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Angle-resolved photoemission spectroscopy �ARPES� is used to study the spectral function of the optimally
doped high-Tc superconductor �Bi,Pb�2Sr2CaCu2O8+� in the vicinity of the antinodal point in the supercon-
ducting state. Using a parametrized self-energy function, it was possible to describe both the coherent and the
incoherent spectral weight of the bonding and the antibonding band. The renormalization effects can be
assigned to a very strong coupling to the magnetic resonance mode and at higher energies to a bandwidth
renormalization by a factor of two, probably caused by a coupling to a continuum. The present reevaluation of
the ARPES data allows one to come to a more reliable determination of the value of the coupling strength of
the charge carriers to the mode. The experimental results for the dressing of the charge carriers are compared
to theoretical models.
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I. INTRODUCTION

The dressing of the charge carriers in high-Tc supercon-
ductors �HTSCs� is still one of the most exciting topics in
solid state physics. The HTSCs are a paradigm for the tran-
sition of a correlated system from an insulating to a metallic
state. The dressing of the charge carriers in HTSCs is likely
caused by the same interaction that gives rise to the super-
conductivity, hence the understanding of the quasiparticle
self-energy may help to understand the origin of the mecha-
nism of high-Tc superconductivity. The dressing can be stud-
ied by various experimental methods but angle-resolved pho-
toemission spectroscopy is the only method which gives
quantitative information on the momentum dependence of
those renormalization effects. In HTSCs there are two impor-
tant regions on the Fermi surface: the nodal region, where
the diagonal of the Brillouin zone cuts the Fermi surface and
where the d-wave superconducting order parameter changes
sign. This region mostly contributes to the transport proper-
ties, particularly in the underdoped region, where a
pseudogap opens up, squeezing the Fermi surface to a region
near the nodes. The other �antinodal� region is one where the
edge of the Brillouin zone cuts the Fermi surface. In this
region, the order parameter in hole doped superconductors
has its maximum. This region is therefore mostly relevant for
the studies of the superconducting properties. There are nu-
merous angle-resolved photoemission spectroscopy
�ARPES� studies on the renormalization effects near the
nodal point,1–3 but only a few studies are concentrated at the
antinodal point.4–9

In the bilayer systems the study of the antinodal point is
complicated by the bilayer splitting, which could not be re-
solved for 15 years. On the other hand, only in the bilayer
system of the Bi-HTSC family the entire superconducting
region from underdoped �UD� via optimally doped �OP� to
overdoped �OD� can be studied. In the superconducting state
a well pronounced peak-dip-hump structure has been

detected.4,5 This structure was originally explained5,10 solely
in terms of a coupling to a bosonic mode, similar to the
McMillan-Rowell explanation of the tunnelling spectra in
conventional superconductors.11 Later on, it was established
that this peak-dip-hump structure is partially caused by the
bilayer splitting.12,13 By varying the photon energy h� in the
ARPES experiments, and exploiting the different energy de-
pendence of the matrix elements for the excitations from the
bonding and the antibonding bands, it became possible to
separate the two bands8,12–15 and to extract the full energy-
and momentum-dependent spectral weight separately in each
of the bands. This procedure allowed the authors of Refs. 12
and 13 to find the intrinsic peak-dip-hump structure, and to
demonstrate that the strength of this intrinsic effect is doping
dependent, and decreases in going from UD to OD materials.

An important characteristic of the interaction between fer-
mionic and bosonic excitations is the energy-dependent, di-
mensionless coupling �E. In theories where the fermionic
self-energy depends on energy, E, much stronger than on the
momentum k-kF, this dimensionless coupling is related to the
self-energy via ��E�=−E�E. It is also relevant whether the
measurements are performed in the normal or in the super-
conducting state. We will label the corresponding couplings
as �n,E and �sc,E, respectively.

If the normal state is a Fermi liquid, �n,E=0=�n is finite,
and is often called a dimensionless coupling constant. It de-
termines the mass renormalization of the fermionic quasipar-
ticles via m*=m�1+�n�. The coupling constant can, in prin-
ciple, be extracted from ARPES measurements of the
quasiparticle dispersion in the normal state at the lowest en-
ergies, however, this procedure requires one to know both kF
and the bare mass, m. In previous analysis,8 the mass, m, was
extracted from a tight-binding model with parameters de-
rived from a fit of the Fermi surface and from the quasipar-
ticle dispersion measured along the nodal direction.16,17 The
analysis of the experimental data in the antinodal region
yielded �n�1.5 both in UD and OD materials. This result
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should be contrasted with values18 of �n�1 at the nodal
point. It is consistent with expectations as for non rotation-
ally invariant systems the coupling �n depends on the posi-
tion on the Fermi surface.

In the superconducting state, the measured quasiparticle
energy in the antinodal region is bounded by the supercon-
ducting gap, �, and it becomes an issue at which energy one
extracts the coupling �sc,E from the data. In previous analy-
sis, the coupling was extracted from the self-energy mea-
sured at �E � ��. This coupling �sc,� turns out to be larger
than �n, and it also rapidly increases from OD to UD samples
��sc,��8 for dopant concentration 0.12�.

In this communication we extend our previous analysis of
the antinodal self-energy in the superconducting state8 and
show how one can extract the coupling at zero frequency
�sc,E=0��sc from the ARPES data. We find that �sc is smaller
than �sc,� and within a certain model is also smaller than the
normal state coupling �n, in agreement with earlier
calculations.19 We show that the large value of �sc,� and its
strong doping dependence are at least partially due to the fact
that the fermionic self-energy in a superconductor actually
diverges at �E � =�+	0, where 	0 is the energy of the
bosonic mode. If the bosonic mode is the spin resonance
peak, its energy decreases with decreasing doping. Then
�E � =� and �E � =�+	0 come closer to each other in the UD
regime, and �sc,� strongly increases. This is consistent with
the analysis in Ref. 8.

