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Spin susceptibility of a clean Fermi gas with repulsion in any dimension is considered using a supersym-
metric low energy theory of interacting spin excitations and renormalization scheme recently proposed by
Aleiner and Efetov. We generalize this method to include the coupling to the magnetic field. As a result, we
obtain for the correction �� to the Pauli susceptibility a nonanalytic temperature dependence of the form
Td−1�b

2�T� in dimensions d=2, 3, where �b�T� is an effective d-dependent logarithmically renormalized back-
scattering amplitude. In one dimension, �� is proportional to �b�T�, and we reproduce a well known result
obtained long ago by a direct calculation.
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I. INTRODUCTION

According to Landau’s Fermi liquid theory2 low energy
properties of interacting fermion systems are similar to those
of an ideal Fermi gas. For many purposes interaction effects
can be incorporated into renormalized parameters like the
effective mass. Using the Landau theory one might expect
that thermodynamic quantities like C�T� /T and ��T�, where
C�T� is the specific heat and ��T� is the spin susceptibility,
have an expansion in powers of T2, as known from the stan-
dard Sommerfeld expansion for the ideal Fermi gas.

This would mean extending the analogy too far, however.
In fact, it is known that interaction between fermions can
induce so-called nonanalytic corrections, that are absent for
the ideal Fermi gas. The form of these corrections strongly
depends on the dimensionality of the system. As a result of
theoretical studies the leading temperature dependence of
C�T� /T was found to be T2ln T in d=3 and T in d=2 at low
temperatures �see Refs. 3–10 and Refs. 11–15, respectively�.
For the spin susceptibility a linear in T dependence in d=2
was obtained in Refs. 13–21, while for d=3 a nonanalytic
Q2ln Q dependence of the wave-vector dependent spin
susceptibility15–18,22 was found not to be paralleled by a simi-
lar temperature dependence.

The model of a weakly interacting Fermi gas allows for a
controlled perturbative expansion in the strength of the inter-
action potential. In such an approach the corrections cited
above appear in the second order of perturbation theory.
However, calculations in higher orders are difficult and a full
analysis of high order corrections has not been performed
previously.

Recently, a new low energy supersymmetric field theory
for weakly interacting electrons was introduced in Ref. 1.
This is some kind of a bosonization that includes not only
charge but also spin degrees of freedom. The scattering pro-
cesses responsible for the nonanalytic corrections are quasi-
one-dimensional in character, which leads to logarithmic
contributions originating from interactions between spin ex-
citations. As concerns the charge excitations in d�1 studied
previously within other bosonization schemes,9,10,23–31 their
contribution is less singular and does not lead to the effects

discovered in Ref. 1. The low energy theory of Ref. 1 re-
sembles the supersymmetry approach,32,33 well known in the
theory of disordered systems and random matrix theory.

In the model of interacting spin excitations, logarithmic
corrections to interaction amplitudes were found in any di-
mension, motivating a renormalization group study. The
origin of the logarithms can be easily understood. Consider
the interaction of two spin modes with propagators
�vFnp− i��−1, but opposite directions n, −n on the Fermi
surface. Then one finds for perturbative corrections to the
interaction amplitudes integrals of the type �compare Fig. 4�

T�
�
� dp

1

�vFnp�2 + �2 � ln���/T� , �1.1�

�� is the largest energy in the model.
The integral over momenta transverse to n has to be regu-

larized. Of course, in dimensions d�1, the region of phase
space for which the excitations move in almost antiparallel
directions n1�−n2 is rather restricted and in general the
logarithm is cut by max�T /�� , �n1+n2 � �. The question arises
how the logarithms found at this level affect the temperature
dependence of observable quantities, since eventually one
needs to perform a �weighted� average over all directions. To
this end the specific heat was studied in Ref. 1. It was found
that C�T� /T generally depends on an effective amplitude of
backward scattering, that displays a complicated dependence
on ln T, in such a way that the results reduced to well known
�Cd=2�T2 and �Cd=3�T3ln T when replacing the effective
backscattering constants by the bare ones.

The evident question arises whether similar corrections
exist for the spin susceptibility. We will show in this paper
that this is really so. To this end we generalize the formalism
introduced in Ref. 1 to include the external magnetic field. A
convenient diagrammatic representation makes apparent the
relation to conventional diagrammatic approaches. It turns
out that, unlike for the thermodynamic potential, the contri-
butions to the spin susceptibility in d�1 are determined by
all the renormalized interaction amplitudes of the model in
various combinations. In d=2 we find nonanalytic contribu-
tions ���T��T�b

2�T� and �b�T� is an effective backscattering
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constant that includes logarithmic corrections. In d=3 we
confirm the absence of T2ln T terms in the second order in
the interaction. This does, however, not mean the absence of
nonanalytic corrections in three dimensions. Here we sum
leading logarithmic corrections to the T2 behavior and come
to the result ���T��T2�b

2�T�. Within the same formalism the
one-dimensional case can be also considered and we repro-
duce the temperature dependence first obtained by Dzy-
aloshinskii and Larkin.38 Although the one-dimensional case
is not the main focus of the approach, we consider the result
obtained as an important check of the overall consistency.

The paper is organized as follows. In Sec. II we introduce
the model that serves as a starting point for our subsequent
analysis. In Sec. III we decouple the interaction part via a
Hubbard-Stratonovich transformation in both the charge and
spin channel and reformulate the partition function in terms
of charge and spin excitations. The charge and the spin ex-
citations decouple from each other and calculating the spin
susceptibility we can concentrate on the spin sector. A repre-
sentation for the partition function in this sector is derived in
Sec. IV using the supersymmetry technique. A low energy
effective action is obtained and rules of the perturbation
theory are introduced as well as a convenient diagrammatic
representation. In Sec. V we analyze corrections to the mag-
netic field vertices in a renormalization group scheme. In
Sec. VI we study in our formalism temperature dependence
of the spin susceptibility in one spatial dimension. Then we
turn to the calculation of nonanalytic corrections to the tem-
perature dependent spin susceptibility in two and three di-
mensions in Sec. VII before concluding with a discussion of
our results in Sec. VIII.

II. MODEL

We introduce our model by specifying the partition func-
tion in the imaginary time formalism �Refs. 34 and 35�

Z =� D��*,��exp�− S� . �2.1�

The fermionic fields � ,�* depend on coordinates r and
imaginary time 	 and carry a spin label 
. They obey the
antiperiodic boundary conditions �
�r ,	�=−�
�r ,	+��,
where �=1/T and T is the temperature.

We write the action S as the sum of three parts

S = S0 + Sb + Sint. �2.2�

S0 describes free motion, Sb stands for the coupling of the
spin to an external field b, and Sint is the interaction of fer-
mions,

S0 =� dx�

*�x��− �	 − Ĥ0��
�x� , �2.3�

Sb =� dx�

*�x�b�

��
��x� , �2.4�

Sint =
1

2
� dxdx��


*�x��
�
* �x��v�x − x���
��x���
�x� .

�2.5�

Here and in the following summation over repeated spin in-
dices is implied and v�x−x��=V�r−r����	−	��, where
V�r−r�� is the interaction potential. We use the notation

x = �r,	� � dx = �
0

�

d	� dr �2.6�

and Ĥ0= p̂2

2m −�, where p̂ is the momentum operator and � is
the chemical potential. The standard relation between the
partition function Z and the thermodynamic potential 
 is


 = − Tln Z . �2.7�

The spin susceptibility is then obtained as the second deriva-
tive with respect to b,

��x − x�� = −	 �2
�b�
�b�x��b�x��

	
b=0

. �2.8�

We will mostly be interested in the static spin susceptibility
�s for a spatially homogeneous external field, in which case
after the Fourier transform the limit of vanishing frequencies
should be taken before taking the external wave vector to
zero.

Let us also introduce the following convention for the
integration over momenta:

� dq =� ddq

�2��d �2.9�

in dimension d. For the sake of notational convenience we
sometimes write 
r, 
q, 
	, symbolizing 
dq, 
dr, and 
0

�d	,
respectively. 
dn̂ stands for the integration over the solid
angle normalized to unity.

III. DERIVATION OF THE BOSONIZED ACTION

In this section we present the derivation of the model that
will be used for the further analysis of the spin susceptibility.
It describes low lying charge and spin excitations in the sys-
tem. A derivation in the absence of external sources has been
presented in Ref. 1. Here we include the coupling to the
magnetic field, so that we will mainly focus on the changes
introduced by the magnetic field.

A. Decoupling into slow pairs

For the interaction part we perform decoupling in two
different channels by singling out slow pairs in the following
way:

Sint → S̃int = S̃int,1 + S̃int,2, �3.1�

S̃int,1 =� dp1dp2dqV�q��

*�p1��
�p1 − q��
�

* �p2��
��p2 + q� ,

�3.2�
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S̃int,2 = −� dp1dp2dqV�p1 − p2 − q�

��

*�p1��
��p1 − q��
�

* �p2��
�p2 + q� . �3.3�

Here we denoted

� dpi = T�
�ni

� dpi, �3.4�

where the sum goes over fermionic frequencies �ni
=�T�2ni+1� and

� dq = T�

n

� dqf�q� , �3.5�

where the sum goes over bosonic frequencies 
n=2�nT,
further pi= �pi ,�ni

� and q= �q ,
n�.
The cutoff function f , introduced in Eq. �3.5�, is defined

as follows:

f�p� = f0�pr0�, p = �p� , �3.6�

where f0�t� has the properties f0�0�=1 and f�t�→0 smoothly
for t→�. The function f has been introduced to avoid
double counting when singling out regions of small momen-
tum transfer in Eqs. �3.1�–�3.3�, since without the cutoff both

S̃int,1 and S̃int,2 would identically reproduce the original Sint.
Accordingly, kc=r0

−1 is a momentum cutoff that is much
smaller than the Fermi momentum kc�pF, but much larger
than typical momenta for the excitations of the low-energy
theory that we wish to construct. We denote also the cutoff
energy ��=r0

−1vF. Additional decoupling in the Cooper chan-
nel is not included, since this would amount to overcounting
of relevant scattering processes �compare the related discus-
sion in Ref. 1, Sec. II A�.

For a short range potential we can further simplify our
considerations by setting V2=V�q�pF�. Since important
momenta are close to the Fermi surface we can write
V1��12�=V�p1−p2�=V�2p0 sin� �12

2
��, where �12 is the angle

between momenta p1 and p2, �12=p1p2̂.
For the further development of the theory it will be crucial

to separate explicitly interactions in the triplet and singlet
channel.

Vs��12� = V2 −
1

2
V1��12�, Vt��12� =

1

2
V1��12� . �3.7�

The action separates into a charge and a spin sector,

S̃int = Sint,s + Sint,t,

Sint,s =
1

2
� dp1dp2dq��p1,− q�Vs��12���p2,q� ,

Sint,t = −
1

2
� dp1dp2dqS�p1,− q�Vt��12�S�p2,q� , �3.8�

where the charge ��p ,q� and spin densities S�p ,q� are

��p,q� = �†�p −
q

2
���p +

q

2
� , �3.9�

S�p,q� = �†�p −
q

2
����p +

q

2
� , �3.10�

and we turned to a spinor notation �= ��↑ ,�↓�.
Finally, one may decouple the interaction term S̃int

using a Hubbard-Stratonovich transformation with a field
�n�x�
 i�n�x�+�hn�x�. Here �n�x� and hn�x� are real
bosonic fields, so that �n�r ,	�=�n�r ,	+�� and n is the di-
rection of momentum p on the Fermi surface, n=p / �p�. The
result is the following representation of the partition func-
tion:

Z = N� D�Ws���Wt�h�Z�b,h,�� . �3.11�

The weight functions Ws, Wt are shown below in Eqs. �3.18�
and �3.19�, and N is a simple normalization constant that
will not be displayed from now on. The partition function
Z�b ,h ,�� describes the fermion motion for fixed configura-
tion of fields b ,h ,�,

Z�b,h,�� =� D��*,�� exp�− Sef f�b,h,��� , �3.12�

where the effective action Sef f has the form

Sef f�b,h,�� = S0 + Sb�b� +� dpdr1dr2�†�r1,	�

��n� r1 + r2

2
���r2,	�eip�r1−r2�. �3.13�

By comparing Eq. �2.4� with Eq. �3.13� we observe the fol-
lowing simple relation:

Sef f�b,h,�� = Sef f�0,h + b,�� , �3.14�

which enables us to remove the field b from Sef f by a shift in
h at the expense of changing the weight Wt accordingly.

