fermi surface, or by a weakly magnetically ordered
state.
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