Our present analysis is based on the measurements of the
quasiparticle spectral function in the antinodal region of the
high-Tc superconductor �Bi,Pb�2Sr2CaCu2O8+� �BiPb2212�
in the superconducting state. We go beyond a previous
ARPES study which has analyzed the energy dependence of
the spectral weight just at the �
 ,0� point,20 and study the
whole antinodal region. We interpret our results in the super-
conducting state in terms of model self-energy function
which is composed of two terms. The first and dominant
term is due to a strong coupling of the charge carriers to a
single bosonic mode. The second term describes a band
renormalization at higher energies and is assumed to have a
Fermi-liquid form. We extract both couplings from the fits to
the data. We used two models for electron-boson coupling.
The first model is a one-mode model for an interaction with
an Einstein boson, which is assumed to be independent on
fermions. Second is a collective mode model, in which the
bosonic spectrum in the normal state is rather flat and inco-
herent, but splits into a mode and into gapped continuum in
the superconducting state due to the feedback effect from the
pairing. This second model is appropriate if the boson is a
spin collective mode of fermions. We obtain a rather good
agreement between the parameters derived from the analysis
of the experimental data using the model self-energy func-
tion and the calculated values using the collective mode
model. This yields a strong indication that the dominant part
of the renormalization of the fermionic dispersion is due to a
coupling of collective spin excitations.

The paper is organized as follows. In Sec. II we review
the two fermion-boson models in the normal and the super-
conducting state. The experimental setup is discussed in Sec.
III. In Sec. IV we present the experimental results together
with the data analysis. In Sec. V we discuss the results and

compare them with other renormalization effects studied by
ARPES in solid state physics. The conclusions of our study
are presented in Sec. VI.

II. THE FERMION-BOSON MODELS

The coupling of the charge carriers to bosonic excitations
is the minimum model to understand the spectral function of
the HTSCs at the antinodal point. We start with an assump-
tion that the Fermi energy EF is much larger than the mode
energy 	0. The validity of this assumption for very under-
doped cuprates has been questioned recently21,22 because
there the bandwidth is strongly reduced due to correlation
effects associated with Mott physics. Here we restrict our
analysis to near-optimally doped cuprates for which there is
little doubt that EF�	0 since EF� 1 eV in this case.

Both fermion-boson models have been discussed earlier
in the literature.10,20,23–27 We review them here again in order
to specify the parameters which can be derived from ARPES.
We also present several results for the collective excitations
model.

The dynamics of an electron in an interacting system can
be described by a Green’s function �Ref. 28�

G�E,k� =
1

E − �k − ��E,k�
, �1�

where ��E ,k�=���E ,k�+ i���E ,k� is the complex self-
energy function which contains the information on the
fermion-boson interaction, and �k is the bare quasiparticle
dispersion. Near the Fermi surface �k=vF�k−kF�, where vF

=kF /m, and m is the bare mass. It is customary to use the
tight-binding form for �k.

ARPES experiments measure the product of the spectral
function A�E ,k�, the Fermi function, and a transition matrix
element, convoluted with the experimental resolution. The
spectral function is related to the Green’s function as �Refs.
29 and 30�

A�E,k� = −
1



Im G�E,k�

= −
1




���E,k�
�E − �k − ���E,k��2 + ����E,k��2 . �2�

For �=0, i. e., for the noninteracting case, the spectral func-
tion A�E ,k�=��E−�k�.

For the description of the spectral function in the super-
conducting case, two excitations have to be taken into ac-
count: the electron-hole and the pair excitations. This trans-
forms the Green’s function into a �2
2� matrix,31 or,
equivalently, to the emergence of normal and anomalous
components of the Green’s function. Accordingly, the self-
energy also has a normal part ��E ,k� and anomalous part
��E ,k�. The two self-energies are related to E, the renormal-
ization function Z�E ,k�, and to the superconducting gap
��E ,k� via

E − ��E,k� = EZ�E,k�, ��E,k� = Z�E,k���E,k� . �3�

In general, the superconducting gap ��E ,k� is also a com-
plex function and depends on both parameters. However, the
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imaginary part of the gap appears gradually only above E
=�+	0 and does not not affect the physics at energies E
between � and �+	0, which we consider for the evaluation
of the coupling constant. The real part of the pairing gap is
finite �=� at zero energy� and can be safely approximated by
a constant in this energy range. This has been confirmed by
both analytic treatment in Ref. 32 and numerical studies for
the interaction with the collective mode �Refs. 32 and 33�
and for electron-phonon interaction �Ref. 26�. We therefore
neglect the energy dependence of the gap and replace a com-
plex ��E ,k� by a real ��k�. Note that the fermionic Z�E ,k�
does depend on energy and hence the pairing vertex
��E ,k�=Z�E ,k���E ,k� is indeed strongly energy dependent.
The momentum dependence of ��k� is that of a dx2−y2 gap. In
the antinodal region, the gap is near its maximum, its mo-
mentum dependence is weak and we will neglect it as well,
i.e., further approximate ��k� by � and Z�E ,k� by Z�E�. The
spectral function is then given by �Ref. 24�

A�E,k� = −
1



Im

Z�E�E + �k

Z�E�2�E2 − �2� − �k
2 . �4�

Using our definition of the coupling constant,

Z�E� = 1 + �sc,E. �5�

Below we consider two models for electron-boson inter-
action. In the one-mode model we define the self-energy due
to the coupling to a single bosonic mode as ��=−�E

bE with
�0

b=�b. In the collective mode model, we treat the renormal-
ization due to a distribution of bosonic modes. The corre-
sponding coupling constant is called �c.

A. One-mode model

In the one-mode model, it is assumed that electrons inter-
act with an Einstein boson whose energy is 	0 independent

on whether the system is in the normal or in the supercon-
ducting state. For the normal state the mechanism leading to
a finite lifetime of a photohole is illustrated in Fig. 1�a�. The
hole is filled by a transition from a state at lower binding
energy via an emission of a bosonic mode. Such bosonic
excitations may be electron-hole excitations, phonons, spin
excitations, plasmons, excitons, etc. Relevant excitations for
HTSCs are listed in Table I together with their characteristic
energies.

