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We present a way to include nonlocal potentials in the standard diffusion Monte Carlo method without using
the locality approximation. We define a stochastic projection based on a fixed node effective Hamiltonian,
whose lowest energy is an upper bound of the true ground-state energy, even in the presence of nonlocal
operators in the Hamiltonian. The variational property of the resulting algorithm provides a stable diffusion
process, even in the case of divergent nonlocal potentials, like the hard-core pseudopotentials. It turns out that
the modification required to improve the standard diffusion Monte Carlo algorithm is simple.
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The diffusion Monte Carlo �DMC� algorithm is one of the
most successful methods to compute the ground-state prop-
erties of quantum systems. Although the fixed node �FN�
approximation is needed to cure the infamous sign problem
for fermions, the accuracy of the DMC framework has
yielded many benchmark results.1 However, when the DMC
method is applied to ab initio realistic Hamiltonians, its com-
putational cost scales proportionally to Z6.5, where Z is the
atomic number.2 Therefore, the use of pseudopotentials is
necessary to make those calculations feasible.

Since the pseudopotentials are usually nonlocal, the “lo-
cality approximation” is made besides the FN approxima-
tion, by replacing the true Hamiltonian H with an effective
one Heff, which reads3

Heff = K + Vloc +
� dx��x��Vnonloc�x��T�x��

�T�x�
, �1�

where K is the kinetic operator, Vloc is the local potential, and
the last term in Eq. �1� is the nonlocal potential localized by
means of the trial wave function �T. The projection is then
realized by iteratively applying the operator G=exp�−��Heff

−Eeff�� to �T in order to filter out its high-energy compo-
nents. The localized potential enters in the branching part
�birth and death processes� of the algorithm, while the usual
FN constraint is employed to limit the diffusion process
within the nodal pockets of �T, and avoid the fermionic sign
problem. Thus Eeff is the FN ground-state energy of Heff,
computed during the sampling of the mixed distribution
�eff�T:

Eeff =
��eff�Heff��T�

��eff��T�
=

��eff�H��T�
��eff��T�

= EMA. �2�

EMA is the mixed average of H, and the above identity holds
because Heff�T /�T=H�T /�T. Since �eff is the FN ground-
state of Heff, which differs from H, EMA is no longer equal to
the variational FN energy of H, defined as

EFN = ��eff�H��eff�/��eff��eff� . �3�

Therefore, in contrast with the case of local Hamiltonians,
EMA calculated with the locality approximation does not in

general give an upper bound to the ground-state energy of H
�variational principle�.

In previous work,4 we introduced the lattice regularized
diffusion Monte Carlo �LRDMC� algorithm, which provides
an upper bound for the true ground-state energy and allows
estimation of EFN, even in the case of nonlocal potentials. In
this paper we propose an extension of the standard DMC
framework that gives the same results as the LRDMC
method, after a proper modification of the DMC propagator.

We start by considering the importance sampling Green’s
function

G�x� ← x,�� =
�T�x��
�T�x�

�x��e−��H−ET��x� , �4�

where ET is an energy offset, � the time step, and x a vector
of particle coordinates. In the diffusion Monte Carlo method,
G�x�←x ,�� is iteratively applied to �T

2, in order to sample
stochastically the mixed distribution ��x , t�=�T�x���x , t�,
��x , t� converging to the lowest possible state in energy. To
rewrite G�x�←x ,�� �Eq. �4�� in a practical way, it is neces-
sary to resort to the Trotter breakup, which is exact in the
limit of �→0. Here we split the Hamiltonian into local and
nonlocal operators, and we end up with the following expres-
sion for the Green’s function:

G�x� ← x,�� 	 � dx�Tx�,x����GDMC�x� ← x,�� , �5�

where GDMC�x�←x ,�� is the usual DMC propagator,1

1

�2���3N/2 exp
−
�x� − x − �v�x��2

2�
�e−��EL

loc�x��−ET�, �6�

and Tx�,x��� is the matrix containing the nonlocal potential,

�T�x��
�T�x�

�x��e−�Vnonloc�x� 	 �x�,x − �Vx�,x. �7�

In the above equations N is the total number of particles,
v�x�=�ln��T�x�� the drift velocity, EL

loc�x�= �K
+Vloc��T�x� /�T�x� the contribution to the local energy com-

ing from the local operators, and Vx�,x=
�T�x��

�T�x� �x��Vnonloc�x�.
The final form of GDMC has been obtained by further split-
ting the Hamiltonian into kinetic and potential parts, while
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the exponential of the nonlocal potential in T has been lin-
earized up to order �.