Now we can write down a representation of the partition
function in the presence of the magnetic field as a weighted
integral over field configurations

Z =� D�Ws���Wt�h − b�Z��� , �3.15�

where

Z��� =� D��*,�� exp�− Sef f���� , �3.16�

Sef f��� = S0 +� dpdr1dr2eip�r1−r2�

��†�r1,	��n� r1 + r2

2
���r2,	� . �3.17�

The weights Ws��� and Wt�h� are
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Ws��� = exp�−
1

2
� dn̂1dn̂2dqd	�n1

* �q,	�

�Vs
−1��12,q��n2

�q,	�� �3.18�

Wt�h� = exp�−
1

2
� dn̂1dn̂2dqd	hn1

† �q,	�

�Vt
−1��12,q�hn2

�q,	�� �3.19�

and Vs,t��12,q�=Vs,t��12�f�q�.
Equations �3.15�–�3.19� represent the final result of this

subsection.
The model is still quite general and in order to make

progress further approximations have to be introduced,
where the focus will be on calculation of Z���. Since it was
possible to remove the field b from this term, the further
derivation of the theory parallels that of Ref. 1 up to the
point, where the weighted integral over the field configura-
tions of � is performed. In the following we will outline the
main steps here in order to introduce our notations and pre-
pare the subsequent discussion of the model.

B. Bosonized action

In Sec. III B 1 the derivation of the representation for
Z��� in the so-called quasiclassical approximation is out-
lined following Ref. 1. Section III B 2 deals with some ad-
ditional contribution from the high energy sector and the
resulting change of weights.

1. Charge and spin modes

Integration over the fields � ,�* in the expression, Eq.
�3.16�, for Z��� results in

Z��� = exp„Tr ln�− �	 − H0 + �̂�… , �3.20�

where the symbol Tr includes integration over coordinates as

well as trace tr
 in spin space. The operator �̂ acts in accor-
dance with Eq. �3.17�. In the next step, we use a standard
trick introducing an auxiliary integration over parameter u,
which enables one to formally avoid expanding the loga-
rithm while keeping track of appropriate combinatorial fac-
tors. Instead, the Green’s function for fixed field configura-
tion G�x ,x� �u�� comes into play.

Z���
Z�0�

= exp�Tr�
0

1

du�uln�− �	 − Ĥ0 + u�̂�� �3.21�

=exp�− iTr�
0

1

du��̂G��x,x�u��� . �3.22�

The Green’s function,

G�x,x���� =
i

Z��� � D��,�*���x��†�x��e−Sef f���

�3.23�

enters at coinciding points and this is why it is advantageous
to Fourier transform with respect to the difference of coordi-
nates

G�x,x���� =� �dp�eip�r−r��Ḡp� r + r�

2
,	,	���� .

�3.24�

Using the fact that Ḡp is sharply peaked at the Fermi surface
one splits 
dp��
dn̂
d�p, where �p=p2 /2m−� and � is
the single particle density of states at the Fermi surface per
spin direction. After integration over �p the quasiclassical
Green’s function

gn�r,	,	���� 

1

�
� d�pḠp�r,	,	���� �3.25�

enters the expression

Z���/Z�0� = exp�− i���
r	
�

0

1

du tr��n�x�gn�r,	,	�u���� .

�3.26�

One of the main results of Ref. 1, which we only cite here, is
a set of decoupled differential equations for the charge � and
spin S components of gn�x ,	 ,	� in the decomposition

i�gn�x,	,	� = i�n�x� + Sn�x�� , �3.27�

namely

L̂n,uSn�x,u� = − u�	hn�x� , �3.28�

L̂n,0�n�x,u� = − u�	��x� , �3.29�

where

L̂n,u = − �	 + ivFn � + 2iuĥn. �3.30�

ĥn�x� is a matrix in the spin space with components

ĥij =−�ijkhk, so that ĥS=h�S.
This result was obtained with the help of a generalized

Schwinger ansatz36 for gn

gn�r,	,	���� = Tn�r,	�g0�	 − 	��Tn
−1�r,	�� , �3.31�

where g0 is the Green’s function for free fermions ��=0�. It
was further assumed that � varied smoothly on the scale of
the Fermi wavelength �F= pF

−1.
Finally, substituting the decomposition Eq. �3.27� into Eq.

�3.26�, one finds

Z��� = Z�0�Z����Zs�h� , �3.32�

where

Z���� = exp�2�� dudxdn̂�n�x��n�x,u�� , �3.33�
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Zs�h� = exp�− 2�� dudxdn̂hn�x�Sn�x,u�� , �3.34�

and S and � fulfill the differential equations Eqs. �3.28� and
�3.29�. The equation for � is readily solved using a Fourier
transform but we concentrate in the following on the spin
sector here.

Generally, one finds

Z = Z�0�Z�Zs, �3.35�

where

Z� =� D�Ws���Z���� , �3.36�

Zs =� DhWt�h − b�Zs�h� . �3.37�

Our main task is to calculate the partition function Zs.

2. Weight functions

As is well known, the quasiclassical approximation does
not capture contributions that originate from frequencies of
the order of the Fermi energy �F. In the limit of weak inter-
actions considered here we may incorporate such contribu-
tions into the model by replacing weights Ws, Wt of Eqs.
�3.18� and �3.19� by weights Ws, Wt

Ws��� = exp�−
�

2
� dxdn̂�n�x���̂s

−1���x,n�� ,

�3.38�

Wt�h� = exp�−
�

2
� dxdn̂hn�x���̂t

−1h��x,n�� , �3.39�

where

�̂s = f̂
�V̂s

1 + 2�V̂s

, �̂t = f̂
�V̂t

1 − 2�V̂t

�3.40�

and we adopted the convention

� f̂ p��x,n� =� dr1 f̄�r − r1�pn�r1,	� , �3.41�

�V̂t,sb��x,n1� =� dn̂2Vt,s��12�bn2
�x� . �3.42�

The above argument is valid, however, only for the quadratic
in the h part of the weight function Wt entering Eq. �3.37�. It
does not hold for the part containing b, since the Green’s
zfunction, for which the quasiclassical approximation was
used, depends only on the field h. Therefore, writing Eq.
�3.37� we should use the following form for the weight
Wt�h−b�:

Wt�h − b� → Wt�h,b�

= Wt�h�exp�−
1

2
� dxb�x��V̂t

−1b��x��
�exp�� dxdn̂b�x��V̂t

−1h��x,n�� . �3.43�

Here and in what follows we omit the cutoff function f ,
whenever the momentum is determined by the external field
b. This cannot change results since we are interested only in
small external momenta, �q � �r0

−1, which allows us to put
f�q�=1.

It is clear from Eq. �3.37� that the magnetic field couples
only to the spin degrees of freedom and the charge sector
does not play any role for the spin susceptibility. Therefore,
we can concentrate on the spin sector, described by Eq.
�3.37� with the weight Wt�h−b� determined by Eq. �3.43�.

IV. SUPERSYMMETRIC REPRESENTATION

In Sec. IV A we derive a representation for Zs, Eq. �3.37�,
in terms of a functional integral over superfields. A detailed
derivation has been presented in Ref. 1. Therefore we only
highlight the main ideas here and relegate more technical
details of the construction of the model to Appendix A. In
Sec. IV B we collect the relevant definitions of supervectors
and supermatrices that enter the final model. This model is
then presented in Sec. IV C, rules of the perturbation theory
are formulated in Sec. IV D, and a convenient diagrammatic
representation is introduced in Sec. IV E.

A. Zs as an integral over supervectors

Using Eq. �3.34� and Eqs. �3.28� and �3.30� one arrives at
the following form for the partition function Zs�h�:

Zs�h� = exp�2�� dudxdn̂hn�x��uL̂n,u
−1 �	hn��x�� .

�4.1�

If one could find L̂n,u
−1 exactly for all u�0, the problem would

be solved. However, since this is hardly possible for an ar-
bitrary u and h, we have to resort to some approximation

scheme. For this purpose it is advantageous to reexpress L̂n,u
−1

in terms of a Gaussian functional integral. Using either
bosonic �complex� or fermionic �Grassmann� fields sepa-
rately one would have to deal with an h-dependent normal-
ization factor of the Gaussian integral, which is inconve-
nient. This complication can be avoided by introducing an
integral that includes both bosonic and fermionic variables
on equal footing, as it has been used for a long time in the
theory of disordered systems, where the technique is known
as the supersymmetry method.32,33 In the context of the
present problem this approach has been introduced in Ref. 1.

When using the Gaussian functional integration one

should be careful, however, since the operator L̂ is not Her-
mitian. In particular, the sign of the h-dependent term is not
fixed and thus the convergence of the Gaussian integral over
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bosonic variables, for which one requires a positive real part
of the kernel, is not easily ensured. Fortunately, it is known
how to overcome this difficulty.37 One can construct from

the operator L̂ Hermitian operators L̂�= �L̂+ L̂†� /2 and

L̂�=−i�L̂− L̂†� /2 and arrange them into a new Hermitian ma-
trix operator

M̂ = � L̂� iL̂�

− iL̂� − L̂�
�

H

. �4.2�

The corresponding vector space will be called “Hermitized”

or H space. One can reconstruct L̂−1 by summing certain

matrix elements of the inverse of M̂−1 as was shown in Ref.
37.

The implementation of the ideas presented above leads to
the following identity:

Zs�h� = exp���
XX�

Fh
¯ �X�HX,X�

−1 Fh�X��� . �4.3�

Here we use the collective variables

X = �x,z�, x = �r,	�, z = �u,n� �4.4�

and the integration measure is specified as follows:

� dX = �
X

=� dxdz, � dz = �
0

1

du� dn , �4.5�

where 
dx has been introduced in Eq. �2.6�.
To make contact with the previous discussion, we note

that ��H�−1 corresponds to M̂−1 of Eq. �4.2�, where � is

some constant matrix introduced below. F̄h and Fh are linear
in h and their role is merely to select relevant components of

H−1, the sum of which gives L̂n
−1. The operator HX,X�

−1 can be
written in terms of a Gaussian functional integral as follows:

−
1

4i�
HX,X�

−1 = ��X�̄X��

=� D��,�̄��X�̄X�

�exp�2i��
X

�̄X�H + i����X� , �4.6�

where � and �̄=�†� are supervectors �see below�. They
contain both complex and Grassmann variables on equal
footing, which leads to the simple normalization of the
Gaussian integral

1 =� D��,�̄�exp�2i��
X

�̄X�H + i����X� . �4.7�

The identities, Eqs. �4.3� and �4.6�, are the basic building
blocks for the derivation of the model we want to work with.
In the next section we will define all quantities involved in
more detail, making it possible to verify Eq. �4.3� by explicit
computation. Construction of the theory that follows Ref. 1

and adopts the notations used in this paper is included in
Appendix A for the interested reader.