For a constant density of states and for the temperature
T=0, the fermionic self-energy is given by �Ref. 23�

��E� =
i�n

b

2
	0
� dE���E�� � d�kG�E + E�,k� , �6�

where ��E�� is the bosonic propagator

��E�� =
	0

	0
2 − E�2 − i�

. �7�

In the normal state, 	d�kG�E+E� ,k�=−i
 sgn�E+E��. Sub-
stituting this into �6� and separating real and imaginary parts
of the integral, we find, for E�0,

���E� = −
1

2
�n

b	0 ln
E + 	0

E − 	0

 ,

���E� =



2
�n

b	0���E� − 	0� . �8�

���E� is zero up to the absolute value of the mode energy
	0. This is also clear from Fig. 1 since the photohole can
only be filled when its binding energy is larger than 	0. At
�E��	0, ���E� is a constant �see Fig. 2�b��. ���E� shows a
logarithmic singularity at the mode energy, 	0 �see Fig.
2�a��. At low energies there is a linear energy dependence of
�� and the negative slope −d�� /dE=�n

b determines the cou-
pling constant at zero energy.

In Figs. 2�c� and 2�d� we have plotted the renormalization
function Z�E� for the same parameters. The real part shows
again a singularity at 	0 and a constant value at zero energy.
This value minus one again determines the coupling constant
�n

b. Within this model the same coupling constant can also be
obtained from the measurements of the quasiparticle line-
width at large negative energies as �n

b=−2���−�� / �
	0�.
���−�� is the step height of ���E� at E=	0 in the one-mode
model. Hence both �n

b and ���−�� are the measures of the
coupling strength to the bosonic mode. Consequently, to-
gether with the mode energy 	0, both can be used to deter-
mine the self-energy in the one-mode model.

TABLE I. Bosonic excitations which couple to the charge carriers together with their characteristic
energies in HTSCs.

System Excitations Characteristic Energy�meV�

Ion lattice Phonons 90

Spin lattice/liquid Magnons 180

e liquid Plasmons 1000

FIG. 1. Bosonic scattering mechanism which contributes to the
imaginary part of the self-energy. �a� normal state; �b� supercon-
ducting state.
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In Figs. 3�a� and 3�b� we have displayed the calculated
spectral function in the one-mode model for �n

b=1 and �n
b

=8, respectively. Compared to the bare particle dispersion,
�k, given by the red dashed line, for �E � �	0 there is a mass
renormalization, i.e., a reduced dispersion and no broaden-
ing, except the energy and momentum resolution broadening,
which was taken to be 5 meV and 0.005 Å−1, respectively.
For �E � �	0, there is a dispersion back to the bare particle
energy. Moreover, there is a broadening due to a finite ��,
increasing with increasing �n

b. For large �n
b, the width for

constant E scans is, at least up to some energy, larger than
the binding energy of the charge carriers and therefore
they can be called incoherent in contrast to energies for
�E � �	0 or very high binding energies, where the width is
smaller than the binding energy and therefore the states are
coherent.23 The change in the dispersion is often termed a
“kink” but looking closer at the spectral function, in particu-
lar for high �n

b, there is a branching into two dispersion arms
touching each other at the branching energy EB=	0.

The following information can be obtained from a one-
mode model spectral function A�E ,k� in the normal state.
When performing constant-E scans, very often called mo-
mentum distribution curves �MDCs�, one obtains Lorentz-
ians. The maximum observed in the MDCs determines the
renormalized dispersion. By comparing this dispersion close
to EF to the bare particle dispersion one can extract the
coupling constant �n

b. The width of the Lorentzians for
�E��	0 in this model should be determined by the energy
and momentum resolution. For �E��	0 the resolution effects

are small compared to the intrinsic width, W, and one can
derive ���−��=−vFW /2 where vF is the bare-particle Fermi
velocity. From the onset of a finite intrinsic width, one ob-
tains the mode energy 	0. This parameter also can be ob-
tained by constant-E cuts, very often called energy distribu-
tion curves �EDCs�. Looking at Eq. �2�, one realizes that for
large �k, i.e., far away from the Fermi wave vector, kF, the
spectral function around E�	0 is determined by ��. The
edge of such a cut determines again 	0.

In the superconducting state, the self-energy for E�0 is
still given by �6�, but the fermionic Green’s function now has
the form

Gsc�E,k� =
E + �k

E2 − �2 − �k
2 + i�

. �9�

Substituting this into �6�, evaluating the integral over �k, and
separating real and imaginary parts, we obtain for E�0:

���E� = −
�n

b

2
	0 Re � dE�

	0
2 − E�2 − i�

E + E�
��E + E��2 − �2

,

���E� =



2
�n

b	0 Re
E + 	0

��E + 	0 + ���E + 	0 − ��
. �10�

In Fig. 2 we plot ��E� and Z�E� for the superconducting state
with �=30 meV. A small � has been used to reduce the
singularities. One realizes that due to the opening of the gap
the singularities of �� and Z� are shifted to higher binding
energies and that the edge in �� transforms into an over-
shooting edge. At vanishing E, ���E� is still linear in E, but
due to the shift of the singularity to higher binding energies
the slope is now reduced and given by

�sc
b = −

���E → 0�
E

= �n
b�

0

� dx

�x2 + 1�3/2

1

1 + x2��/	0�2 .

�11�

The reduction of the coupling constant in the superconduct-
ing state is concomitant with a reduction of Z�0� since
Z�0�=1+�.

At k=kF the photohole can only be excited when its bind-
ing energy is exactly �, or when Im Z�E ,kF�
=−Im ��E ,kF� /E is nonzero. From Fig. 1�b� it is clear that
for zero temperature and in the clean limit �� or the scatter-
ing rate is different from zero only when �E���+	0. This
result is obtained from an evaluation of Eq. �10�. This im-
plies that E=−� is separated from the region where
���E ,kF� is non-zero and therefore the spectral function con-
tains a �-functional peak at E=−�, and then it becomes non-
zero at E�−��+	0�.