If the case of pseudopotentials, the number of nonzero
matrix elements Vx�,x will be finite, once a quadrature rule
with a discrete mesh of points is applied to evaluate the
projection over the angular components of the
pseudopotential.3,5 Therefore, the process in G�x�←x ,��
driven by Tx�,x��� can be calculated using a heat bath algo-
rithm, since Tx�,x��� /�x�Tx�,x��� can be seen as a transition
probability, and it can be computed a priori for all possible
new coordinates x�. We notice that the matrix elements
Tx�,x��� are easily evaluated in a standard DMC algorithm,
since Vx�,x are already computed to calculate the localized
pseudopotential in Eq. �1�:

� dx��x��Vnonloc�x��T�x��

�T�x�
= �

x�

Vx�,x. �8�

At variance with the locality approximation, Vx�,x contribute
now to move the particles, according to the transition matrix
T �T moves�.

An important limitation of this idea is given by the sign
problem. Indeed both �T�x�� /�T�x� and �x��Vnonloc�x� can
change sign, which should be included in the weights, but
this yields averages with exponentially increasing noise. A
solution is to apply the FN approximation not only to GDMC
but also to T, which becomes

Tx�,x
FN ��� = �x,x� − �Vx�,x

− , �9�

where we defined Vx�,x
± = �1/2��Vx�,x± �Vx�,x��. In practice, we

keep only those matrix elements which give a positive
Tx�,x���. Moreover, we add to the diagonal potential the so-
called sign flip term, i.e., the sum over the discarded matrix
elements Vx�,x

+ . Therefore, the local potential becomes

Veff�x� = Vloc�x� + �
x�

Vx�,x
+ . �10�

This is equivalent to working with a new effective FN
Hamiltonian

Hx,x
eff = K + Veff�x� ,

Hx�,x
eff = �x��Vnonloc�x� if Vx�,x � 0. �11�

In contrast to the effective Hamiltonian of the locality
approximation written in Eq. �1�, the ground-state energy Eeff
�=EMA� of the above Heff is an upper bound for the ground-
state energy of the true H. As shown in Ref. 6 for the lattice
Green’s function Monte Carlo method, this variational prop-
erty is due to the sign flip term �positive contribution� added
to the local potential, and the T moves driven by the off
diagonal matrix elements Vx�,x

− . Instead, in the locality ap-
proximation also Vx�,x

− is summed in the diagonal part �Eq.
�8��, and this leads to an attractive potential, which cannot
provide a variational property for EMA. Moreover, we found
that the negative divergences of the fully localized potential
on the nodes of �T are responsible in some case �e.g., see

Fig. 1� for numerical instabilities in the locality approxima-
tion, which disappear once Heff in Eq. �11� is used together
with the TFN moves. Indeed, whenever Vx�,x

− is large, it
pushes the walker away from the attractive regions of the
localized potential, and protects the sampling from diver-
gences in the weights.

Once a TFN move is generated according to the transition
probability Tx�,x

FN ��� /�x�Tx�,x
FN ���, the walker should acquire the

weight wT�x ,��=�x�Tx�,x
FN ��� due to the normalization of the

TFN matrix. This weight can be recast as an exponential form
valid up to order �,

wT = 1 − ��
x�

Vx�,x
− 	 exp
− ��

x�

Vx�,x
− � . �12�

Thus the overall weight w�x ,�� of G�x�←x ,�� will be

w�x,�� = wDMCwT = exp�− ��EL�x� − ET�� , �13�

where wDMC is the weight of GDMC for the effective Hamil-
tonian �Vloc replaced by Veff�, and EL�x�=Heff�T /�T

=H�T /�T is the local energy. Notice that a nonsymmetric
branching factor has been included in GDMC �Eq. �6��. When
we use the exponential form in Eq. �12�, and consequently
the weight in Eq. �13�, the time step error is usually smaller
than that obtained with the linear form. This can be under-
stood in the limit of perfect importance sampling. Indeed, if
�T is close to the ground state of H, the weight in Eq. �13� is
almost constant, since the variance of EL�x� is small, and the
time step bias is reduced.