It may be worth making a comment concerning the angu-
lar integration 
dn. It will turn out later that for our purposes
the most important scattering processes are forward and
backward scattering. By forward scattering we mean scatter-
ing processes, in which both the incoming and outgoing fer-
mions have almost parallel momenta. Backward scattering
refers to a process, in which both incoming and outgoing
momenta for each fermion are almost antiparallel to each
other, while incoming and outgoing momenta of different
fermions are almost parallel.

It is then convenient to split the angular integration 
dn̂
into two half-spheres, one half-sphere contains “left movers”
the other one “right movers.” The arbitrariness involved in
fixing the boundary in dimension d�1 will not become im-
portant due to the quasi-one-dimensional character of the rel-
evant scattering processes. When separating sectors of left
and right moving particles it is then only necessary to inte-
grate over one half sphere and we denote this angular inte-
gration as 
dn with normalization 
dn=1/2. As an example,
the angular integration in Eq. �4.1� is now written

� dn̂hnL̂n
−1�	hn =� dnhnL̂n

−1�	hn + h−nL̂−n
−1�	h−n.

�4.8�

Let us perform two more manipulations to arrive at a
form, where only the averaging with weight Wt remains to
be done. Starting from Eq. �4.7� one may verify by shifting

fields �, �̄, that

Zs�h� = exp���
XX�

F̄h�X�HX,X�Fh�X���
=� D��,�̄� exp�2i��

X

�̄X�H + i����X�
� exp��− 2i��

X

�F̄h�X��X + �̄XFh�X��� .

�4.9�

Just as L̂, H contains a part Hh, that is linear in the field h.
We split off this part by writing

H = H0 + Hh. �4.10�

The final form of the model is then obtained by averaging the
h-dependent part of Zs�h� with the weight Wt�h−b�
�compare with Eq. �3.37��.

Zs =� D��,�̄�exp�2i��
X

�̄X�H0 + i����X�B��,�̄,b�

�4.11�
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B��,�̄,b� =� DhWt�h − b�exp�2i��
X

�̄XHh�X�
�exp��− 2i��

X

�F̄h�X��X + �̄XFh�X��� .

�4.12�

In the next subsection we will give the precise definition for

� , �̄ ,F , F̄, and H. Equations �4.3� and �4.6� are discussed in
Appendix A. What remains then is to obtain the final model
by explicitly computing B, Eq. �4.12�.

B. Relevant supervectors and supermatrices

1. Supervector � and its conjugation

Let us first introduce the supervector � depending on co-
ordinates X= �x ,z� �cf. Eq. �4.4��. It has components in the
sectors of left- and right-moving particles labeled as n, the
graded space of bosonic S and fermionic � variables labeled
as g, the Hermitized space labeled by H, and the spin space
labeled by s. An additional sector is introduced, which sim-
plifies calculations with the model. It has been termed
“electron-hole” eh space in Ref. 1 and plays a similar role as
the time-reversal sector in the 
-model description of disor-
dered systems �Ref. 33�

� =
1
�2

��*

�
�

eh
, ��n� = � ��n�

��− n�
�

n
, �4.13�

where

� = ��

S
�

g
, � = ��1

�2 �
H

, S = �S1

S2 �
H

. �4.14�

Both Si and �i are vectors in the spin space

Si = �Sx
i

Sy
i

Sz
i �

s

, �i = ��x
i

�y
i

�z
i �

s

. �4.15�

The components �x
i ,�y

i ,�z
i are anticommuting �Grassmann�

fields.

The conjugate vector �̄ is defined

�̄ = �†� , �4.16�

where

� = �1 0

0 − 1
�

H
�4.17�

is the third Pauli matrix in the Hermitized space. An impor-
tant symmetry that arises due to introducing the �eh� sector is

�̄ = �C��T, �4.18�

where C is the following matrix:

C = �C0 0

0 − C0
�

H

, C0 = �c1 0

0 c2
�

g

�4.19�

and matrices ci have structure in the eh sector.

c1 = �0 − 1

1 0
�

eh
, c2 = �0 1

1 0
�

eh
. �4.20�

For Grassmann variables the convention ��*�*=−� is used.
The conjugation of matrices is introduced as follows:

Ā = CATCT, �4.21�

where the special transposition appropriate for
supermatrices33 should be used. The important property

�̄A� = �̄Ā� , �4.22�

where �, � are supervectors, is one of the main motivations
for introducing the �eh� sector. When calculating higher cu-
mulants later using Wick’s theorem the number of contrac-
tions can be reduced considerably with the help of relation
Eq. �4.22�.

2. The matrix H

The matrix H is split into an h-dependent and an
h-independent part

H = H0 + Hh

H0 = − iv0	3�3n � − �1�	, Hh = − 2i	3Ĥn. �4.23�

Different constant matrices in this expression are

�1 = �0 1

1 0
�

H
, �3 = �1 0

0 − 1
�

n
, 	3 = �1 0

0 − 1
�

eh
,

�4.24�

and

Hn�x� = �ĥn�x� 0

0 ĥ−n�x�
�

n

. �4.25�

3. Vector Fh

Vector F does not have the full symmetry in supersym-
metric g space. Instead, it projects onto the bosonic sector.
The role of the fermionic fields in Eq. �4.9� is only to provide
the normalization. We present Fh as a product of an
h-dependent and an h-independent part. The latter one is

F0 =
1
�2

�0

1
�

g
� �1

1
�

n
� � �1

1
�

eh

�− 1

1
�

eh

�
H

. �4.26�

The charge conjugated vector is F̄0= �CF0�T, where only c2

is effective when evaluating the right-hand side. Fh and F̄h
are then given as follows:

Fh,��X� = �X���Hn�x�F0, �4.27�

and F̄h= �CFh�T, where
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�X��� = �1 0

0 u���	 + �1 − ��iv0n��3�
�

eh
. �4.28�

Here an additional parameter � has been introduced into the
model and we will comment on it in the following subsec-
tion.

4. Parameter � and the weight Wt

In view of Eq. �4.1� one would expect only �	 to enter Eq.
�4.28�, corresponding to �=1. Choosing different values of
�, however, may be convenient as we will see below when
studying the renormalization of the model. We will set �
=1/2 there, treating temporal and spatial derivatives in a
symmetric way. For ��1 relation Eq. �4.4� needs to be
modified and this modification eventually changes the weight
Wt. Any physical quantity calculated with the model is of
course independent of the choice of �. As is shown in Ap-
pendix A, when introducing parameter ��1, relation Eq.
�4.4� takes the form

Zs�h� = exp�− ��1 − ���
n̂,x

hn
2�x��

�exp�− 4i�2�
XX�

Fh,��X���X�̄X��Fh,��X��� .

�4.29�

For �=1 it coincides with Eq. �4.4� and one can use the form
for B given in Eq. �4.12�. For general � it seems natural to
absorb the exponential in the first line of Eq. �4.29�, into the
weight Wt and thus change B to

B��,�̄,b� =� DhWt�h,b,��exp�2i��
X

�̄XHh�X�
� exp��− 2i��

X

�Fh,��X��X + �XFh,��X��� ,

�4.30�

where

Wt�h,b,�� = Wt�h,b�e−��1−��
n̂,xhn
2�x�. �4.31�

Clearly, this change in Wt only affects the quadratic form in
h but not the part containing b. Therefore, to make the
change explicit we may write here

Wt�h,b = 0,�� = exp�−
�

2
� dx�dn�hn�x���̂t

−1���h��x,n�� ,

�4.32�

where

2�̂t��� = f̂
2�V̂t

1 − 2��V̂t

. �4.33�

The final step in the derivation of the model is the calculation
of B in Eq. �4.30�.

C. Effective low energy theory

From Eq. �4.11� together with B given in Eq. �4.30� we
find

Zs =� D��,�̄�exp�− �
i

Si� . �4.34�

Next we specify the different parts Si of the effective action.
The interaction-independent part is

S0 = − 2i�� dX�̄X�H0 + i����X. �4.35�

There are three different interaction vertices present in the
theory

S2 = − 2i��
ij

�ij� dXdX1

���̄X,�	3� j�XF0��X,X1

i �F0�X1
� j	3�X1,�� , �4.36�

S3 = − 4�− 2i��
ij

�ij����� dXdX1

���̄X,�	3� j�XF0��X,X1

i �F0�X1
� j	3�X1,�� , �4.37�

S4 = − 4��
ij

�ij�������1�1� dXdX1

���̄X,�u	3� j�X,���X,X1

i ��̄X1,�1
u1	3� j�X1,�1

� .

�4.38�

Summation over spin indices is implied and we use the to-
tally antisymmetric tensor ���� with �123=1. This part of the
action would be sufficient for a calculation of the thermody-
namic potential in the absence of a magnetic field and it
coincides with the action written in Ref. 1. Here we used the
notation

�X,X�
i = �i�nn�̂�f�r − r����	 − 	�� �4.39�

and

�1�nn1̂� = � �V̂t

1 − 2��V̂t

��n,n1̂� 
 � f
0, �4.40�

�2�nn1̂� = � �V̂t

1 − 2��V̂t

��n,− n1̂� 
 �b
0. �4.41�

Matrices �i are

�1 = 1, �2 = �3. �4.42�

The form of

�ij = �1 1

1 − 1
� �4.43�

was determined from the following identities:
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�+A�+ + �−A�− =
1

2
��1A�1 + �2A�2� , �4.44�

�+A�− + �−A�+ =
1

2
��1A�1 − �2A�2� . �4.45�

Taking into account that relevant scattering events are quasi-
one-dimensional, as will be seen later, Eqs. �4.44� and �4.45�
also explain the labeling in Eqs. �4.40� and �4.41�, where �1
is classified as forward scattering and �2 as backward scat-
tering.

The presence of a magnetic field introduces three more
terms, namely

Sb0 = − ��� dxb2�x� , �4.46�

Sb1 = − 2��− 2i�� dXb��x���̄X,�	3�XF0� , �4.47�

Sb2 = 4������� dX b��x���̄X,�u	3�X,�� . �4.48�

In these expressions

� =
1

1 − 2��Vt

, �4.49�

where the bar in Vt means averaging over the full solid angle.
We remind that �, the interaction amplitudes �i as well as �X,
�̄X depend on parameter � introduced in �4.28�. Here we
suppressed the label for the sake of brevity.

D. Rules of perturbation theory

1. Gaussian averages

A perturbation theory can be set up in a standard way
using a cumulant expansion and Wick’s theorem. Gaussian
averages are taken with respect to S0 and it is therefore con-
venient to work with the matrix Green’s function

Ĝ�X1,X2� = − 4i���X1
� �̄X2

�0, �4.50�

��¯��0 =� D��¯�exp�− S0���� . �4.51�

Due to supersymmetry no normalization factor arises. Ĝ is a
matrix in spin space but its spin structure is trivial and we
denote

Ĝ���X1,X2� = Gn1
�x1 − x2�����n1,n2

��u1 − u2� . �4.52�

The Fourier transform of G is introduced as follows:

Gn1
�x1 − x2� = T�

�n

� dpGn1
�p,�n�eip�r1−r2�−i�n�	1−	2�.

�4.53�

Here �n=2�Tn are bosonic Matsubara frequencies and

Gn�p,�n� =
1

vFnp	3�3 + i��1 − i��1
. �4.54�

Similar to the specific heat,1, the temperature dependence of
the susceptibility is determined by nonzero Matsubara fre-
quencies only. Therefore, the term containing the infinitesi-
mal � in the Green’s functions will not become important in
our calculations and will not be written from now on. The
matrix Green’s function Gn is diagonal in spin space.

