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Graphene in the quantum Hall regime exhibits a multicomponent structure due to the electronic spin and
chirality degrees of freedom. While the applied field breaks the spin symmetry explicitly, we show that the fate
of the chirality SU�2� symmetry is more involved: The leading symmetry-breaking terms differ in origin when
the Hamiltonian is projected onto the central �n=0� rather than any other Landau levels. Our description at the
lattice level leads to a Harper equation; in its continuum limit, the ratio of lattice constant a and magnetic
length lB assumes the role of a small control parameter in different guises. The leading symmetry-breaking
terms are lattice effects, algebraically small in a / lB. We analyze the Haldane pseudopotentials for graphene,
and evaluate the easy-plane anisotropy of the graphene ferromagnet.
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INTRODUCTION

The recent discovery1,2 of an integer quantum Hall �QH�
effect in a two-dimensional �2D� sheet of graphite, known as
graphene, has triggered an avalanche of activity, including on
the theory side studies of the transport properties of relativ-
istic Dirac particles,3–5 the analysis of edge states6–8 and shot
noise,9 as well as Berry phases in bilayers.10

In a simple model, electrons in graphene can be treated as
hopping on a honeycomb lattice.11,12 Perhaps the most salient
feature of this problem is the existence in the band structure
of a pair of Dirac points with a linear �“relativistic”� energy-
momentum relationship. These points are located at the two
inequivalent corners of the Brillouin zone �labeled by K and
K�=−K�, endowing graphene with a multicomponent struc-
ture analogous to the well-studied examples of bilayer sys-
tems, the multivalley structure of silicon, and of course the
simple spin degree of freedom. These degrees of freedom
can be thought of as SU�2� �or higher symmetry� pseu-
dospins. The resulting Hamiltonian typically contains sym-
metric terms as well as ones which lower the symmetry, such
as Zeeman �spin� or capacitance �bilayer� �Ref. 13� energies.

Here we argue that graphene may be viewed as a further
type of multicomponent system. Its internal degree of free-
dom can be thought of as a chirality:14 the wave vectors K
and K� encode the �anti�clockwise variation of the phase of
the electronic wave function on the three sites neighboring
any given site on one sublattice.

Moreover, we show that for n�0 the chiral SU�2� sym-
metry is reduced to U�1� in graphene, due to backscattering
terms with momentum transfer 2K�K, which provide a cou-
pling of the chirality to the orbital part of the wave function.
On the contrary, in n=0, the broken symmetry may be due to
electrostatic �“Hartree”� effects. Although different in origin,
both effects are of order O�a / lB�. The distance between
neighboring carbon atoms a�0.14 nm provides an addi-
tional length scale besides the magnetic length lB=�� /eB
=26 nm/�B�T�, so that a� lB. It is somewhat analogous to
the layer separation d for bilayers. In graphene for n�0,
however, only the exchange part of the symmetry-breaking

interaction is nonzero, whereas in bilayers the direct term
encodes the capacitance energy, which can be important al-
ready for typical values of d / lB�1.

In the following, we flesh out this picture with a micro-
scopic calculation starting at the lattice level, in which we
derive and discuss the effective model for interacting elec-
trons restricted to a single relativistic Landau level �LL� and
compare it to the nonrelativistic case of electrons in conven-
tional semiconductor heterostructures; the difference be-
tween the two is most significant for n=1. The backscatter-
ing terms are discussed in the case of the QH ferromagnet at
the filling factors �̄=1 of the partially filled LL �for an arbi-
trary LL, we have �=4n+ �̄�.

MODEL

The electron field in graphene may be written as a two-
spinor whose components, ���r�=exp�i�K ·r����r�, are a
product of a slowly varying part ���r� and a rapidly oscillat-
ing plane wave with �K=��4� /3�3a�ex for the Brillouin
zone corners K and K� �chiralities �= ±1, respectively�. The
components of each two-spinor field ���r� correspond to the
two triangular sublattices �labeled by 	= ±1� of the bipartite
honeycomb lattice. In a magnetic field with the Landau
gauge A= �0,Bx�, qy is a good quantum number and we may
expand �	�r�=exp�iqyy�g	�y�. The electron dynamics �in a
tight-binding model with nearest-neighbor hopping t=1� is
governed by the Harper equation

Eg	
��x� = − 2 cos��

2�

3
+

�3

2 	qy +
�x + 	/4�

lB
2 
�


g−	
� �x +

	

2
 − g−	

� �x − 	� , �1�

where the distances are measured in units of a. In order to
derive a continuum limit in the presence of an unbounded
vector potential A, one expands the cosine in Eq. �1� in the
vicinity of x� defined as �qy +	x��qy� / lB

2��3/2=2��, where
� is an integer which effectively acts as an additional quan-
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tum number besides the quasimomentum qy in the first
Brillouin zone.