The proposed DMC scheme for fixed node Hamiltonians
with nonlocal potentials is the following: �i� perform a
diffusion-drift move according to Gdiff�x�←x ,��=exp�−�x�
−x−�v�x��2 /2�� / �2���3N/2 as is done in the standard DMC
algorithm, and accept or reject this move according to the
probability

min
1,
Gdiff�x ← x�,���T

2�x��
Gdiff�x� ← x,���T

2�x�
�; �14�

�ii� weight the walker with the factor exp�−��EL�x��−ET��;
�iii� displace the walker a second time, with a T move se-

FIG. 1. Energies for the carbon pseudoatom with �=0.08H−1 at
the given DMC generation. �T is an antisymmetrized geminal
power wave function with a three-body Jastrow factor �Refs. 12 and
15�. We report results for the locality approximation �H	,
 with 	
=1 and 
=0� and the algorithm with T moves �	=0, 
=0�.
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lected according to the transition probability p�x�←x� ,��
=Tx�,x�

FN ��� /�yTy,x�
FN ���, computed a priori for all possible new

x�. The branching process will be the same as in the usual
DMC algorithm. In practice, only the T move is the new
step, which is performed after weighting the walker.7 Al-
though we perform an acceptance or rejection step �Eq.
�14��, which has been shown to reduce the time step error8 in
GDMC, the algorithm does not satisfy exactly the detailed
balance except in the limit of �→0, due to the break up of G
into GDMC and TFN �Eq. �5��, and the use of a nonsymmetric
branching factor in Eq. �6�.

In order to estimate the variational FN energy EFN �Eq.
�3��, and study the quality of the locality approximation, we
introduce a more general effective Hamiltonian4 H	,
,

Hx,x
	,
 = K + Vloc�x� + �1 + 
��

x�

Vx�,x
+ + 	�1 + 
��

x�

Vx�,x
− ,

Hx�,x
	,
 = − 
�x��Vnon loc�x� if Vx�,x � 0,

Hx�,x
	,
 = �1 − 	�1 + 
���x��Vnon loc�x� if Vx�,x � 0, �15�

where 0�	�1 and 0�
�1/	−1 are two external param-
eters. In order to sample the Green’s function G�x�←x ,��
for H	,
, it is sufficient to modify the matrix Tx�,x���, which
becomes

Tx�,x
	,
 = 


1 if x = x�,

�
Vx�,x
+ if Vx�,x � 0,

− ��1 − 	�1 + 
��Vx�,x
− if Vx�,x � 0.

� �16�

The ground state E�	 ,
� of H	,
 is equal to EMA�	 ,
� �Eq.
�2��, since H	,
�T /�T=H�T /�T by construction. The
Hamiltonian in Eq. �11� is recovered with 	=0 and 
=0,
while the Hamiltonian of the locality approximation �Eq. �1��
is obtained with 	=1 and 
=0. Therefore, H	,
 can interpo-
late between these two extremes, but the variational principle
for EMA�	 ,
� is not guaranteed as soon as 	�0, since the
attractive term 	�1+
��x�Vx�,x

− is added to the diagonal po-
tential. However by means of H	,
 one can estimate the
value of EFN�	 ,
� �Eq. �3��, which is variational for every 	
and 
, since it is the expectation value of the true H on the
ground state of H	,
. Indeed H=H	,
− �1+
��
H	,
, and the
Hellmann-Feynman theorem leads to the relation

EFN�	,
� = E�	,
� − �1 + 
��
E�	,
� . �17�

One can show9 that, for a given value of 	, the lowest
EFN�	 ,
� is obtained for 
=0. Therefore, in order to find the
best variational estimate of the ground state of H, it is
enough to calculate the expression in Eq. �17� with 
=0. In
this way one can check which 	 provides the best variational
state for H. The derivative �
E�	 ,0� can be computed with
either finite differences or correlated sampling. In both cases,
one should keep in mind that 
�1/	−1, to guarantee the
positivity of the T	,
 matrix �Eq. �16��, and so calculating
EFN�	 ,0� becomes harder as 	 gets closer to 1.