In addition to averages of the type written in Eq. �4.50�
one has to account for nonstandard averages of the type

��X1,��X2,��0�0 and ��̄X1,��̄X2,��0�0, which arise due to the
eh sector. It is, however, sufficient to work with Eq. �4.50�,
since expressions involving such nonstandard averages can
easily be transformed to a more standard form with the help

of the relation �̄X1
A�X2

= �̄X2
Ā�X1

, which is valid for any

supermatrix A. The charge conjugation operation A→ Ā has
been defined in Eq. �4.21�.

It is often convenient to work with a generalization of the
trace operation tr, used for conventional matrices, to the so-
called supertrace str.33 It is defined

str�a 


� b
�

g
= tra − trb . �4.55�

Two more useful relations are

str�AB� = str�BA� , �4.56�

�̄1,�A�2,� = − str„A��2,��̄1,��… . �4.57�

A ,B are arbitrary supermatrices. It follows from the defini-
tion of the supertrace that for matrices Ai that have the full
symmetry in g space, str�Ai�=0. The matrix Green’s function
G is a particularly important example. One immediately con-
cludes that the following relations �and straightforward gen-
eralizations thereof� hold for such matrices

���̄A1���0 = ���̄A1����̄A2���0 = 0. �4.58�

These important relations considerably reduce the number of
diagrams to be considered in the perturbation theory.

E. Diagrammatic representation

Figure 1 displays the building blocks that we will use for
the diagrammatic representation of the perturbation theory.
The three interaction vertices reflect the structure of S2, S3,
and S4. They are plotted in such a way that small momenta
flow along the interaction line. The dotted lines symbolize

the structure F0F̄0. These lines carry neither momentum nor
frequency. They are, however, convenient to make contact
with conventional diagrams formulated in terms of electron
Green’s functions as we will discuss now.

To this end it is instructive to make a comparison with the
original model. Since the charge channel has been separated,
we need to consider fermions interacting in the triplet chan-
nel only, i.e., the free action Eq. �2.3� and an interaction part
of the form
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Sint,t = −
1

2
�

p1p2q

S�p1,− q��t��12�S�p2,q� , �4.59�

where we remind that S�p ,q�=�†�p− q
2

����p+ q
2

� and we
used four-dimensional notation for momenta and energies.

In contrast, the effective low energy model of Eq. �4.34�
is formulated in terms of spin modes. The structure of the

terms appearing after expansion of 
hL̂h�	h in Eq. �4.1� in
the field h is the translation to the spin mode language of a
closed Fermion loop with n�2 fields h coupled to it. The

expansion of L̂h in powers of h is performed here assuming

that L̂h=0� �v0np− i��−1 describes free propagation of spin
modes �compare to S0 of Eq. �4.35��. After integration over
h, which reduces to contracting pairs of fields �hh�, one ob-
tains a theory of interacting spin modes. Not all fields h in


hL̂h�	h enter in an equivalent way, however, and this ex-
plains the presence of three different interaction terms in the
model. When contracting two fields h that appear due to an

expansion of L̂h in h, one finds an interaction vertex of the
type represented by S4 �see Fig. 1�. If only one such field is
involved one comes to S3, otherwise to S2.

Let us summarize the discussion with the help of Figs. 2
and 3. Here a closed loop of fermionic Green’s functions

�Fig. 2� as well as a particular diagram for the susceptibility
�Fig. 3� are shown formulated first in terms of fermionic
Green’s functions and then also as a diagram for interacting
spin modes in the effective theory. We see that one diagram
of the conventional perturbation theory produces several dia-
grams of the expansion in the spin modes �we marked the
corresponding interactions vertices by Si, i=2,3 ,4�.

At first glance it looks as if our effective perturbation
theory has become even more complicated than the original
one. However, it is not so because it is not sufficient to just
write the diagrams. One should calculate them singling out
the most interesting low energy contributions. This singling
out has already been performed when deriving the effective
theory for the spin excitations. A larger number of the dia-
grams in the theory corresponds to different possibilities of
obtaining low energy contributions when integrating in the
diagrams of the conventional perturbation theory.

The perturbative expansion obtained from the low energy
effective action is equivalent to expressions obtained from
Eqs. �2.3� and �4.59� after expanding �p+q��p+vFnq in the
vicinity of the Fermi surface in each loop and subsequent
integration in �p. The present model, however, organizes the
terms in a way that is much more convenient for identifying
the most important contributions.

Let us remark that the field b enters the diagrams in the
same way as h and that for each loop there is one fixed angle
n, which is as a direct consequence of the integration over
�p.

F. Bare spin susceptibility

The static spin susceptibility � at T=0,

� = 2���=1, �4.60�

where � is given by Eq. �4.49�, can be obtained straightfor-
wardly from Sb0, Eq. �4.46�, for �=1. For representations
with an arbitrary ��1, the term Sb0 alone does not provide
the full answer. For general � one should consider the com-
bination Sb0−1/2��Sb1

2 �� with Sb1 from Eq. �4.47�. The av-
erage in this formula is to be taken with the full quadratic
form S0+S2. This procedure effectively amounts to a ladder
summation. In particular, we will later choose �=1/2. In this

FIG. 1. Basic building blocks of the perturbation theory.

FIG. 2. A closed loop of fermionic Green’s function contrasted
with the spin mode representation.

FIG. 3. A particular diagram for the susceptibility formulated in
the fermionic and the spin mode representation.
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case one arrives at Eq. �4.60� with the help of the identity

2��1=2��1/2+2��1/2
2 �1−�V̄t�1/2�−1, where the first term is

obtained from Sb0 and the second one from −1/2��Sb1
2 ��.

V. RENORMALIZATION

As sketched in the Introduction, logarithmic corrections
appear in the model and they can be summed in a renormal-
ization scheme as it has been done for the interaction ampli-
tudes in Ref. 1. The appearing logarithms and thus the renor-
malized amplitudes generally depend on the deviation in
angles from the ideal forward or backward scattering case. It
is therefore immediately clear that this renormalization
scheme cannot include as effective charges physical quanti-
ties like the susceptibility that do not depend on such angles.
This is why we consider the renormalization of interaction
amplitudes and external vertices first and then include the
renormalized values into a perturbation theory for the sus-
ceptibility.

A. Generalization

During the process of the renormalization additional
terms may appear in the action. To consistently take such
terms into account, they should be included into the model
from the beginning. To this end a generalization of Eqs.
�4.36�–�4.38� is introduced in Sec. V A 2. This step is pre-
pared in Sec. V A 1.

1. Decomposition

In Eqs. �4.36�–�4.38� the following decomposition of su-
permatrix P was used

P = �
i=1

2

Pi, Pi =
1

2�
k=1

2

�ik�kP�k, �5.1�

where �A1 ,�3�=0 and �A2 ,�3�=0 for arbitrary matrices A.
For a generalization we consider four supermatrices �i

with ��i ,� j�=0 and �i
2=1, namely

�1 = 1, �2 = �3, �3 = �1	3, �4 = �1�3	3. �5.2�

We decompose a supermatrix P in such a way that P
=�i=1

4 Pi and

�P1,�2� = 0, �P1,�3� = 0, �5.3�

�P2,�2� = 0, �P2,�3� = 0, �5.4�

�P3,�2� = 0, �P3,�3� = 0, �5.5�

�P4,�2� = 0, �P4,�3� = 0. �5.6�

An explicit formula for Pi can be given

Pi =
1

4�
k=1

4

�ik�kP�k, �ik =�
1 1 − 1 − 1

1 1 1 1

1 − 1 1 − 1

1 − 1 − 1 1
� .

�5.7�

It is easily seen that

str�PiPj� = �ijstr�Pi
2�, str�PQ� = �

k=1

4

str�PkQk� . �5.8�

The following useful relation can be checked by direct com-
putation:

�
k1,k2=1

4

�i1k1
�i2k2

�ALk1k2
BLk1k2

� = 4�i1,i2�
k=1

4

�i1k�A�kB�k� ,

�5.9�

where Lk1k2
=�k1

�k2
.

2. Generalized action

After this preparation we introduce the generalized model.
We start with S4,

S4 = − 2��
ij=1

4

�ij�������1�1� dXdX1��̄X,�u	3� j�X,���̂i�X,X1�

���̄X1,�1
u1	3� j�X1,�1

� . �5.10�

The amplitudes �̂i are

�̂i�X,X1� = �i�nn̂1;u,u1,�r − r1���f�r − r1���	 − 	��
�5.11�

and by comparison with Eq. �4.37� one finds their bare val-
ues

�i��,u,u1;r�� = �� f
0��� i = 1,2,

�b
0��� i = 3,4,

�5.12�

where r�=r− �nr� is the component of r transverse to n and
one should keep in mind that important initial and final
angles n, n1 are almost parallel or almost antiparallel to each
other. The initial values for �i do not depend on u, u1, and r�

but develop such a dependence under renormalization.
The generalization of Eq. �4.36� reads

S2 = − i��
ij

�

1,
2=±

�ij� dXdX1��̄X,�	3� j�XF
1
��̂i


1
2�X,X1�

��F
2
�X1

� j	3�X1,�� . �5.13�

In this formula F±=	±F0, F±= F̄0	 and 	±= �1±	3� /2 are
projection operators that change under charge conjugation as
	±=	 . In analogy to Eq. �5.11� we defined

�̂i

1
2�X,X1� = �i


1
2
„nn1̂ ;u,u1,�r − r1��

…f�r − r1���	 − 	�� .

�5.14�

Due to the relation �F0F0�i=0, �i=1,4� only �2,3� compo-
nents enter the action. The bare values of the vertices are
equal to

�i

1
2��,u,u1;r�� = �� f

0��� i = 2,

�b
0��� i = 3.

�5.15�

Finally, we write the cubic term in the form
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S3 = − 2�− 2i�����
ij

�

=±

�ij� dXdX1��̄X,�u	3� j�X,��

�B̂i

�X,X1��F
�X1

	3� j�X1,�� �5.16�

with

B̂i

�X,X1� = Bi



„nn̂1;u,u1,�r − r1��

…f�r − r1���	 − 	�� ,

�5.17�

where the bare values of this vertex are

Bi

��,u,u1;r�� = �� f

0��� i = 1,2,

�b
0��� i = 3,4.

�5.18�

As we will see, in the approximation we consider, a gen-
eralization for the terms S0 ,Sb1 ,Sb2 will be necessary only
in the 1d case.

B. Renormalization scheme

We use a standard momentum shell renormalization group
scheme. Separating fast and slow fields in the action we in-
tegrate over the fast fields and determine in this way the flow
of coupling constants as a function of a running cutoff. In our
case this amounts to a resummation of the perturbation
theory in the leading logarithmic approximation. A quantity y
is expanded in a series of the form

y = �
n

�� ln�¯��n an��� , �5.19�

and one attempts to find a Taylor expansion of an���. We
assume during the renormalization that the coupling con-
stants � are small, ��1.

In our case it is convenient to define fast fields � and
slow fields 	 with respect to the frequency only. The reason
is the anisotropy in momentum. As one can see, relevant
momenta p� are of the order of � /vF, while momenta p� do
not contribute to the logarithm and enter as parameters. Thus
we write

��X� = 	�X� + ��X� , �5.20�

where the fast fields � have the frequencies � in the interval,

!�c " ��� " �c �5.21�

while the slow ones 	 carry frequencies

��� " !�c, �5.22�

where �c is the running cutoff and !"1. Fast modes are
integrated over in the Gaussian approximation using aver-
ages of the form

�¯�0 =� d��¯�exp�− S0���� . �5.23�

This results in a change in S

�S�	� = − ln�exp�− S�	 + ����0 − S�	� , �5.24�

that will now be determined explicitly. In diagrams the
Green’s function of the fast modes will be denoted by a thick

solid line in order to discriminate it from the Green’s func-
tion of slow modes.

