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We present a fully quantum mechanical treatment of resonant scattering of gamma radiation in a nuclear
medium exhibiting a � scheme through level mixing. A framework is presented to derive the radiation intensity
for N effective scatterers contributions. A closed-form solution for the radiation intensity is obtained and
compared to the generic expression of EIT in an atomic � scheme. Although the nuclear scheme does not fulfill
EIT conditions, the observable effects are similar. We show that the change in polarization of the scattered
radiation, due to the level mixing, gives rise to the development of a strong complementary polarization state
which is delayed with respect to the incident photon to a reduction in absorption because this state does not
interfere with the incident photon.
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I. INTRODUCTION

Resonant scattering in a three-level � scheme is an inten-
sively investigated topic in the field of quantum optics. Such
a system is closely related to the phenomenon of electromag-
netically induced transparency �EIT�. The phenomenon of
EIT can be realized in a two-field � scheme and basically
implies that an atom becomes transparent for a resonant,
probe field under the influence of a second field, the so-
called driving field, see Ref. 1 for an overview.

Recently, the first observation of EIT for gamma radiation
has been reported.2 However, it has been pointed out3 that, in
order to observe EIT as known in quantum optics, the two
lower lying states must be metastable, which is not the case
in the nuclear � scheme4 from Ref. 2. In this paper we want
to approach the induced transparency of gamma photons
from a theoretical point of view in order to explain why a
partial transparency of gamma photons is observed, despite
the condition of excited states with similar decay rates.
Moreover, we predict an appreciable time delay of the scat-
tered photon field.

The importance of this transparency for gamma photons is
not merely the extension of the range of wavelengths where
EIT is observed. Its main impact concerns the true single
particle nature in these experiments, whereas previous work
almost always dealt with large numbers of �coherent� pho-
tons. The nuclear source, consisting of an ensemble of ex-
cited nuclei, emits individual gamma photons in a stochastic
way. The different gamma photons do not have any phase
relation among them. Moreover, due to their high energy
��10 keV�, their individual detection is straightforward.

Although the semiclassical optical model, originally de-
veloped by Hamermesh,5 is widely used when dealing with
nuclear resonant scattering, we opt for the coherent path
model, based on the work of Heitler6 and Harris7 and re-
cently updated by Hoy.8 Moreover, this fully quantum me-
chanical model has been very successful in describing a reso-
nant Mössbauer detector9 and has provided interpretation of
the gamma echo.10 It has also added some insight in the
phenomena of speed-up and dynamical beats present in
nuclear resonant forward scattering of synchrotron
radiation.11

This coherent path model seems to be the most natural
choice of description since we are dealing with single pho-
tons in interaction with an ensemble of nuclei. In an appen-
dix, we also justify the use of a single photon wave function
in this model as emerging from the photodetection process.

In Sec. II, a theoretical framework is built starting from
first principles. Eventually, a closed-form solution for the
photon wave function is derived. Some selected cases are
discussed in Sec. III, where emphasis is given to the com-
parison of the nuclear level mixing scheme with a typical
atomic � scheme. Both the frequency and time domain pic-
ture are presented. Finally, the main conclusions are summa-
rized in Sec. IV.

II. COHERENT PATH APPROACH

A. Model outline

First, we present a brief, but general description of the
model. We start from the time-dependent Schrödinger equa-
tion. The Hamiltonian of the system can be written as the
sum of two parts: H0 describes the unperturbed nuclei and
the free radiation field �if present�, while V is the interaction
Hamiltonian that describes the transitions between the
nuclear levels induced by the radiation field�s�. The actual
state of the system is given by