In Figs. 3�c� and 3�d� we show for the one-mode model
the calculated spectral function in the superconducting state
using the same energy and momentum resolutions and the
same mode energy as before. The gap was set to �
=30 meV. One clearly realizes the BCS-Bogoliubov-like
back-dispersion at the gap energy � and besides this, a total
shift of the dispersive arms by the gap energy. Thus the
branching energy EB occurs at −�	0+��.

FIG. 2. Real �a� and imaginary �b� part of the self-energy func-
tion and real �c� and imaginary �d� part of the renormalization func-
tion for a coupling to a mode at 	0=40 meV and a coupling con-
stant �n=8. Solid line: normal state, dashed line: superconducting
state with a gap �=30 meV.
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The renormalized dispersion is obtained from the position
of the MDC peak of the spectral function. In the normal
state, the peak position is where the real part of G−1�E ,k�
vanishes. In the superconducting state, there is an extra com-
plication due to the fact that �k is present both in the denomi-
nator and in the numerator of the spectral function. Like in
an earlier study19 we avoid this complication and extract the
renormalized dispersion from

�k = − Re Z�E��E2 − �2 = − �1 −
Re ��E�

E

�E2 − �2.

�12�

In conventional superconductors, the mode energy is much
larger than the gap. In this situation, Eq. �11� yields �sc

b

=�n
b�1+O(�� /	0�2 log � /	0)���n

b. Furthermore, the same
small parameter � /	0 also allows one to neglect the energy
dependence of �sc,E at �E���, such that �sc,E

b ��sc
b ��n

b. In
this situation, Re Z�E��1+�n

b, and hence the maximum of
the spectral function is located at

E = − ��2 + �k
2/�1 + �n

b�2. �13�

For HTSCs, the gap is comparable to the mode energy and
therefore Eq. �13� is no longer valid, and the full Eq. �12�
should be used to fit the dispersion. There are two key dif-
ferences with Eq. �13�. First, the zero-energy values �sc

b and
�n

b are different. For �=30 meV and 	0=40 meV, i.e.,
� /	0=3/4, we obtain from �11� �sc

b =0.74�n
b. Second, the

energy dependence of �sc
b becomes relevant. Indeed, by ana-

lyzing �10� one finds that ���E� is discontinuous at E=−��
+	0� and diverges as a square root at approaching E=−��

+	0�.19 When � and 	0 are comparable, this divergence
affects the self-energy already at E�−�. For the parameters
that we choose, the effect is not large: evaluating the real part
of the self-energy at E=−� from �10� we find �sc,�

b �1.1�sc
b .

However, the effect increases once 	0 gets smaller.
Measuring an EDC at kF with high resolution, one would

expect a peak at �, followed by a region of near-zero spectral
weight and a threshold of the incoherent spectral weight,
which appears at 	0+�. Such an energy distribution is well
known from tunnelling spectroscopy in conventional phonon
superconductors, except that there 	0 is often much larger
than �. At deviations from kF, the peak disperses to larger
frequencies while the onset of the incoherent spectral weight
remains at 	0+�. Once the peak disperses close to 	0+�,
only the threshold at this energy remains visible.

B. Collective mode model

For definiteness, we consider the model with the interac-
tion between fermions and their spin collective excitations
with momenta near Q= �
 ,
�. The momentum Q connects
Fermi surface points within antinodal regions, and hence an-
tinodal fermions are mostly involved in the scattering of
nearly antiferromagnetic spin fluctuations.

The physics of electron-boson interaction is somewhat
different in the one-mode and collective mode scenarios.
Like we said, in the one-mode formalism, one assumes that
bosons are propagating excitations with a frequency 	0, in-
dependent on whether fermions are in the normal or in the
superconducting state. In the collective mode model, bosons
are Landau-damped in the normal state, and their spectral
function is described by a continuum rather than by a mode.

FIG. 3. �Color online� Calculated spectral
function A�E ,k� for a coupling of the charge car-
rier to a mode with an energy 	0=40 meV �a�
and �b� normal state, �c� and �d� superconducting
state with a superconducting gap, �=30 meV. �a�
and �c� coupling constant �n=1, �b� and �d� cou-
pling constant �n=8.

REEVALUATION OF THE COUPLING TO A BOSONIC… PHYSICAL REVIEW B 74, 165102 �2006�

165102-5



In the superconducting state, the low-energy fermionic states
in the antinodal regions are gapped, and the continuum of
bosonic states with momenta near Q appears only above the
gap of 2�. In addition, the residual attraction between fermi-
ons in a dx2−y2 superconductor leads to the development of
the resonance peak at a frequency 	0 below 2�. In the OD
regime, 	0 is only slightly below 2�, and the resonance is
weak. In the UD regime, the resonance frequency decreases.
In bilayer systems, such as Bi2212, there are two resonances,
in the even and odd channel. The resonance frequency in the
even channel should vanish at the point where the magnetic
correlation length diverges. The resonance in the odd channel
remains finite at this point, and, very likely, transforms into
the gapped spin-wave mode in the antiferromagnetically or-
dered state.

The self-energy within the collective mode model has
been analyzed in Ref. 19 and in earlier publications. Below
we briefly review the existing results and also present several
formulas. For definiteness, we consider the case of a flat
static susceptibility near Q, i.e., assume that in the normal
state, the dynamical spin susceptibility �the bosonic propaga-
tor� can be expressed

��E,q� = ��E� =
�Q

1 − iE/�sf
, �14�

where �sf is the typical relaxational frequency of spin fluc-
tuations. An advantage of using the flat static spin suscepti-
bility is that all computations can be done analytically. Simi-
lar results are also obtained using Ornstein-Zernike form of
the static susceptibility32 and in FLEX computations for the
Hubbard model.33

In the normal state, the fermionic self-energy due to in-
teraction with the gapless continuum of spin excitations is
�Ref. 19�

���E� = − �n
c�sf arctan

E

�sf
,

���E� = −
1

2
�n

c�sf ln�1 +
E2

�sf
2 
 , �15�

where �n
c is the dimensionless coupling constant in the nor-

mal state for the collective mode model. In distinction to the
one-mode model, the self-energy in �15� has no threshold,
and its energy dependence interpolates between different
limits. In particular, ���E� is quadratic in E at the lowest
energies �a Fermi-liquid form�, and is almost flat at large E.
At intermediate energies, ���E� is roughly linear in E. The
real part of the self-energy is linear in E at the lowest fre-
quencies �−d���E� /dEE→0=�n

c�, and is flat at high frequen-
cies. If the relaxational spectrum of spin fluctuations is cut at
some upper cutoff, the real part of the self-energy will start
decreasing above the cutoff.