The continuum limit of Eq. �1� thus reads

Eg	
��x� =

3

2
�	lB�x + �

x

lB
g−	

� �x� ,

where x is now a small deviation from x�. This result coin-
cides with the ones obtained by introducing the minimal cou-
pling p→p+eA after deriving the B=0 continuum
theory.14,15 Note that the typical extension of the wave func-
tions along the x axis is RL��nlB in the nth LL and the
periodicity of x� is �lB

2 /a. The overlap between wave func-
tions with differing � is therefore exponentially suppressed
provided �n� lB /a. Finally,

�+�r� =
1
�2

�
n,m

� i�1 + n,0�r��n�,m�
sgn�n��r��n�− 1,m�

cn,m;+, �2�

where the index+represents the K point. In the expression
for �− �at K��, the components of the spinor are reversed.
Here sgn�n�= �1,0 ,−1� for n�� , = , � �0, respectively. The
quantum number n is the index of the relativistic LL, and m
is associated with the guiding center operator, which com-
mutes with the one-particle Hamiltonian. The �n ,m� are the
usual �nonrelativistic� one-particle states for a charged par-
ticle in a perpendicular magnetic field. The cn,m;� are fermi-
onic destruction operators.

Projection onto a LL �n�0� of the sublattice densities
�	�r�=��,����,	

† �r����,	�r� gives

�n�q� = �1
n�q� + �2

n�q� = �
�,��

Fn
����q��̄����q� , �3�

where the projected density operators read �̄����q�
=�m,m��m �exp�−i�q+ ��−���K� ·R� �m��cn,m,�

† cn,m�,��. The
operator R represents the usual guiding center position, and
� is the cyclotron coordinate, r=R+�. The chirality-

dependent form factors Fn
����q� read, in terms of associated

Laguerre polynomials Ln
	�x�,

Fn
++�q� =

1

2
	L�n�� �q�2

2
 + L�n�−1� �q�2

2

e−�q�2/4,

Fn
+−�q� = �− �q + q* − K − K*�

2�2�n�
L�n�−1

1 � �q − K�2

2
e−�q − K�2/4,

where q=qx+ iqy and K=Kx+ iKy are written in complex no-
tation, and the wave vectors are given in units of 1 / lB.
Fn

++�q�=Fn
−−�q�, and Fn

−+�q� is obtained by replacing
q→−q in Fn

+−�q�.
The Hamiltonian of interacting electrons in graphene, pro-

jected onto a single relativistic LL thus reads

H =
1

2 �
�1,. . .,�4

�
q

vn
�1,. . .,�4�q��̄�1�3�− q��̄�2�4�q� , �4�

where the sum over the wave vectors is restricted to the first
Brillouin zone. Indeed, the potential consists of a sum over
reciprocal lattice vectors, as the local densities �Eq. �3��,

valid for lB�a, are restricted to the hexagonal lattice. The
chirality-dependent effective interaction

vn
�1,. . .,�4�q� =

2�e2

��q�
Fn

�1�3�− q�Fn
�2�4�q� �5�

is not SU�2� symmetric; however, the symmetry-breaking
terms are suppressed parametrically in a / lB. To see this, con-
sider the different form-factor combinations in the effective
interaction potential �4�.

Terms of the form Fn
�,���q�Fn

��,−���±q� and “umklapp
scattering” terms �Fn

�,−��−q�Fn
�,−��q�� are exponentially

small in a / lB.
“Backscattering” �Fn

�,−��−q�Fn
−�,��q��: One obtains

vn
+−−+�q��exp�−�q�2 /2� / �q�±K��exp�−�q�2 /2� / �K�, which

is only algebraically small, vn
+−−+ / �e2 /�lB��a / lB, and thus

constitutes the leading perturbation to the remaining �SU�2�
invariant� terms.

These leading-order terms in the effective interaction
yield the SU�2� �or SU�4�, if the physical spin is also taken
into account� symmetric Hamiltonian �for n�0�

Heff
n =

1

2 �
�,��

�
q

2�e2

��q�
�Fn�q��2�̄��− q��̄���q� , �6�

with the graphene form factor

Fn�q� =
1

2
	L�n��q2

2
 + L�n�−1�q2

2

e−q2/4 �7�

and �̄��q�� �̄���q�. The graphene form factor �7� has already
been written down by Nomura and MacDonald in their study
of the QH ferromagnetism at �̄=1.16 The leading-order
symmetry-breaking correction due to backscattering �BS� is
�with vn

�,−��q��vn
�,−�,−�,��q��

HBS =
1

2�
�

�
q

vn
�,−��q��̄�,−��− q��̄−�,��q� . �8�

The central level �n=0� behaves remarkably differently.
In this case, the electron chirality � is equivalent to the sub-
lattice index 	 �Eq. �2��, and therefore