C. Renormalization of interaction amplitudes

The renormalization of the interaction amplitudes was
considered in Ref. 1. Here we merely summarize the results,
since we will use them later on. Let us note that for the
renormalization group the symmetric choice �=1/2 is most
convenient. Relevant diagrams are shown in Fig. 4.

The result of the analysis in Ref. 1 was that the model is
reproduced under renormalization and the changes in �i ,�i
and Bi can conveniently be written in the form

��̂i = B�i
��̂ j;B̂ j;�̂ j��� , �5.25�

�B̂i = BBi
��̂ j;B̂ j;�̂ j��� , �5.26�

��̂i = B�i
��̂ j;B̂ j;�̂ j��� , �5.27�

where

�� = uu1�d f̄�� r�

r0
�ln !−1. �5.28�

Here �d in d dimensions is given as follows:

�d =
2

��vFr0
d−1 = � 2, d = 1,

4�pFr0�−1, d = 2,

4��pFr0�−2, d = 3,

�5.29�

and

f̄�� r�

r0
� = r0

d−1� dd−1p�

�2��d−1eip�r�f�p�� . �5.30�

Therefore the amplitudes can be written in a scaling form

�i��;u,u1;r1� = �i����;u,u1;r��;�i
0���� ,

Bi

��;u,u1;r�� = �i


����;u,u1;r��;�i
0���� ,

FIG. 4. Relevant diagrams for the renormalization of the inter-
action amplitudes as found in Ref. 1.
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�i

1
2��;u,u1;r�� = #i


1
2����;u,u1;r��;�i
0���� ,

�5.31�

where �1
0=�2

0=� f, �3
0=�4

0=�b give the initial conditions for
the flow. The flow stops at max�� ,T /���, so that

���;u,u1;r�� = − uu1�d f̄�� r�

r0
�ln�max��,

T

��
�� .

�5.32�

For any perturbative calculation of the spin susceptibility
the amplitudes �1 ,�1

± ,#1
±,± cannot enter. This immediately

follows from the relation �1	3F0=−F0, which means that
the matrix structure of the Green’s function in H space be-
comes trivial for every closed loop in perturbation theory.
Since in this paper we are interested in the perturbative sec-
tor of the model only we give here the relevant renormaliza-
tion group �RG� equations for the backward scattering com-
ponents

d�3���
d�

= − ��3����2; �5.33�

d�3
+���

d�
= − 2�3����3

+���;
d�3

−���
d�

= − �3����3
−���;

�5.34�

d#3
++���
d�

= − 2#3
++����3��� − 2��3

+����2; �5.35�

d#3
−+���
d�

=
d#3

+−���
d�

= − 2�3
−����3

+��� . �5.36�

There is a subtle point related to the amplitude #3
−−. Instead

of a flow equation the relation

#3
−−����3��� = ��3

−����2 �5.37�

was fixed in Ref. 1 to cancel ultraviolet divergencies that
would otherwise develop under a change in the cutoff. We
will come back to this point in Sec. VI below.

Appropriate boundary conditions have already been speci-
fied when introducing the model above. The solutions of the
flow equations are

�3��� = �3
−��� = #3

−−��� =
1

�b
* + �

; �5.38�

�3
+��� = #3

+−��� = #3
−+��� =

�b
*

��b
* + ��2 ; �5.39�

#3
++��� =

2�b
*2

��b
* + ��3 −

�b
*

��b
* + ��2 , �5.40�

where we introduced the notation

�b
*��� 


1

�b���
� 0, �5.41�

and the backscattering amplitude �b
0 is defined in Eq. �4.40�.

D. Renormalization of S0, Sb0, Sb1, and Sb2

In this section we consider the renormalization of the
terms S0, Sb0, Sb1, and Sb2, Eqs. �4.35� and �4.46�–�4.48�. It
will be shown that for the one-loop RG considered in this
paper vertex corrections cancel in dimensions d=2,3, and, as
a result, these terms are not renormalized. This is no longer
true for d=1. Unlike in higher dimensions no angular inte-
gration is performed in one spatial dimension and this fact is
responsible for the appearing of additional logarithmic cor-
rections as will be shown below. When selecting the relevant
corrections in 1d, we have in mind a comparison to the well
known result of Dzyaloshinskii and Larkin.38

1. Corrections to S0

This contribution has been noticed before1 but was dis-
carded, since for the renormalization of the interaction am-
plitudes this term was already beyond the desired accuracy.
The relevant diagram is shown in Fig. 5. In the presence of
external vertices this term should be considered.

After expanding field $�x1� around a point x one obtains
an expression containing the following integral:

T�
�
� dp

vFn1p + i�

vFn1p − i�

1

�vFn2p + i��2A�p� , �5.42�

where A is a product of the vertex parts B and cutoff func-
tions f appearing in the expression. The crucial point is that
there is a free integration over the vector n2 and unlike the
contributions from diagrams shown in Fig. 4 a logarithm can
be obtained only in d=1. The result can be written

�S0 = − 2i�� dX�̄XH0�R�X, �5.43�

where

�R = u� du1���u,u1���1 + �3��1
+�1

− + �1 − �3��3
+�3

−� .

�5.44�

It seems natural to interpret this term as a correction to S0.
For our purposes it is more convenient, however, not to al-
low S0 to change. This can be achieved by rescaling fields �
after each renormalization step in such a way that �R is

FIG. 5. Logarithmic correction to S0 in d=1.
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removed from S0. This is why we do not write additional RG
equations here. In turn, this rescaling of the fields can lead to
additional corrections in the flow equations for the interac-
tion amplitudes or external vertices. For the interaction am-
plitudes, it is in fact easily seen that taking these corrections
into account would be an overstepping of accuracy. This is
no longer true for the external field vertices as will be dis-
cussed below.

2. Corrections to Sb2

Relevant contributions to the term Sb2 are represented in
Fig. 6. The correction �Sb2

�2� is determined by the vertices #
and � and can be written in the form

�Sb2
�2� = 8������� dXdX1uu1b��x�

� �3#3
+−���̄X,�K3

++�X1,� f̃�x − x1� , �5.45�

where

K = F0F̄0, K++ = 	+K	+, �5.46�

and

f̃�x − x1� = f̄�r − r1���	 − 	1� . �5.47�

The correction is logarithmic in any dimension. However,
the form of Sb2

�2� is different from that of Sb2 because it con-
tains integration over both n and n1, which contrast the bare
form Sb2, Eq. �4.48�. Moreover, the matrix K breaks the
symmetry in g space �superspace� and, at first glance, one
should introduce additional renormalization coupling con-
stants.

Fortunately there is another diagram that exactly cancels
the previous one. It is also shown in Fig. 6 and its contribu-
tion equals

�Sb2
�1� = − 8������� dXdX1uu1b��x�

� �3
+�3

−���̄X,�K3
++�X1,� f̃�x − x1� . �5.48�

In fact, one comes to the exact cancellation

�Sb2
�2� = − �Sb2

�1� �5.49�

by virtue of the relation

�3#3
+− = �3

+�3
− �5.50�

that follows immediately from Eqs. �5.38�–�5.40�.
Finally there is an additional logarithmic contribution in

1d, �Sb2
�3�, represented in Fig. 6. It has a similar form as �S0,

but taking this correction into account would mean overstep-
ping the accuracy for our problem. The reason is that due to
the supersymmetry no diagram for the susceptibility can be
formed with the help of the vertex Sb2 without including
additional interaction amplitudes. As a consequence, the
leading correction to the spin susceptibility in d=1 resulting
from this contribution would be ����3ln�¯�, which is be-
yond our accuracy. For the same reason the rescaling of the
fields, which is necessary to bring S0 to its bare form after
the renormalization, need not be considered here. This result
relies on the symmetry in the g space and this is why it was
important to check the cancellation of the terms violating the
supersymmetry.

3. Corrections to Sb0

The analytic expression corresponding to the diagram
shown in Fig. 7 is quadratic in b but does not contain any
slow field 	. Therefore, we attribute the corresponding con-
tribution to the renormalization of Sb0, Eq. �4.46�. Clearly, in
this case the rescaling of the fields is not important. Since
there is a free integration over both the vectors n1 and n2 for
d�1, the correction is logarithmic only in d=1. This is simi-
lar to what happens when calculating the correction to S0.

In d=1, we write Sb0 in the form

Sb0 = −
1

2
��� dxdu1du2b2�x�
��,u1,u2� �5.51�

and set


�� = 0,u1,u2� = 1. �5.52�

Then the correction �
 to this quantity takes the form

�
 = −
1

2
�u1u2��„�#+−�2 + �#3

−+�2 + 2#3
++#3

−−
… .

�5.53�

FIG. 6. Diagrams for the corrections to Sb2. Logarithmic cor-
rections from �Sb2

�1� and �Sb2
�2� cancel each other in any dimension.

�Sb2
�3� gives a logarithmic correction in d=1, but for the susceptibil-

ity it gives corrections beyond our accuracy.

FIG. 7. Logarithmic correction to Sb0 in d=1.
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4. Correction to Sb1

There are two separate contributions to Sb1, Eq. �4.47�,
represented in Fig. 8. In d�1 the slow field 	 fixes the
vector n in one of the Green’s functions G only, while the
other vector n� is integrated over. As a consequence, a loga-
rithmic correction is obtained only in d=1. In one dimension
the rescaling of the fields �cf. Sec. V D 1� is also important
and gives an additional contribution.

Considering the case d=1 we present Sb1 in the form

Sb1 = �− 2i��� dxdz1dz2b��x�F̄0	3D̄��,u1,u2����x,u2� .

�5.54�

Trivial “angular” integration in 1d �weighted summation

over the directions� has been performed. The operator D̄ is
defined

D̄��,u1,u2� = �u2

2
��aivF�3 � + �b�	� 0

0 �c
� . �5.55�

Here �i=�i�� ,u1 ,u2�, and initially �i��=0,u1 ,u2�=1, i
=a ,b ,c. In this case

D̄�� = 0,u1,u2� = �̄�x,u2� �5.56�

and we come back to the original form displayed in Eq.
�4.47�.

The diagrams in Fig. 8 represent corrections to �i. The
left diagram determines corrections ��a and ��b,

��a = −
u1

2
��3

−#3
+− + �3

+#3
−−��� = − ��b. �5.57�

The contribution ��c consists of two parts

��c = ��c
�1� + ��c

�2�. �5.58�

The correction ��c
�1� is represented by the right diagram in

Fig. 8 and reads

��c
�1� = − u2��3

+#−+ + �3
−#3

+−��� . �5.59�

The correction ��c
�2� due to the rescaling of the fields has to

be performed at each RG step to keep the form of S0 fixed

��c
�2� = − 2u2�3

+�3
−�� . �5.60�

Note that the forward scattering components drop out as
could be expected.

5. RG equations and their solution

We found logarithmic corrections to the vertices Sb0, Sb1,
and Sb2 in dimensionality d=1 only. This means that these
terms are not renormalized in the first order in the dimen-
sionalities d=2,3 and the vertices �, �, and # given by Eqs.
�5.38�–�5.40� are sufficient to determine the susceptibitlity.

At the same time, the renormalization of the vertices Sb0,
Sb1, and Sb2 is very important in d=1. Both functions �i and

 from Eqs. �5.51� and �5.55� do not have a simple form and
one should write and solve proper RG equations. For the
function 
 related to �Sb0, we write 
=
�� ,u1 ,u2� and using
the correction �
, Eq. �5.53�, obtain the following differen-
tial equation:

�


��
= −

1

2
�u1u2� 6�b

*2

�� + �b
*�4 +

2�b
*

�� + �b
*�3� . �5.61�

With the boundary condition 
��=0,u1 ,u2�=1 we obtain


��,u1,u2� = 1 +
1

2
u1u2�� 2�b

*2

�� + �b
*�3 −

�b
*

�� + �b
*�2 −

1

�b
*� .