In the superconducting state, the self-energy changes for
two reasons. First, fermionic excitations acquire a gap. Sec-
ond, the spectrum of collective excitations by itself changes
as a feedback from the gap opening. The expression for the
self-energy incorporates both effects and is given by

��E� = −
1

2
�n

c � dE�

1 − ��E��/�sf

E + E�
��E + E��2 − �2

, �16�

where ��E� is the polarizability bubble in the superconduct-
ing state �a sum of the two bubbles made of normal and
anomalous fermionic Green’s functions�. This polarization
operator can be computed explicitly. We obtained

���E� = �
E2

2�
D� E2

4�2
 for �E� � 2� ,

4�2

�E�
D�4�2

E2 
 for �E� � 2� ,� �17�

���E� = �0 for �E� � 2� ,

�E�K2�1 −
4�2

E2 
 for �E� � 2� , � �18�

where D�x2�= �K1�x2�−K2�x2�� /x2, and K1�x2� and K2�x2� are
the elliptic integrals of first and second kind, respectively.
The expression for �� was earlier obtained in Ref. 34.

We see that �� is finite only at �E � �2�. At �E � �2�,
���E� is positive and interpolates between zero at E=0 and
infinity at �E � =2� �at the lowest energies, ��E�
��
 /8�E2 /��. At some frequency 	0, ���	0�=�sf, and the
dynamical spin susceptibility �s�E��1/ �1−��E� /�sf� has a
pole. As a result, the gapless continuum of the normal state
splits into two separate entities: the gapped continuum at
energies above 2�, where �� is nonzero, and the pole �the
resonance peak� at an energy 	0 below 2�. We see therefore
that in the superconducting state, one-mode and continuum
models are quite similar—both describe the interaction be-
tween fermions and a bosonic mode. The difference between
the two models is in the details, and also in the fact that in a
collective mode model, the bosonic spectrum still contains a
continuum above 2�.

The location of the pole can be straightforwardly obtained
from �18�. For �=30 meV, the mode is at 	0=40 meV, if
�sf �26 meV. This last value is quite consistent with earlier
estimates.32 Near the pole, the spin susceptibility is

��E� � Z0
	0

	0
2 − E2 − i� ,

�19�

where Z0�0.77. Apart from the residue Z0, Eq. �19� de-
scribes the same propagator as in the one-mode model �see
Eq. �7��.

Substituting the results for � into the expression for the
fermionic self-energy, Eq. �16�, we find ��E� as a sum of two
contributions. One comes from the pole and the other comes
from the gapped continuum. The generic behavior of the
self-energy is similar to what we have found for the one-
mode model. Namely, ���E� is linear in E at the lowest
energies, and diverges as a square-root at approaching −��
+	0� from below. Above this threshold, ���E� drops to a
finite value, and decreases at even larger �E�. The imaginary
part of the self-energy is zero below the threshold at −��
+	0�, diverges as a square-root at approaching the threshold
from larger �E�, and eventually recovers the normal state
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value at highest energies. At the smallest E, we found that
the dominant contribution to ���E�=−�sc

c E comes from the
mode, continuum only accounts for about 20% correction.
Evaluating the integrals, we found that �sc

c �0.7�n
c. This is

similar to what we have found in the one-mode model. At
E=−�, we found, using the full form of the polarization
bubble, �sc,�

c �0.75�n
c, which is again similar to what we

have found in the one-mode model.
For the imaginary part of the self-energy ���E� and

E�0 we found

���E� = �A��E� + �B��E� , �20�

where

�A��E� =

Z0

2
�n

c	0
E + 	0

�E + 	0 + ���E + 	0 − ��
,

�B��E� = − �n
c�

2�

�E�

dx Re
E + x

��E + x�2 − �2




x

�sf
K2�1 −

4�2

x2 

�1 −

4�2

x�sf
D�4�2

x2 
�2

+ � x

�sf
K2�1 −

4�2

x2 
�2
.

�21�

The first contribution is from the mode, the second is from
the gapped continuum. At −�	0+���E�−3� only the
mode contributes. The self-energy in this range is very simi-
lar to the one-mode result. Above 3�, the gapped continuum
also contributes to ���E�, initially as �E+3� / log2�E+3��
for E�−3�, and more strongly at larger �E�. Combining the
contributions from the mode and from the gapped con-
tinuum, we found numerically that the total �� is almost flat
above 3� at a value ���1.5�n

c	0. The near-constant value
of �� is quite close to the normal state value in the one-mode
model, �n�= �
 /2��n

b	0, but we stress that in the collective
mode model, this flat behavior is obtained at �E � �3–5�. In
the one-mode model, ���E� at these energies has a strong
frequency dependence ranging between 1.25�n� at E=−3� to
1.04�n� at E=−5�.

C. Comparison and application of the two models

Not surprisingly, one-mode and collective mode models
give very different results for the normal state. Within the
one-mode model, the normal state spectral function still
shows a peak-dip-hump structure, and the renormalized dis-
persion displays an S-shape structure near E=−	0. In the
collective mode model, the imaginary part of the self-energy
is roughly linear in E at frequencies comparable to 	0, and
���E� displays a crossover from a linear behavior at small
frequencies to a near constant behavior at higher frequencies.
From this perspective, a combination of the measurements
below and above Tc provides the best way to distinguish
between the two models, particularly as we found the rela-
tion between the coupling constants in the normal and super-
conducting states. Several ARPES measurements near �
 ,0�

indicate7–9 that the coupling to the mode disappears above Tc
thus strongly supporting the collective mode model.