���t�� = �
n

cn�t�e−iEnt/���n� �1�

with ��n� an eigenstate of H0 and En=��n its corresponding
energy. The coefficients cn�t� must satisfy the Schrödinger
equation, which leads to a set of coupled differential equa-
tions

i�
dcn�t�

dt
= �

m

cm�t�ei��n−�m�t��n�V��m� + i��1n��t� , �2�

where �1n is the Kronecker delta and ��t� the Dirac delta
function. The inhomogeneous term is added for the follow-
ing reasons. First, the solution must satisfy the initial condi-
tion that the system is in a well-defined state, e.g., cn�0�
=�1n. Second, although we choose a solution that only in-
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volves positive times, it will be extended to the negative time
axis for analytical reasons. All amplitudes cn�t� are chosen
such that cn�t	0�=0. Following Heitler6 the discontinuity in
c1�t� arising at t=0 is correctly dealt with by addition of the
inhomogeneous term. In practice, in a time-differential coin-
cidence measurement,12 t=0 can be defined by the detection
of precursor radiation, which precedes the gamma radiation
of interest. It is more interesting, however, to use the Fourier
transform of Eq. �2�. If we apply

cn�t� = −
1

2
i
�

−�

�

d�Cn���ei��n−��t, �3�

then Eq. �2� can be rewritten as

�� − �n + i��Cn��� = �
m

Cm���
Vnm

�
+ �n1 �4�

with Vnm���n�V��m� a time-independent matrix element de-
scribing a transition from the mth to the nth eigenstate of H0.
The introduction of +i����0� ensures the proper causality
relations.6 This term eventually disappears from any physical
result by considering the limit �→0+.

The eigenstates of H0 are given by the direct product of
an ensemble of unperturbed nuclear states and the states of
the free radiation field: ��n�= �nuclei� � �field�. In the case of
a Mössbauer scheme the nuclear ensemble consists of one
source nucleus �S� and N absorber nuclei �A� while the ra-
diation field can be expressed as a photon number state �P�:
��n�= �S��A1��A2�¯ �AN��P�. The number of ��n� states is lim-
ited by a proper choice of the initial state as will be clear
later on.

B. Three-level system

To relate to a real situation, we consider the case of 57Fe
nuclei embedded in a FeCO3 single crystal. Below the Néel
temperature 	TN=38.3�3� K �Ref. 13�
 the nuclei experience
a strong axial electric field gradient �efg� and a magnetic
hyperfine field, which is essentially parallel to the axis de-
fined by the efg. The combination of these hyperfine interac-
tions gives rise to an accidental level crossing. At the tem-
perature of T=30.5�5� K, the �me=1/2���2� and �me=
−3/2���3� levels are crossing,4 where me is the magnetic
quantum number of a sublevel of the I=3/2 nuclear excited
state. The energies of the excited states with respect to the
�mg=−1/2���1� ground state are ��2 and ��3, respectively.
For the sake of simplicity we are limiting the model to the
levels that are involved in the resonant scattering at the level
crossing, i.e., the transition from the �1� ground state to the
�2� and �3� excited states, as visualized in Fig. 1.

If the source photons are incident parallel to the crystal
symmetry axis, which coincides with the principal axis of the
efg, then the interaction Hamiltonian can be written as

V = V+�2��1� + V−�3��1� + ��2��3� + H.c. �5�

The 14.4 keV gamma transition in 57Fe is essentially an M1
magnetic dipole transition. Hence, the first term describes the
interaction of the radiation with the nucleus in the magnetic

dipole approximation, with V+= �2�H+�1� and V−= �3�H+�1�,
with H± the magnetic dipole operator in the case of a �+ ��−�
polarized �electro�magnetic field. Explicit expressions for
these matrix elements can be found in Ref. 14. They are
basically proportional to the product of a Wigner rotation
matrix element and a Clebsch-Gordan coefficient. It is also
assumed that a mixing interaction  between the excited
states is present. As the crossing levels are degenerate in
energy, they are very sensitive to small nonaxial fields that
can induce transitions between them. For more details on this
mixing interaction we refer to Ref. 4. This three-level system
is summarized in Fig. 1.