�5.62�

The corresponding differential equations for �i are to be ob-
tained from the forms of the corrections, Eqs. �5.57�–�5.60�,
and can be written

��a

��
= − u1

�b
*

�x + �b
*�3 = −

��b

��
, �5.63�

��c

��
= − u2� 3�b

*2

�� + �b
*�4 +

�b
*

�� + �b
*�3� �5.64�

with the boundary conditions �i��=0�=1. Integrating these
equations we obtain �only �a and �c will enter our results�

�a = 1 +
u1

2
� �b

*

�� + �b
*�2 −

1

�b
*� , �5.65�

�c = 1 +
u2

2
� 2�b

*2

�� + �b
*�3 +

�b
*

�� + �b
*�2 −

3

�b
*� . �5.66�

The calculations presented in this subsection allowed us
to obtain all effective vertices entering the RG scheme. This
gives us the possibility to calculate the susceptibility for all
dimensions d=1,2 ,3. The result for d=1 is well known38

from a renormalization group treatment for the initial elec-
tron model. We will reproduce now this result using the de-
rived equations in order to check the formalism of the
bosonization used here. Only after that we will concentrate
on calculating the susceptibility in the higher dimensionali-
ties d=2,3.

VI. SPIN SUSCEPTIBILITY IN d=1

We can now determine the temperature dependent correc-
tion to the static spin susceptibility in d=1.

We write the correction to the susceptibility as follows:

FIG. 8. Logarithmic corrections to �Sb1 in d=1.
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�� = ��1 + ��2 + ��3 �6.1�

and denote the contribution from �Sb0, Fig. 7, as ��1. The
second term ��2 in Eq. �6.1� is the contribution that corre-
sponds to the diagram shown in Fig. 9 on the left-hand side.

Here only the renormalized vertex of Sb1 enters but no
additional interaction amplitude. A diagram with this prop-
erty does not exist for vertex Sb2. Finally, the diagram shown
on the right-hand side of Fig. 9 gives a correction termed
��3. It involves a renormalized interaction amplitude. The
corresponding expressions take the form

��1 = �� du1du2
��,u1,u2� , �6.2�

��2 = 2�� du1du2du3u2�c��,u3,u2��a��,u1,u2� , �6.3�

��3 =
1

2
�� du1du2u1u2 �

�,�=±
#̃3

����,u1,u2� . �6.4�

We do not write factors of � in d=1, since we want to
avoid unnecessary complications while focusing on the lead-
ing temperature dependent corrections. In Eq. �6.4� we intro-

duced the interaction amplitudes #̃3
��. Naively one would

expect amplitudes #3
�� Eqs. �5.38�–�5.40� to enter here but

this would not be correct. In fact, this question is intimately
related to a subtle point related to the renormalization of #3

−−

already alluded to in Sec. V C.
When calculating corrections to #3

−− within the renormal-
ization scheme, the authors of Ref. 1 found ultraviolet diver-
gencies that could be cancelled only provided the condition
#3

−−�3= ��3
−�2 is imposed. Since �3

− and �3 can be determined
independently, this condition fixes #3

−−. For large tempera-
tures, where one can use the bare values of these amplitudes,
this relation is automatically fulfilled. It is crucial to note
now that it was necessary to fix #3

−− only because this am-
plitude itself enters S2���, where fields � are the fast modes.

Returning to the diagram for ��3, Fig. 9, we see that the
frequencies flowing through the Green’s functions are deter-
mined by the external vertices and therefore are vanishingly
small. In particular, they are smaller than any frequency con-
sidered in the renormalization scheme. We argue that the part
of S2 that contains the fields at vanishingly small frequencies
should be split off from the beginning and when separating
fast and slow modes, it must always contain slow fields only.

Correspondingly, the interaction amplitudes, termed #̃3
��, are

renormalized but do not play any role when calculating cor-
rections to the interaction vertices. In such a situation, there

is no reason to fix #̃3
−− as was done previously for #3

−−. In-
stead, one should follow the renormalization group scheme

and derive a proper RG equation for #̃3
−−.

The relevant diagrams have been already presented in Fig.
4 and the result of the RG procedure can be expressed by the
equation

�#̃3
−−

��
= − 2��3

−�2 = −
2

�� + �b
*�2 . �6.5�

The solution of Eq. �6.5� with the initial condition #̃3
−−��

=0�=1/�b
* takes the form

#̃3
−− =

2

� + �b
* −

1

�b
* . �6.6�

This should be contrasted with

#3
−− =

1

� + �b
* . �6.7�

We checked our reasoning by a perturbative calculation at

order �2, where the difference between #̃3
−− and #3

−− is al-
ready noticeable.

Finally, we use the identities

1

1 + X
= �

0

1

du1du2u1u2�z12 + z12
2 + 2z12

3 � �6.8�

=�
0

1

du1du2u1
2�z12

2 + 2z12
3 � , �6.9�

where z12=1/ �1+u1u2X�, that can be checked by a direct
computation of the integrals. Then, recalling that X
=2�bln��F /T� we come to the following temperature depen-
dent correction to the spin susceptibility:

���T� =
2��b

1 + 2�bln��F/T�
. �6.10�

This result has first been obtained by Dzyaloshinskii and
Larkin.38 Equation �6.10� serves as a good check of the
bosonization approach used here. Actually, the calculations
within the framework of the bosonization method of Ref. 1
are most difficult in d=1. It is clear that this method is less
convenient for calculations in 1d than the other well devel-
oped ones.39 However, calculations in d=2,3 are somewhat
less involved and the present approach is the most conve-
nient tool for calculations in these dimensionalities. In the
next section we concentrate on such calculations.

VII. NONANALYTIC CORRECTIONS TO SPIN
SUSCEPTIBILITY IN d=2,3

Nonanalytic corrections to the spin susceptibility have
been considered in several works before.11–18,22 A linear in T
behavior at order �2 was obtained in 2d, while the potential
analog in 3d, a T2ln T behavior, was found to be absent and
the first correction in 3d was proportional to T2. We will

FIG. 9. These two diagrams with renormalized external vertices
���2� and interaction amplitude ���3� determine the correction to
the susceptibility in d=1 together with the diagram of Fig. 7.
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show now that there are logarithmic corrections to these re-
sults and sum up the leading logarithms.

Let us repeat that, as it has been demonstrated in Sec.
V D, the terms Sb0, Sb1, and Sb2, Eqs. �4.46�–�4.48� are not
renormalized in dimensions d�1. Therefore we can perform
a perturbative analysis with the renormalized interaction ver-
tices �, �, and #, Eqs. �5.38�–�5.40�, keeping the bare values
of Sb0, Sb1, and Sb2.

The relevant diagrams leading to Td−1 corrections are dis-
played in Fig. 10. The solid lines carry the frequencies � and
the momenta k of the order of T and T /vF, respectively. They
are smaller than characteristic energies in the Green’s func-
tion entering the vertices because the latter are responsible
for the logarithmic contributions. This means that the verti-
ces can be taken at zero external frequencies and momenta
and this is the reason why one may just take the values of the
vertices from Eqs. �5.38�–�5.40�. The same procedure has
been used in Ref. 1 for calculation of the specific heat. Put-
ting the bare values for the vertices �, �, and # would give
the peturbative results of Refs. 11–14 in d=2,3. In this limit,
the diagrams of Fig. 10 correspond to the conventional dia-
grams considered in those works.

As concerns diagrams containing the amplitude � f of the
forward scattering, we did not find any logarithmic contribu-
tions. This is because one obtains integrals of products of
Green’s functions containing poles in the same half plane of
complex variables kn.

Considering the contributions of the diagrams in Fig. 10
and comparing them with self-energy and vertex corrections
in 1d, Fig. 9, one can see that there is a close analogy be-
tween the terms responsible for the logarithmic corrections

in one dimension and those responsible for the nonanalytic
behavior in higher dimensions. Within our formalism, the
main difference between the two cases is the additional an-
gular integration in dimensions d�1.

Let us now turn to the computation of the diagrams in two
and three dimensions. Calculating the terms of the perturba-
tion theory corresponding to the diagrams displayed in Fig.
10 one finds that some of them show unphysical divergencies
in the limit of vanishing momenta and frequencies. Therefore
one should sum up certain diagrams first before taking the
limit.

To demonstrate this feature explicitly, let us consider the
backscattering contribution for the diagram 3 of Fig. 10.
When evaluating the term �3�q ,�� corresponding to this dia-
gram one finds terms containing the product

Gn1
�q,��Gn2

�q,− �� , �7.1�

where q and � are the external momentum and frequency.
The integral over the internal momenta is ultraviolet di-

vergent and must be cut with the help of the function f , Eq.
�3.6�. At the same time, the limits q→0, �→0 in the dia-
gram 3, Fig. 10, cannot be taken unambiguously.

In order to get rid of such unphysical divergencies, we
note that this term contains the product of the interaction
amplitudes #3

−−�3. A closer inspection reveals that this term
is intimately related to the renormalization of # and the ul-
traviolet divergence encountered during the renormalization
�see Fig. 4�. It follows from the results of the renormalization
that this divergence must be cancelled with the help of dia-
gram 4 using the relation #3

−−�3= ��3
−�2.

The relation to the conventional perturbation theory,
which is made obvious by including the dotted lines in the
diagrams, in fact strongly suggests first to group several dif-
ferent diagrams before evaluating them. These are the groups

�a = �1 + �3 + �4 + �5, �7.2�

�b = �2 + �6 + �7. �7.3�

Strictly speaking, diagram 6 differs topologically from dia-
grams 2 and 7. It nevertheless turns out to be advantageous
to combine them, since the expressions are similar at low
energies that are considered in the model we use.

For the convenience of the reader, and since the algebra is
rather tedious, explicit expressions for the diagrams are in-
cluded in Appendix B. Using the mutual relations between
the seven interaction amplitudes #3

±,±, �3
±, and �3, one finds

rather simple expressions for �a and �b, that allow one to
easily take the limit q→0, �→0. After taking this limit they
read

�a = − 32�2T�
�
� dp� dn1dn2

�2

�vFn1p − i��2�vFn2p + i��2

�Y�p,n1n2̂� , �7.4�

FIG. 10. These are the diagrams responsible for the nonanalytic
temperature dependence of the spin susceptibility.
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�b = 32�2T�
�
� dp� dn1dn2

i��vFn2p − i��
�vFn1p − i��3�vFn2p + i��

�Y�p,n1n2̂� , �7.5�

where

Y�p,�� = �� ddre−ipr �b���

1 + f̄�� r�

r0
�X���

f̄�r��
2

, �7.6�

and

X��� = − �d�b���ln�max��,T/�0�� . �7.7�

The numerical coefficient �d was introduced in Eq. �5.29�.
The integration over u1, u2 was performed with the help of
the following relations:

� du1du2u1
2u2

2
„z1z2 + 2�z1

3z2 + z1z2
3� + �z1

2z2 + z1z2
2� + 2z1

2z2
2
…

=
1

�1 + x1��1 + x2�
, �7.8�

� du1du2u1
3u2„2z1

2z2
2 + 2�z1

3z2 + z1z2
3� + �z1

2z2 + z1z2
2�…

=
1

�1 + x1��1 + x2�
, �7.9�

where

zi =
1

1 + u1u2xi
. �7.10�

The nonanalytic contribution to the spin susceptibility is
found from the small region of phase space, for which the
angles n1 and n2 are close to each other, �n1−n2 � �1. We
therefore introduce

n = �n1 + n2�/2, m = n1 − n2, �7.11�

p� = pn, p� = p − p�n �7.12�

and perform the integration in p� in Eqs. �7.4� and �7.5�.
As a result, we obtain the following formula for the

nonanalytic correction to the spin-susceptibility in dimension
d�1,

��̃�T� = �a�T� + �b�T�

=
256

vF
�2T�

�

���3� dd−1p�

�2��d−1 � dn1dn2

�
3�vFmp��2 − 4�2

„�vFmp��2 + 4�2
…

3Y�p� � 0,p�, �m��

�7.13�

The main contribution to the integrals in Eqs. �7.4� and �7.5�
comes from p� of the order of T /vF and this is why we can
set p� �0 in the argument of the function Y.