The normal state measurements may be “contaminated”
by thermal effects, which mask the difference between the
two models. A way to avoid thermal effects is to focus on
low T measurements. However, the two models give very
similar results for the superconducting state. The only quali-
tative difference is the gapped continuum which is still
present in the collective mode model, but the continuum af-
fects the self-energy only in a moderate extent both at van-
ishing E and at �E � ��. The dominant contribution to the
self-energy at these energies comes from the resonance at
	0, which is present in both models. The continuum does
affect the self-energy at �E � �3–5�, but it is difficult to
measure the self-energy in the �
 ,0� region in this energy
range since the bare dispersion only extends to �2� for the
antibonding band and to �7� for the bonding band and
therefore all evaluations strongly depend on the exact values
of the bare particle dispersion.

On the other hand, the close similarity between the two
models in the superconducting state is good for addressing
the fundamental issue whether the data in the superconduct-
ing state are actually consistent with the collective mode
model, and with estimates of �sc

c or �n
c.

For the analysis of the experimental data we used the
one-mode model which is determined by �sc

b and which
simulates the coupling to the magnetic resonance mode.35

The bare one-mode model is extended by adding to the self-
energy a Fermi-liquid-like term which is shifted by 3� to
higher binding energy. This term approximates the gapped
continuum and is determined by the coupling constant �sc

f .
We then compare the two coupling constants �sc

b and �sc
f with

theoretical estimates for the coupling constant �sc
c in the col-

lective mode model.32,36 We obtain reasonable agreement be-
tween experiment and theory which indicates that the dress-
ing of the charge carriers in the �
 ,0� region is related to a
coupling of spin excitations. We also show that the magni-
tude ���−�� evaluated from the incoherent spectral weight is
consistent with the value of �n

b derived from the dispersion
near �. This means that the spectral function for the coherent
and the incoherent states can be described by one self-energy
function indicating a common linear dressing for the both
states.

III. EXPERIMENTAL SETUP

The ARPES experiments were carried out at the BESSY
synchrotron radiation facility using the U125/1-PGM beam
line and a SCIENTA SES100 analyzer. Spectra were taken
with various photon energies ranging from 17 to 65 eV. The
total energy resolution ranged from 8 meV full width half
maximum �FWHM� at photon energies h�
=17–25 eV to 22.5 meV at h�=65 eV. The momentum
resolution was set to 0.01 Å−1 parallel to the �
 ,0�− �
 ,
�
direction and 0.02 Å−1 parallel to the �− �
 ,0� direction.
Here we focus on spectra taken with photon energies of
38 eV and 50 �or 55 eV� to discriminate between bonding
and antibonding bands. The polarization of the radiation was
along the �− �
 ,0� direction. Measurements have been per-
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formed on �1
5� superstructure-free, optimally doped
BiPb2212 single crystal with a Tc=89 K. Since data for the
normal state have already been published8 we only show data
measured at T=30 K.

IV. EXPERIMENTAL RESULTS

In Fig. 4 we show typical ARPES data for wave vectors
close to the �
 ,
�− �
 ,−
� line, centered around the �
 ,0�
point. As has been shown previously8,12,13 and supported by
theoretical calculations,14,15 the data taken with h�=38 eV
due to matrix element effects represent mainly the bonding
band with some contributions from the antibonding band.
The data taken at h�=50 eV �see Fig. 4�b�� have almost pure
antibonding character. In order to obtain the spectral weight
of the pure bonding band �see Fig. 4�a��, a fraction of the
50 eV data has been subtracted from the 38 eV data. We
have also added in Fig. 4 the bare-particle dispersion which
was obtained from a self-consistent evaluation of the data at
the nodal point,40 an evaluation of the anisotropic plasmon
dispersion37,38 and from LDA bandstructure calculations.39

When comparing this bare-particle dispersion with the very
broad distribution of the bonding band at high energies, one
realizes a renormalization of the occupied bandwidth by a
factor of about 1.7 corresponding to �sc

f �0.7. This value is
not far from that derived for the bandwidth renormalization
above Tc, where no additional renormalization effects at
lower energies have been detected,8 and from that at the
nodal point.12,40 Probably a large fraction of this bandwidth
renormalization stems from a coupling of the charge carriers
to the above mentioned continuum of spin fluctuations.32

In Fig. 5 we show an ARPES intensity distribution near kF
of the antibonding band, close to the �1.4
 ,
�− �1.4
 ,−
�
line, of BiPb2212 measured at 30 K with a photon energy
h�=50 eV. At this place in the second Brillouin zone, the
bare particle dispersion of the antibonding band reaches well
below EB=70 meV and therefore contrary to Fig. 4�b� the
branching into two dispersive arms can be clearly realized.
These data together with the data of Fig. 4 when compared
with the model calculations shown in Fig. 3 clearly reveal
that the dominant effect of the renormalization, besides the

FIG. 4. �Color online� ARPES intensity plots
as a function of energy and wave vectors along
the �
 ,
�− �
 ,−
� direction of the optimally
doped BiPb2212 superconductor taken at T
=30 K. Zero corresponds to the �
 ,0� point. �a�
bonding band, �b� antibonding band. �c� and �d�:
calculated spectral function using a model self-
energy function for the region around the �
 ,0�
point. The red dashed line represents the bare-
particle bandstructure

FIG. 5. �Color online� ARPES intensity plot for k values near
the �1.4
 ,
�− �1.4
 ,−
� line of the optimally doped BiPb2212
superconductor taken at T=30 K. Zero corresponds to the �1.4
 ,0�
point. The data were taken with a photon energy h�=50 eV in order
to maximize the intensity of the antibonding band.
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bandwidth renormalization mentioned above, is due to a cou-
pling to a bosonic mode leading to a branching energy of
�70 meV.