In Mössbauer spectroscopy15 a radioactive source is used
as the initial source of gamma photons. The photons are
emitted one by one, in a statistical and uncorrelated manner.
If we adopt a circular basis for their description, then one can
say that, as the source is unpolarized, one-half of the emitted
photons are left circularly polarized ��−� and the other half is
right circularly polarized ��+�. This means that we can treat
their contribution independently. We restrict the model to �+

source photons and keep in mind that the treatment of �−

source photons can be done analogously. Due to the breaking
of the axial symmetry by the level mixing, however, a �+

source photon can be absorbed while a �− photon is reemit-
ted. Therefore, as soon as the first scattering takes place, we
must take into account two photon fields. Because these two
fields have mutual perpendicular polarizations, the total ra-
diation intensity will be just the sum of both field intensities.

The absorber is treated as a collection of N identical nu-
clei, which effectively scatter the gamma photon. The num-
ber of scattering centers N is shown to be proportional to the
more common effective optical thickness �,8

N =
��

2f�r
�6�

with � the total decay rate of the nuclear excited state, �r the
radiative decay rate and f the recoilless fraction. In a multi-
level nucleus, however, the effective thickness is reduced
according to16

� →
1

2Ig + 1

2L + 1

2Ie + 1
� �7�

with Ig/e the spins of the nuclear ground and excited states
and L the multipolarity of the radiation �here L=1�.

FIG. 1. Schematical representation of the three-level system un-
der consideration. The two excited states �2� and �3� are mixed by an
interaction  and couple to the ground state through V+ and V−,
respectively.
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A schematical overview of the physical system under con-
sideration is given in Fig. 2. A single-line source nucleus
decays and emits a �+ �or �−� photon. This photon is scat-
tered by N absorber nuclei. In this process the photon can
retain its initial polarization �solid line� or it can change its
polarization through the mixing interaction �dashed line�.

C. General equations

If we apply the above mathematical formalism to the sys-
tem of a source nucleus and N resonant absorber nuclei, lo-
cated between the source and the detector, then five structur-
ally distinct eigenstates of H0 and their corresponding
amplitudes can be identified:

�i� ��1���S�= �Se ,Am
1 ,0k,�+ ,0k�,�−� with S��� the ampli-

tude corresponding to the source nucleus in the excited state
���s�, the absorber nuclei in the ground state and no photons
present. �S� is the initial state in the model considered.

�ii� ��2���Pk
+�= �Sg ,Am

1 ,1k,�+ ,0k�,�−� with Pk
+��� the am-

plitude corresponding to the source nucleus in the ground
state, the absorber nuclei in the ground state and one photon
with wave number k, �+ polarization and energy ��k.

�iii� ��3���Pk�
− �= �Sg ,Am

1 ,0k,�+ ,1k�,�−� with Pk�
− ��� the

amplitude corresponding to the source nucleus in the ground
state, the absorber nuclei in the ground state and one photon
with wave number k�, �− polarization and energy ��k�.

�iv� ��4���Am�= �Sg ,Am
2 ,0k,�+ ,0k�,�−� with Am��� the am-

plitude corresponding to the absorber nucleus m at position
xm in the excited state �2� ���2�, all other nuclei in the
ground state and no photons present.

�v� ��5���Bm�= �Sg ,Am
3 ,0k,�+ ,0k�,�−� with Bm��� the am-

plitude corresponding to the absorber nucleus m at position
xm in the excited state �3� ���3�, all other nuclei in the
ground state and no photons present.

It must be noted that this model considers one particular
value of k �and k��, which can be seen as a plane wave
approximation. However, at the end of the derivation, a re-
alistic wave packet is reconstructed as the �infinite� sum of
these plane wave solutions.

Here, decay processes due to electron conversion are not
explicitly taken into account. It can be easily shown, how-
ever, that their contribution is limited to an additional term
�c in the total decay rate �=�r+�c.