Equation �7.13� contains a sum over bosonic Matsubara
frequencies and we write this sum symbolically as follows:

��̃�T� = T�
�n

R��n� . �7.14�

Technically it is more convenient to calculate the deviation
from the zero-temperature limit instead of computing the
sum, i.e., to calculate the quantity

���T� = ��̃�T� − ��̃�T = 0� . �7.15�

Using the Poisson formula the temperature dependent correc-
tion to the susceptibility ���T� can be represented as follows:

���T� = �T�
�

−� d�

2�
�R��� �7.16�

=�
l�0

� d�

2�
R���exp�− i

l�

T
� . �7.17�

The further evaluation is slightly different in dimensions
d=2 and d=3 and we discuss the two cases separately.

A. Nonanalytic correction in two dimensions

Rescaling the momentum and integrating over the angle n
we obtain

���T� =
32

vF
2 �2�T�

�

−� d�

2�
��

0

1 d�m�
2�

1

�m�

�� dk

2�

3k2 − 1

�k2 + 1�3Y�p� = 0,p� =
2���k
vF�m�

, �m�� .

�7.18�

The integral over �m� is logarithmic and therefore not very
sensitive to the upper limit that can safely be set to 1. One
notices that the momentum dependence of Y is crucial here
coupling the integrals in �m� and k. If Y were independent of
the momentum, the k integral would be equal to zero,
whereas, at the same time, the integral over m would diverge
at the lower limit.

Fortunately, this uncertainty can easily be avoided taking
into the momentum dependence of the function Y.

After introducing the Fourier transform of Y,

Ȳ��r�;�� =� dp�

2�
eip�rY�p�,p� = 0,�� �7.19�

the momentum integration can be performed with the help of
the identity

�
−�

� dk

�2��
3k2 − 1

�1 + k2�3e−ikb = −
1

4
�b�2e−�b�, �7.20�

where b=2r �� � / �vF �m � �.
Then, we use Eq. �7.17� and obtain the following expres-

sion:

G. SCHWIETE AND K. B. EFETOV PHYSICAL REVIEW B 74, 165108 �2006�

165108-18



�T�
�

−� d�

2�
��2�2e−���� = T�2x2 coth x

sinh2 x
−

2

x
� ,

�7.21�

where x=2�T �r � / �vF �m � �=�T�, and change the integration
variable from �m� to x. As a result, we find

���T� = −
4T

�vF
2 �2�

−�

�

drI2�a�Ȳ��r�,� =
2�T

��

r

r0

1

x
� ,

�7.22�

where

I2�a� = �
a

�

dx�2x coth x

sinh2 x
−

2

x2� �7.23�

and a= 2�T
��

r
r0

1
#� .

We reintroduced formally an upper cutoff #� for the in-
tegration over �m� but it will drop out from the final result.
One can see that the essential r as controlled by the function
Y �and thus f� are small, r%r0, while essential x in the inte-
gral are large, x�1. This means that the main contribution in
the integral over the angles � comes from � of the order of
T /��. Therefore we can with logarithmic accuracy set �=0

in the argument of Ȳ. In turn, it means that the integral over
x is rather insensitive to the lower bound as long as x"1 and
we may safely extend the integration range in x to the inter-
val �0, � �. Then, the integrations over x and r can be easily
performed. To this end we note that I2�0�=−1 and introduce
the notation

Y��� = Y��,p = 0� �7.24�

to formulate our result for the susceptibility ��,

��2d�T� = 2�2 T

�F
�0

2dY�� = 0� . �7.25�

In Eq. �7.25�, �0
2d=m /�. The vertex part �, Eq. �4.49�,

should be understood as ��=1 and it is a result of an addi-
tional summation of ladder diagrams including S2, in close
analogy to the discussion in Sec. IV F. The limit �=0 corre-
sponds to the backward scattering. Before further discussing
this result in Sec. VII C we turn to the three-dimensional
case.

B. Nonanalytic correction in three dimensions

In 3d one obtains from Eq. �7.13� after rescaling of mo-
menta and integration over �n� the following expression:

���T� =
32�

vF
3 �2�T�

�

−� d�

2�
�

�����
0

1 d�m�
2�

1

�m� � d2k

�2��2

3�emk�2 − 1

„�emk�2 + 1…3

�Y�p� = 0,p� =
2���k
vF�m�

, �m�� , �7.26�

where em=m / �m�.

We see that the integral over m in Eq. �7.26� is logarith-
mic. However, corrections of the form ����2T2ln T are ab-
sent and this is due to the fact that the integral over k van-
ishes provided the momentum dependence of Y is neglected.
Nevertheless, if the function Y depends on the momentum
p� the entire integral is finite.

After introducing the Fourier transform of Y,

Ȳ��r�,�� =� d2p

�2��2eip�rY�p� = 0,p�,�� �7.27�

it is convenient to decompose the vectors k ,p� ,r into com-
ponents parallel and perpendicular to em, such that r
= �r̃� , r̃��. Then, one can then proceed in close analogy to the
calculation in 2d. Using Eq. �7.20� and Eq. �7.21� one arrives
at

���T� = −
4T2

vF
3 �2� d2rI3�a�Ȳ��r�,� =

2�T

��

�r�
r0

1

x
� ,

�7.28�

where

I3�a� = �
a

�

dx�2
coth x

sinh2 x
−

2

x3� �7.29�

and a= 2�T
��

�r�
r0

1
#� . Again, we reintroduced the upper cutoff #�

for the m integration.
The integral over x in Eq. �7.28� shows a somewhat stron-

ger dependence on the lower cutoff a as compared to the
two-dimensional case with I3�0�=−1/3, I3�1��−0.28. This
means that angles larger than T /�� start contributing more
significantly. Still, the dominant contribution to the integral
comes from x�1, so that we can set �=0 in the argument of

Ȳ with logarithmic accuracy. Then, we come to the following
result for the temperature dependent correction to the spin
susceptibility:

��3d�T� =
�2

3
�2 T2

�F
2 �0

3dY�� = 0� , �7.30�

where �0
3d=mpF /�2, and Y���=Y�p=0,��, and �=��=1, see

the remarks below Eq. �7.25�.
We see that, as in the 2d case, this correction is deter-

mined completely by the backward scattering ��=0�.

C. Final results in d=2,3

1. General results

The quantity Y��=0� can be considered as the square of
an effective temperature dependent backward scattering am-
plitude �b�T�, and we write it in the form Y��=0�=�b

2�T�,
where
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�b�T� = �b� dd−1r�

r0
d−1

f̄�� r�

r0
�

1 + f̄�� r�

r0
�X�T�

, �7.31�

�b=�b��=0�, X�T�=�d�bln��� /T� and f̄��r� /r0� was de-
fined in Eq. �5.30�.

So, our results can be written in the most general form as
follows:

��2d�T� = 2�2�b
2�T�

T

�F
�0

2d, �7.32�

��3d�T� =
�2

3
�2�b

2�T�
T2

�F
2 �0

3d, �7.33�

and we remind the reader that �=��=1, where � is deter-
mined by Eq. �4.49�.

If we replaced �b�T� in Eq. �7.32� by the bare coupling
constant �b for d=2, we would obtain the previously re-
ported linear T dependence of the nonanalytic
corrections.11–14 This replacement means neglecting the
renormalization of the interaction constants discussed in Sec.
V C. If we set the function �b�T� equal to the bare value �b

in d=3 we would obtain the correction ��3d�T� proportional
to T2, which is regular in T2. This means that the first
nonanalytical T2ln��� /T� term in 3d is of the order �3.

In the limit of small X�T��1 the temperature dependence
of �b

2�T� takes the form

�b
2�T� � �b

2 − 2�b
3cdln

��

T
, X�T� � 1, �7.34�

where

cd = �d� dd−1r�

r0
d−1 f̄�

2 � r�

r0
� . �7.35�

The factor cd depends on the precise form of the cutoff and
can be estimated only. It is roughly of the order of unity.
Equation �7.34� shows that the first logarithmic in tempera-
ture corrections contain the prefactor �b

3 both in two and
three dimensions. This rather high order in the coupling con-
stant �b is, apparently, the reason why the logarithmic cor-
rections to the susceptibility have not been noticed previ-
ously in the diagrammatic expansions11–14 �see, however,
Ref. 40 for 2d�.

In the limit of large X�T��1 one finds the following
asymptotic temperature dependence of �b

2�T�,

�b
2�T� � �ln

��

T
�−2

, X�T� � 1. �7.36�

More explicit formulae can only be written using a model
cutoff function and this will be done in the next section.

2. Results for a model cutoff function

We choose the following model cutoff function f̄��r� /r0�:

f̄�� r�

r0
� =

1


d−1
exp�−

r�

r0
� , �7.37�

where 
d−1 is the d-1 dimensional solid angle.
Performing the remaining integration for this case one

obtains the following temperature dependence for the effec-
tive backward scattering constants

�b
d=2�T� =

2�bln�1 + X�T�/2�
X�T�

, �7.38�

�b
d=3�T� = −

2��bLi2�− X�T�/2��
X�T�

, �7.39�

where Li2�x�=�k=1
� xk /k2 is the polylogarithm function.

In the limit of small X�T��1 the temperature dependence
of the susceptibility computed with the model cutoff function
takes the form

��2d�T� = 2�2�b
2 T

�F
�0

2d�1 − 2�b ln
��

T
� , �7.40�

��3d�T� =
�2

3
�2�b

2 T2

�F
2 �0

3d�1 − �bln
��

T
� , �7.41�

where we put r0
−1� pF for simplicity. It should be stressed

once again that the coefficient of the logarithmic correction
cannot be determined rigorously within our model.

In the opposite limit of very low temperatures, X�T��1,
asymptotic expressions for the corrections to the susceptibil-
ity can be written using the model cutoff function of Eq.
�7.37�,

��2d�T� =
1

2
�2 T

�F
�0

2d

ln2�4�bln
��

T
�

ln2��

T

, �7.42�

��3d�T� =
�2

48
�2 T2

�F
2 �0

3d

ln4�4��bln
��

T
�

ln2��

T

. �7.43�

Again we used r0
−1� pF for simplicity. The asymptotic be-

havior 1 / �ln��� /T��2 in these equations is not very sensitive
to the form of the function f�k� as can be seen from Eq.
�7.31�.

VIII. DISCUSSION

We have calculated nonanalytical logarithm in tempera-
ture contributions to the spin susceptibility of a
d-dimensional electron gas for d=1,2 ,3. We used the
bosonization method recently developed in Ref. 1 and dem-
onstrated that it can give results not only for the specific heat
as in Ref. 1 but also for the spin susceptibility.