In order to obtain more quantitative information on the
parameters which determine the self-energy function leading
to this renormalization we have performed various cuts of
the spectral weight shown in Fig. 4�a� which are presented in
Fig. 6. A constant-k scan for k=kF is depicted in Fig. 6�a�
showing the typical peak-dip-hump structure presented for
data taken at the �
 ,0� point in previous studies.13,20 From
the peak energy one can derive the superconducting gap en-
ergy �=30�4� meV. In the previous literature,25 from the dip
energy at �70 meV the branching energy EB was derived.
Another constant-k scan at 1 /3 kF �starting from the �
 ,0�
point� is shown in Fig. 6�b�. At this k value the intensity of
the coherent peak is strongly reduced and in the framework
of the one-mode model, mainly the threshold of the incoher-
ent states �the hump� is observed. From a fit to these data,
taking into account a small intensity of the coherent line and
a threshold of the incoherent states, the threshold energy
could be determined which in the one-mode model yields the
branching energy, EB=�+	0=70�5� meV. This together
with the gap energy �=30 meV yields a mode energy of
40 meV.

In Fig. 6�c� we show a constant-energy cut at E
=−100 meV of the data presented in Fig. 4. As discussed in
Sec. II, from the fit of those cuts with a Lorentzian one can
obtain from the width of the Lorentzian a value of the imagi-
nary part of the self-energy at the selected energy. For the
energy below the mode energy, this value ���−�� is a mea-
sure of the coupling to the mode. The actual situation is more
complicated since near the antinodal point, the bandstructure
is far from being linear at this energy range. We have fitted
the data shown in Fig. 6�c� by Eq. �4� with the self-energy
given by �8�, the bare dispersion extracted from earlier
work,8 �=30 meV, 	0=40 meV, and ���−�� used as a pa-
rameter. Moreover as described above a Fermi-liquid like
term was added to the self-energy to approximate the influ-
ence of the gapped continuum. The imaginary part of this
term is given by ��E−3��2 for �E��3� and zero for �E�
�3� where the magnitude of � is determined by �sc

f . The
value 3� can be easily understood by looking at Fig. 1 since
in the superconducting state the states available for a fermion
decay have minimum energy of 3�, and hence below 3�, the
correction to �� from the continuum is zero. Using this self-
energy function from an extended one-mode model the fit
yielded typical values for the parameter ���−�� as shown in
Fig. 7. For �E��EB=70 meV the values should be constant.
The finite slope detected in the analysis may be related to
errors in the bare particle dispersion, to the assumption of a
constant density of states during the definition of the self-
energy function, or to the assumed �sc

f . For �E��EB the re-
sults from the fits are determined by the flat dispersion of the
coherent states and therefore, due to the finite energy resolu-
tion, large values are obtained in this energy range �not
shown�. From evaluations of such data taken on several
samples we derive a value ���−��=130�30� meV. The large
error for this value stems from various measurements on
samples with slight mismatches in their orientation which
leads to different bare bandstructures as compared to the as-
sumed one.

Additional important information comes from the disper-
sion of the coherent spectral weight between the gap energy
−� and the branching energy −��+	0�. Originally,8,9 the
data were fitted using Eq. �13�. As pointed out in Sec. II this

FIG. 6. �a� Constant-k cut of the data shown in Fig 5 at kF; �b�
constant-k cut of the data at about one third of kF �starting at the
�
 ,0� point�; �c� constant-E cut at E=−100 meV. The solid lines
represent fits to the data �see text�.

FIG. 7. Typical values for ���−�� as derived from a fit of
constant-E cuts �see Fig. 6� of data shown in Figs. 4�a� and 4�b�
using Eq. �4�. The solid line is a guide to the eyes. �a� bonding
band, �b� antibonding band.
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is a good approximation for conventional superconductors,
where the mode energy is much higher than the gap, but not
for the high-Tc superconductors. Here the energy of the mode
is comparable to the gap energy and therefore the renormal-
ization function from which the �sc

b values are derived de-
pends on energy and also on � /	0. In this paper we have
fitted the data using the full Eqs. �4� and �12�. For the com-
plex self-energy function, we have used the same parameters
as for the fit of the constant-energy cuts shown in Fig. 6�c�.
We then obtain a complex renormalization function Z�E�
from which we derive � values not at energies between �
and �+	 as in the previous study8 but at zero energy, i.e.,
�sc

b =Z�0�−1. In the fit we have used the above given values
for � and 	0 and we have chosen �sc

b as a parameter. From
the fit, we extracted �sc

b =2.0�4�. This yields a total �sc
t

=2.7�5� from Z�0� in the superconducting state composed of
a bandwidth renormalization part �sc

f =0.7�3� and a bosonic
part �sc

b =2.0�4�. The errors are not due to statistics but result
from different measurements on different samples. Using the
relation �sc

b =0.74�n
b �see Sec. II� we obtain �n

b=2.7. To ob-
tain � f in the normal state we used the same Im � from
fermion-fermion interaction as in the superconducting state,
but set �=0. This yields �n

f �1.3 and a total coupling con-
stant for the normal state �n

t =4.0�5�. We collected the values
of the coupling constants and ���−�� in Table II. Note that
the normal state values are not derived from measurements
in the normal state. Rather they were derived from data taken
in the superconducting state and setting � to zero in the
renormalization function. This means that �n

b in Table II is a
fictitious normal state coupling constant because the bosonic
mode does not exist in the normal state. It is only presented
for the comparison of the coupling constant in HTSCs with
those of conventional metals and superconductors.