Here we present the application of the method to the Si
and C pseudoatoms. We computed EMA�	 ,0� and EFN�	 ,0�

for 	=0, 0.5, 0.9, and the DMC energy with the locality
approximation, which corresponds to EMA�1,0�. With the
aim of quantifying the locality error, and the correction pro-
vided by the effective Hamiltonian H	,
, we used three dif-
ferent trial wave functions �with no Jastrow, a two-body, and
a three-body �electron-electron-ion� Jastrow factor, respec-
tively�, sharing the same determinantal part, and hence the
same nodes. In this way, the FN error can be separated from
the effect of the locality approximation, which causes a de-
pendence of the DMC energy on the shape of �T.

For the Si atom we used an s-p norm-conserving Hartree-
Fock �HF� pseudopotential, which is soft and has been gen-
erated using the Vanderbilt construction.10 The determinantal
part of �T is a HF wave function with a 6s6p /1s1p Gaussian
basis set. The two-body Jastrow factor is from Ref. 11, while
the three-body Jastrow factor is from Ref. 12. Both of the
Jastrow factors have been optimized using an energy mini-
mization procedure.13 The results are reported in Fig. 2. The
variational EFN�	 ,0� improves going from 	=0 to 	=0.9,
i.e., approaching the locality approximation. It means that at
least for this soft pseudopotential the locality approximation
�	=1, 
=0 gives a ground state which is a good variational
wave function for H. Notice, however, that the standard
DMC energies EMA�1,0� have a sizable locality error, while
EFN with 	=0.9 depends only slightly on the shape of the
trial wave function. A similar result was obtained with the
LRDMC method for the same pseudoatom.4

For the C atom we chose to work with a Stevens-Basch-
Krauss pseudopotential,14 which is extremely hard, since it
diverges like 1/r2 in the s channel, and 1/r in its local com-
ponent. The Slater part of �T is an antisymmetrized geminal
power wave function12,15 with a 2s2p Gaussian basis set,

FIG. 2. �Color online� EMA�	 ,0� �green, dashed line� and
EFN�	 ,0� �blue, dotted line� energies for the silicon pseudoatom
with different values of the effective Hamiltonian parameter 	. The
DMC energies with locality approximation �red, solid line�, corre-
sponding to EMA�1,0�, are reported in all panels for reference. We
used three different �T’s, which have the same determinantal part.
A more accurate �T corresponds to a smaller difference between its
variational energy �EVMC� and the EMA�0,0� energy, reported on the
abscissa.
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optimized in the presence of the three-body Jastrow factor by
minimizing its variational energy.13 The determinantal part
has been kept fixed in the other two �T’s, which differ only
by their Jastrow factors. The results are plotted in Fig. 3.
Here the locality approximation is very poor, as it leads to
nonvariational EMA. The spikes in Fig. 1, coming from re-
gions of the configuration space where the effective potential
is attractive, are surely responsible for the nonvariational re-
sults. Surprisingly, �T without the Jastrow factor, which has
a higher energy, leads to much more stable DMC simula-

tions. The locality approximation, which relies on the quality
of the shape of �T in the core, performs poorly with this
hard-core pseudopotential, since it is difficult to find the op-
timal shape of �T in the core region, due to the divergence of
the nonlocal pseudopotential. Indeed EFN�	 ,0� is higher for
	=0.9, being worst for the three-body Jastrow factor. On the
other hand, the best variational EFN�	 ,0� is obtained for 	
=0, irrespective of the form of the Jastrow factor.

To summarize, we have described a scheme to treat non-
local potentials within the standard DMC method. We have
extended the DMC formalism to handle a generic Hamil-
tonian with discrete off-diagonal matrix elements and the
fixed node approximation. Only a simple modification of the
standard algorithm is required to include the T moves gener-
ated according to the nonlocal potentials. By using an effec-
tive Hamiltonian approach, we showed that it is possible to
have stable simulations, even in the case of divergent hard-
core pseudopotentials, and obtain variational results. A simi-
lar effective Hamiltonian has been successfully used in the
LRDMC method. The difference is in the kinetic part, which
is discretized in the lattice regularized approach. The
LRDMC and the DMC methods have the same efficiency for
small Zeff, although it is possible to have a gain in the
LRDMC efficiency by an ad hoc choice of the kinetic pa-
rameters, particularly for heavier elements. We conclude, by
noting that the same Green’s function presented here can be
used in the reptation quantum Monte Carlo method.16
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