The main contribution to this quantity comes from effec-
tive spin modes that interact with each other, which leads to
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the nonanalytic logarithmic contributions. Although we con-
sider isotropic systems, the low temperature behavior is de-
termined by spin excitations moving antiparallel to each
other. As a result, the nonanalytic contributions are deter-
mined by the backward scattering showing that there are one
dimensional features also in the dimensions d=2,3.

The final form of the temperature corrections to the sus-
ceptibility in two and three dimensions is given by Eqs.
�7.31�–�7.33�. Although in 2d the correction to the suscepti-
bility � is very similar to the correction to the quantity
C�T� /T, where C�T� is the specific heat,1 they are quite dif-
ferent in 3d. The first logarithmic contribution to C�T� /T is
of the order �b

2, which is a well known result for 3d �Refs.
3–7�. At the same time, the expansion of the susceptibility in
the logarithms starts with the term of the order of �b

3, which
shows that the nonanalytical temperature corrections exist
for this quantity in three dimensions, too.

Using the bosonization scheme of Ref. 1 we have also
reproduced the temperature dependent correction in one di-
mension, Eq. �6.10�, that has been obtained long ago38 using
a renormalization group approach for the initial electron
model.

The temperature dependent correction to the susceptibility
in 2d was calculated recently by Shekhter and Finkelstein40

using direct diagrammatic expansions for the initial electron
model. In the approach of Ref. 40, which was tailored for the
calculation of the spin susceptibility in d=2, the renormal-
ization of the effective backward scattering amplitude is at-
tributed to all Cooper channel harmonics, while no cutoff
function was used. In the formalism of Ref. 1 which we
studied no decoupling in the Cooper channel is introduced in
addition to the particle-hole channel in order to avoid over-
counting in the region of phase space close to backward scat-
tering, which turned out to be most important �for a more
detailed discussion of the role of the Cooper channel in the
bosonization approach see Sec. VII C of Ref. 1�. In fact, the
renormalization of the backward scattering amplitude is ob-
tained in this way as well, nonzero angular harmonics are,
however, not included.

It is important to mention that in some cases not all
nonanalytical corrections are accounted for by the backward
scattering. Interesting contributions of the type T3ln T to,
e.g., specific heat in three dimensions, are given by three-
loop diagrams in the language of the electronic Green’s func-
tions �Ref. 7� and they cannot be expressed in terms of the
backward or forward scattering. However, these corrections
are proportional to higher powers of the interaction constant
and are smaller than those given by the backward scattering
unless the temperature is very low. In the latter regime the
effective backscattering amplitude is very small, Eq. �7.36�,
and the contribution of three and more loop diagrams can
become the most important one. Contributions that are not
reduced to the backward scattering are discussed in Ref. 40
for the susceptibility in two dimensions.
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APPENDIX A: DERIVATION OF FORMULA EQ. (4.29)
FOR Zs†h‡ BY EXPLICIT CONSTRUCTION

In this appendix we explicitly construct the supersymmet-
ric representation of Zs�h� in Eq. �4.29�.

It is a straightforward application of the results of Ref. 37
that Zs�h� of Eq. �4.1� in the main text can be rewritten

Zs�h� = exp�2��
X̂,X̂�

uhn�x�LX,X�
−1 �	�hn��x��� , �A1�

where the form of LX,X�
−1 will be specified in the following.

Here X= �r ,	 ,n ,u� and the hat in 
X̂ indicates that integra-
tion 
n̂ in this formula is over the full solid angle.

�LX,X�
−1 ��,� = −

i

2
��S�,X

2 S�,X�
1* � + �S�,X

1 S�,X�
1* � − �S�,X

2 S�,X�
2* �

− �S�,X
1 S�,X�

2* �� . �A2�

Here � ,� are spin indices and averaging is defined

�¯� =� D��,�̄��¯�e−L��̄,��, �A3�

where

L��̄,�� = − i�
X̂

�̄X��M̂ + i���X �A4�

and supervector � has been defined in Eqs. �4.14� and �4.15�.

�̄ = �†�, � = 
3
�H�. �A5�

The fermionic part of �, �̄ takes care of the normalization
via identity

� D��,�̄�e−L��̄,�� = �� D�S,S̄�e−L�S̄,S��−1

. �A6�

Finally

�M̂n = � L̂n� iL̂n�

− iL̂n� − L̂n�
�

H

. �A7�

We repeat that L̂�= �L̂+ L̂†� /2 and L̂�=−i�L̂− L̂†� /2 are Her-

mitian. The explicit form of �M̂ is

�M̂n = iv0n � − �1�	 + 2iuĥn. �A8�

The matrix �1 acts in H space and is written in Eq. �4.24�.
Restricting the angular integration to just one half sphere we
can cast formula Eq. �A4� in another form by introducing the
supervector � as follows:
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��n� = � ��n�
��− n�

�
n
, ��n� = �†�n�� , �A9�

L has to be modified accordingly.

L → L��̄,�� = − i�
X

�̄X��M̂ + i���X, �A10�

where

M̂n = �M̂n 0

0 M̂−n

� . �A11�

The explicit form of �M̂ is

�M̂n = iv0n�3 � − �1�	 + 2iuĤn. �A12�

Here we introduced �3=
3
�n� and Hn�x� of Eq. �4.25�.

Finally the number of field components in �, �̄ is
doubled once more by introducing the electron-hole �eh� sec-
tor. This can be done by introducing the vector

� =
1
�2

��*

�
�

eh
, �̄ = �†� . �A13�

Now

L → L��̄,�� = − i�
X

�̄X��M̂ + i���X, �A14�

where

M̂n = �M̂n 0

0 M̂n
T
�

TR

. �A15�

Note that the transposition for M̂T includes derivatives. Here
matrix 	3=
3

�eh� acts in eh space. The explicit form is

�M̂n,u = − iv0	3�3n� − �1�	 − 2i	3Ĥn. �A16�

Now we can write an appropriate generalization of Eq. �A1�,
Eq. �A3� and make contact to formula Eq. �4.29� in the main
text. We write

L��̄,�� = − i2��
X

�̄X�H + i����X, �A17�

where H=�M̂ �factor of 2� is introduced for convenience�
and the averaging with respect to this Lagrangian is defined

�¯� =� D��,�̄��¯�e−L��̄,��. �A18�

Using

Fh�X� = �XHn�x�F0, Fh�X��CFh�X��T, �A19�

where F0 is defined in Eq. �4.25� and

�X��� = �1 0

0 u���	 + �1 − ��iv0n � �3�
� �A20�

one verifies that

�̄Fh = Fh�

=
1

2
„Ôn���hn�Sn

1* − Sn
2*� + hn�Sn

1 + Sn
2� + �n ↔ − n�… ,

�A21�

where

Ôn��� = u���	 + �1 − ��iv0n � � . �A22�

Using �S�,X
i S�,X�

j* ���n,n��u,u� one obtains

I�h� = �
XX�

Fh�X���X�X��Fh�X��

=
1

2
�

XX�
hn

��x���S�,X
1 + S�,X

2 ��S�,X
1* − S�,X

2* ��Ôn���hn
��x�� .

�A23�

Summation over spin indices � ,� is implied. Using further
Eq. �A2� one finds

I�h� =
i

2�
� dudx�dn��hn�x�„uL̂n,u

−1 ��	hn��x�…

+ hn�x�„u�1 − ��L̂n,u
−1 �iv0n � − �	�hn�x�…� .

�A24�

The last line can be simplified by noticing

L̂n,u
−1 �iv0n� − �	�hn�x� = hn�x� . �A25�

This equality holds, since ĥh=h�h=0. The result is

Zs�h� = exp�− 4i�2�
XX�

Fh�X���X�X��Fh�X���
�exp�− ��1 − ���

n̂,x
hn

2�x�� . �A26�

This formula is used in the main text, Eq. �4.29�.

APPENDIX B: DIAGRAMS OF FIG. 10

In this appendix we give analytic expressions for the dia-
grams displayed in Fig. 10. We introduce

�i

1
2�z1,z2,k� =� ddre−ikr�i


1
2�n1n2̂,u1,u2,r�� f̄�r�

�B1�

for � and use similar notation for amplitudes B and �. To
simplify expressions let us write

�F�z1,z2,k� = �
i=1

4

�

k=±

�i

1
2�z1,z2,k��F
1

F
2
�i �B2�

and suppress the trivial dependence on �z1 ,z2�. Then the rel-
evant expressions read
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��1�q,�� = − 4�2T�
�
� dpdz1dz2u1

2u2
2str„#F�p�

�Tn1

�1��p,q�#F�p − q�Tn2

�1��p,q�… , �B3�

��2�q,�� = − 8�2T�
�
� dpdz1dz2u1

3u2str„�F�p�

�Tn1

�2a��p,q��F�p�Tn2

�2b��p�… , �B4�

��3�q,�� = 8�2�
i=1

4

T�
�
� dpdz1dz2u1

2u2
2�i�p − q�F0

�Tn1

�3��p,q��F
i �p�T̄n2

�3��p,q�F0, �B5�

��4�q,�� = − 8�2�
i=1

4

T�
�
� dpdz1dz2u1

2u2
2Bi


1�p − q�Bi

2�p�

� F0Tn1

�4a��p,q��F
1
F
2

�iTn2

�4b��p,q�F0, �B6�

�5�q,�� = − 16�2�
i=1

4

�

1

T�
�
� dpdz1dz2u1

2u2
2Bi


1�p − q�

�F
1
Tn1

�5a��p,q��F
i �p�Tn2

�5b��p,q�F0, �B7�

�6�q,�� = − 16�2�

1

�
i=1

4

T�
�
� dpdz1dz2u1u2

3Bi

1�p − q�

�F
1
Tn1

�6a��p��F
i �p�Tn2

�6b��p,q�F0, �B8�

�7�q,�� = 8�2 �

1,
2=±

�
i=1

4

T�
�
� dpdz1dz2u1

3u2

� Bi

1�p�Bi


2�p�F̄0Tn1

�7a��p,q��F0F
1
�iTn2

�7b��p�F
2
,

�B9�

where

Tn1

�1��p,q� = ��i� + v1p�3� − 	+�i� + v1q�3��Gn1
�p�Gn1

�p − q� ,

�B10�

Tn1

�2a��p,q� = 	3�i� + v1p�3�Gn1

2 �p�Gn1
�p + q� , �B11�

Tn2

�2b��p� = 	3�i� + v2p�3�Gn2
�p� , �B12�

Tn1

�3��p,q� = �	+�i� + v1q�3� + 	−�i� + v1p�3��

� Gn1
�p�Gn1

�q� , �B13�

Tn1

�4a��p,q� = ��i� + v1q�3� − 	−�i� + v1p�3��

�Gn1
�q�Gn1

�q − p� , �B14�

Tn2

�4b��p,q� = �	+�i� + v2p�3� + 	−�i� + v2q�3��

� Gn2
�p�Gn2

�q� , �B15�

Tn1

�5a��p,q� = ��i� + v1p�3� − 	+�i� + v1q�3��

�Gn1
�p − q�Gn2

�p� , �B16�

Tn2

�5b��p,q� = �	+�i� + v2p�3� + 	−�i� + v2q�3��

� Gn2
�p�Gn2

�q� , �B17�

Tn1

�6a��p� = 	3�i� + v1n1p�3�Gn1
�p� , �B18�

Tn2

�6b��p,q� = �	+�i� + v2p�3� + 	−�i� + v2q�3��

� 	3Gn2
�p�Gn2

�p + q�Gn2
�q� , �B19�

Tn1

�7a��p,q� = 	3�i� + v1p�3�Gn1

2 �q�Gn1
�p + q� , �B20�

Tn2

�7b��p� = 	3�i� + v2p�3�Gn2
�p� . �B21�

Four dimensional notation was used p= �� ,p�, q= �� ,q�.
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