V. DISCUSSION

The coupling constant to a bosonic mode was derived
from the dispersion of the coherent states between −30 and
−70 meV while ���−�� was derived from a constant-E cut
of the incoherent states below −70 meV. If the data can be
described by one self-energy function which essentially re-
sults from a coupling to one bosonic mode, the �n

b value
calculated from ���−�� within this model should agree with
the �n

b value extracted from the dispersion of the coherent

states. Using the relation �n
b=−2���−�� / �
	0� �see Sec. II�

and the value ���−��=130�30� meV one obtains �n
b

=2.1�5� which is in reasonable agreement with �n
b�2.7�4�

derived from the dispersion near −�. This supports the idea
that the coherent and the incoherent spectral weight of the
spectral function in the superconducting state can be de-
scribed by a single self-energy function, which is essentially
determined by the coupling to one bosonic mode at 40 meV.
This view is also supported by the fact that taking this self-
energy function and calculating the spectral function using
Eq. �2� we obtain a reasonable agreement with the experi-
mental ARPES data, both for the bonding and the antibond-
ing band �see Fig. 4�. The differences in the intensities of the
bonding band near �
 ,0� may be explained by matrix ele-
ment effects. We emphasize that in the superconducting state
both the real and the imaginary part of the self-energy func-
tion indicate a very strong coupling to a bosonic mode.

Recently, there has been some evidence from ARPES
measurements21,22 that in the undoped cuprates there is a
very large electron-phonon coupling leading to a strong po-
laronic renormalization connected with a negligible spectral
weight for the coherent states and a high spectral weight for
a multiphononic line at higher energies. Furthermore there
are theories of the pairing in high-Tc superconductors which
are based on the formation of polarons and bipolarons.43 The
big question is whether this strong electron-phonon coupling
survives for the high-Tc superconductors or whether it will
be screened by the charge carriers and at what dopant con-
centration the adiabatic approximation is valid, where the
Fermi energy is much larger than the mode energy. The data
shown in Fig. 4, which were actually taken down to an en-
ergy of −400 meV, show no indication of a polaronic line at
lower energy. Moreover, the data in Fig. 4 and its evaluation
in terms of a coupling to a single bosonic mode gives no
room for multibosonic polaron excitations for optimally
doped samples.

The analysis given above clearly identifies below Tc a
very strong coupling to a bosonic mode. In Table II we have
listed other coupling constants to bosonic �phonon� modes
detected by ARPES. Compared to the surface state of the
Mo�110� surface coupled to a phonon mode, �n

b in
optimally doped BiPb2212 is a factor of six larger. Almost
the same factor eight is obtained for ���−��. Compared to
the strong coupling superconductor Pb the coupling constant
�n

b for OP BiPb2212 is a factor of 1.6 larger. This indicates

TABLE II. Parameters determining the self-energy function of BiPb2212 near �
 ,0� below Tc. � f, �b, �t,
coupling constants from bandwidth renormalization, from coupling to a bosonic mode, and total coupling
constant, respectively. ���−�� is determining the imaginary part of the self-energy function at high binding
energies. sc: parameters derived in the superconducting state, n: parameters calculated for the normal state by
setting � to zero. The data are compared with parameter derived for a Mo�110� surface state �Ref. 41� and for
Pb �Ref. 42�.

System � f �b �t ���−�� �meV�

BiPb2212 sc 0.7�3� 2.0�4� 2.7�5� 130�30�
BiPb2212 n 1.3�3� 2.7�4� — 130�30�
Mo�110� — 0.4 — 15

Pb n — 1.6 — —
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that we really have a very strong coupling to a bosonic
mode. This coupling is even enhanced at lower dopant
concentration.8

In the following we compare the experimental coupling
constants �sc

f and �sc
b with those derived in the collective

mode model for the gapped continuum and for the single
mode, respectively. In the collective mode model, in the su-
perconducting state about 20% of the total coupling constant
comes from the gapped continuum �see Sec. II B�. The cor-
responding experimental value �sc

f /�sc
t =0.26 �see Table II� is

in remarkable agreement with the theoretical value. This also
holds for the absolute values of the coupling constant. In
previous work32,36 the normal state coupling constant for the
collective mode model was estimated to be �n

c =2–3 from fits
of theoretical values for �sf, 	0, and Tc. This transforms into
�sc

c =1.5–2.25 for the superconducting state which is not far
from the experimental value �sc

t =2.7�5�. Thus the agreement
of the relative and absolute experimental values of the cou-
pling constants with those derived from the collective mode
model is a strong indication that the dressing of the charge
carriers in the �
 ,0� region �i.e., the region where the super-
conducting order parameter has its maximum� is predomi-
nantly determined by a coupling to spin excitations, in par-
ticular to the magnetic resonance mode.

This interpretation is supported by several other ARPES
results. The strong temperature dependence of the coupling
to the mode8,9 is difficult to understand in terms of electron
phonon coupling. Our model calculations also show that the
data above Tc cannot be described by a thermally broadened
phonon line. Also the strong dopant dependence8,9 is difficult
to be explained in terms of electron-phonon coupling. Fur-
thermore there is a large coupling at �
 ,0� and a much
smaller coupling to the mode at the nodal point, indicating a
coupling of states which are separated by a wave vector
�
 ,
� typical of an antiferromagnetic susceptibility. More-
over the energy of the bosonic mode detected in ARPES is
close to the energy of the magnetic resonance mode detected

in inelastic neutron scattering. Finally we mention recent
ARPES measurements on the parity of the coupling between
bonding and antibonding band44 and the “magnetic isotope
effect,” i.e., the strong changes of the dressing of the charge
carriers upon substitution of Cu by Zn,45,46 which both sup-
port the magnetic scenario.

VI. CONCLUSION

In this contribution we have analyzed the spectral func-
tion of optimally doped BiPb2212 near the antinodal points
measured by ARPES. Compared to previous studies, we
have not analyzed just one constant-k cut or just the disper-
sion of the coherent state but the entire spectral function
including the coherent and the incoherent spectral weight. In
this context we have used expressions which not only can be
used in the case of normal superconductors but also for
HTSCs where the mode energy is not much larger than the
superconducting gap. It was possible to describe the spectral
function using a single parametrized self-energy function. By
comparison of the experimental data with theoretical models,
we conclude that the main contribution to the self-energy is a
very strong coupling to the magnetic resonance mode. At
higher energies �and above Tc� it was necessary to take into
account a bandwidth renormalization by a factor of two due
to interaction with a gapped �ungapped� continuum of spin
excitations. There is no evidence for multibosonic polaron
excitations for this dopant concentration.
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