�	
n=0�q� = e−q2/4 �

m,m�

�m�e−iq·R�m��cn,m;	
† cn,m�;	,

with the same form factor Fn=0�q�=e−q2/4 as for nonrelativ-
istic electrons in the lowest LL. From an electrostatic point
of view, it may be energetically favorable to distribute the
electronic density with equal weight on both sublattices. For
n�0, this follows directly from Eq. �2�, but in n=0, an
equal-weight superposition of �= ±1 is required to distribute
the charges homogeneously on both sublattices. Such an
electrostatic effect, compared to the SU�2� invariant terms, is
of the same order O�a / lB� as the backscattering term in n
�0.

EFFECTIVE INTERACTION

By absorbing the form factor into the interaction, we de-
fine
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vn�q� =
2�e2

�q
�Fn�q��2. �9�

Figure 1 shows the effective interaction potentials �9� trans-
formed to real space for n=0, 1, and 5. At large distances,
the usual 1 /r Coulomb potential is obtained. Interestingly,
the shape of the interaction potential for the relativistic
n=1 LL in graphene is more similar to the nonrelativistic
n=0 level than to the corresponding one n=1, as may
also be seen in a pseudopotential expansion:17 V�

n

= �2��−1�qvn�q�L��q2�exp�−q2 /2�. Indeed the ratios
V2m+1 /V2m+3 for the odd integer pseudopotentials, which are
relevant for the case of polarized electrons, decrease mono-
tonically both in n=1 and n=0 for relativistic LLs. These
ratios, and the differences V2m−1−V2m+1, are bigger in the
former case, so that—among the polarized states—fractional
QH states will therefore be more stable in n=1 than in
n=0 �at constant magnetic field�. By contrast, candidate
chirality unpolarized states �such as at �=2/3� fare better for
two reasons: First, the fact that the relativistic effective po-
tential is more short-ranged in n=0 than in n=1 leads to V0
�and V0 /V1� being smaller for n=1. Secondly, the pair of
internal SU�2� degrees of freedom allow for a smaller unpo-
larized “composite Fermi sphere.”

Numerical results19 show a first-order phase transition at
V1 /V3�1.3 between the Pfaffian state18 at �̄=1/2 and a
charge-density wave,20 and a crossover to a composite-
fermion Fermi sea when V1 /V3 is further increased. The
Pfaffian state is absent in n=0, where V1

0 /V3
0=1.6, probably

due to an inaccessibly small gap.19 In the relativistic n=1
LL, one finds an even larger ratio V1

1 /V3
1=1.67 so that a

Pfaffian state is also unlikely to be observed there. Even
though the ratio V1

2 /V3
2=1.16 in the relativistic n=2 LL is

larger than in the corresponding nonrelativistic level
�V1

2 /V3
2=1.14�, it is well below the critical ratio, and one

would thus expect a stripe phase at �̄=1/2.

It is straightforward to check that the difference to the
nonrelativistic case vanishes in the large-n limit �see Fig. 1
for n=5�, i.e., far from the Dirac points. Replacing
Ln�q2 /2�exp�−q2 /4��J0�q�2n+1�, the envelope of
Fn

2�q���J0�q�2n−1�+J0�q�2n+1��2 /4�J0
2�q�2n� agrees to

leading order in 1/n with the nonrelativistic case.

QH FERROMAGNET AT �̄=1

In recent transport measurements on a single graphene
sheet additional integer QH plateaus beyond those corre-
sponding to �=4n have been observed.21 These appear as the
first signature of electron-electron interactions, and the anal-
ogy with the nonrelativistic case in semiconductor hetero-
structures hints at a chirality QH ferromagnet. The stability
of such a state, in the presence of impurities, has been inves-
tigated by Nomura and MacDonald.16 We now analyze the
impact of the backscattering term �8� on such a ferromagnet
for n�0, within the Hartree-Fock �HF� approximation.
Following Ref. 13, we consider the HF trial state
���=�m�umcm,+

† +vmcm,−
† ��0�, where we may parametrize um

=cos��m /2�e−i�m/2 and vm=sin��m /2�ei�m/2, in terms of the
real angle fields �m and �m, which can be thought of as polar
coordinates of a vector field n�m�. In the case of a SU�2�-
symmetric repulsive interaction, it has been shown that the
trial state ��� minimizes the energy for constant �m and �m,
thus yielding a simple ferromagnet.13 The backscattering
term, averaged over this state, is, apart from an unimportant
constant C,

�HBS� =
1

4 �
m,m�

�Vm,m�,m,m�
BS �nx�m�nx�m�� + x → y�

+ Vm,m�,m�,m
BS nz�m�nz�m��� + C , �10�

Vm1,. . .,m4

BS �
�e2

��K��q

�q�2

2�n�	L�n�−1
1 � �q�2

2
e−�q�2/4
2


 �m1�eiq·R�m3��m2�e−iq·R�m4� . �11�

The factor of �q�2 in this sum is due to the fact that the wave
functions on the same sublattice, but for different chiralities,
are orthogonal. A gradient expansion13 yields to lowest order
an easy-plane anisotropy �z:

�HBS��0� = �
m

�z�nz�m��2, �z =
1

16�2

e2

��K�
. �12�

This is reminiscent of the bilayer case, where a finite layer
separation also induces easy-plane ferromagnetism. The key
differences are the following. �i� The parameter a / lB�10−2,
which mimicks the “layer separation,” is tiny for currently
experimentally accessible magnetic fields. This implies a Cu-
rie temperature ��e2 /kB�lB, whereas the crossover to easy-
plane behavior does not become visible until a logarithmi-
cally �in a / lB� small energy. As chirality ferromagnetism
involves neither electric nor magnetic dipole ordering, inter-
plane coupling in a multilayer system will be suppressed.
This opens the perspective of probing the 2D behavior for

FIG. 1. Effective interaction potentials in real space: Compari-
son between the relativistic �black lines� and nonrelativistic �gray
lines� LLs n=0, 1, and 5. The dashed line represents the interaction
potential in n=0, which is the same for relativistic and nonrelativ-
istic electrons.
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instance in specific-heat measurements. �ii� Contrary to the
bilayer case and the relativistic n=0 LL, the gap is not due to
a charging energy when only one layer is filled—there is no
contribution to Eq. �12� from the direct interaction because
vn

±�q=0�=0 �Eq. �5��. �iii� �z is a lattice effect—it vanishes
linearly in a as the lattice constant tends to zero at fixed lB. It
does not depend on n, whereas the SU�2� symmetric terms
scale as e2 /��n in the large-n limit. Note, however, that the
continuum limit based on the Dirac equation ceases to be
valid when RL��nlB� lB

2 /a.

COMPARISON WITH EXPERIMENT

Zhang et al. have observed additional Hall plateaus cor-
responding to �=0, ±1 �n=0�, and �= ±4 �n=1�.21 The
former pair corresponds to a complete resolution of the four-
fold degeneracy of LLs corresponding to different internal
�spin and chirality� degrees of freedom in n=0. An explana-
tion of this has to consider the size of the disorder broaden-
ing of the LLs, �, compared to their splitting due to the cost
of exciting quasiparticles away from integer filling.16 An ex-
perimental estimate yields ��1.7 meV.21

Using our above results, we find that these quasiparticles
are Skyrmions for n=0,1, whose energy cost ESK=4��s is
obtained within the nonlinear sigma model,13 with the help
of the stiffness

�s =
1

32�2�
0

�

dq q3vn�q� .

One obtains for the experimentally relevant parameters �at
17 T with dielectric constant22 ��5� ESK=4��s

=7/64�� /2e2 /�lB�1.8 meV �n=1� and, for n=0, ESK

=1/4�� /2e2 /�lB�4 meV, both for SU�2� or SU�4�.23 In ad-
dition, there is a contribution from anisotropies, mainly the
Zeeman effect �about EZ=0.1B�T� meV�; the chirality-

symmetry breaking due to lattice effects, being of order
�0.05 meV, plays only a minor role here.

The activation gap at �= ±4 scales linearly with B, indi-
cating a relevant Zeeman effect, and the plateau is visible
from �17 T onward.21 Given the Skyrmions in n=0 are
more costly than the sum of ESK and EZ in n=1, this explains
why the chirality Landau levels are resolved at 17 T in
n=0, even without the help of an anisotropy field, whereas
they remain absent at �= ±3, ±5 in fields up to 45 T. In fact,
for n=1, ESK does not reach 4 meV for fields below 80 T;
also the plateau at �=0 disappears below 11 T, where ESK
�3 meV.

To summarize, we have analyzed a microscopic model for
interaction effects in graphene in the QH regime. We find
corrections to the SU�2� chirality-symmetric model to be nu-
merically much smaller than the Zeeman energy breaking the
SU�2� spin-symmetry. In addition, the effective interaction
potential differs from the nonrelativistic case most strongly
for small but nonzero n, in particular n=1, which will there-
fore be a good place to look for interaction physics different
from the GaAs heterostructure. Finally, recent experiments
suggest the presence of chirality ferromagnetism and Skyr-
mions in graphene.

Note added. Recently, QH articles of related work have
appeared by Alicea and Fisher24 on ferromagnetism at the
integer effect and by Apalkov and Chakraborty25 on exact
diagonalizations in the fractional QH regime using the
above-mentioned pseudopotentials.
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