9

If we assume that at t=0 only the source nucleus, at the
origin, is excited, or ���t=0��= �S�, the following set of
coupled linear equations from Eq. �4� are obtained:

�� − �s + i��S��� = 1 + �
k

Pk
+���

VSPk

�
, �8�

�� − �k + i��Pk
+��� = S���

VPkS

�
+ �

m

Am���
VPkA

�
e−ik·xm,

�9�

�� − �k� + i��Pk�
− ��� = �

m

Bm���
VPk�B

�
e−ik�·xm, �10�

�� − �2 + i��Am��� = �
k

Pk
+���

VAPk

�
eik·xm + Bm��� ,

�11�

�� − �3 + i��Bm��� = �
k�

Pk�
− ���

VBPk�

�
eik�·xm + Am���*,

�12�

where the factors e±ik·xm, m=1 to N, take into account the
phase according to the position where the photon absorption
��� or emission ��� takes place. The interaction matrix ele-
ments V± are now relabelled as Vij, to emphasize their cor-
respondence with the transition from state �i� to state �j�.

The interpretation of the above equations is straightfor-
ward. For example, Eq. �9� describes the production of a
photon having wave number k and �+ polarization. The first
term on the right-hand side states that this can occur through
the emission of such a photon by the source. The second
term says that this can also occur by the emission by any of
the absorber nuclei, at positions xm, that were in the excited
state �2�. Equation �12� describes how nucleus m can reach
the excited state �3�. This is possible by the absorption of a
�− photon, described by Pk

−���, or by a transition from the
excited state �2� in the same nucleus, described by Am���.
The other equations can be interpreted in a similar way.

D. Solving the equations

1. Solving for S„�…

Let us first try to find a solution for the source amplitude
S���. After substitution of Eq. �9� into Eq. �8�, we have

�� − �s + i��S��� = 1 + S����
k

�VSPk
�2

�2

1

� − �k + i�

+ �
m

Am����
k

VPkAVSPk

�2

e−ik·xm

� − �k + i�
.

�13�

The summation over k is transformed into an integral
through the prescription17

FIG. 2. Physical model of nuclear resonant scattering in a three-
level scheme. The horizontal lines present the unperturbed nuclear
eigenstates and the arrows indicate the interactions.
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�
k

→
V

�2
�3 � d3k . �14�

The sums over k of Eq. �13�, which are now converted to
integrals, can be evaluated using the relation6

lim
�→0+

1

x − a ± i�
= P� 1

x − a
� � i
��x − a� , �15�

where P indicates the principal part of an integral. For the
second term on the right-hand side of Eq. �13� the principal
part value gives rise to an energy shift, which can be incor-
porated into �s, while the � function results in an imaginary
term that is identified as a �partial radiative� linewidth of the
source excited state,

�s
r =

V

�2
��2 � d3k�VSPk
�2��� − �k� . �16�

It is straightforward to verify that all other �incoherent� de-
cay channels of the source excited state, e.g, electron conver-
sion, contribute in a similar way. Eventually, the total decay
rate �s should correspond to the inverse of the lifetime of the
source excited state.

The third term on the right-hand side of Eq. �13� describes
a higher-order contribution with rapidly oscillating factors
that will be neglected. This term describes the probability of
reexcitation of the source nucleus by a photon coming back
from the absorber, expressed by the sum over Am���. Such a
process is negligible because, in most cases, the solid angle
subtended by the source is very small with respect to the
absorber. In fact, this is the same as assuming that the source
nucleus will decay in the same manner as it would if the
absorber were absent.7 The source term can, therefore, be
approximated by

S��� 
1

� − �s + i
�s

2

, �17�

where the limit �→0+ is taken.

2. Solution of Am„�… and Bm„�…

Solving Eq. �9� for Pk
+��� and substituting into Eq. �11�

and solving Eq. �10� for Pk�
− ��� and substituting into Eq. �12�

gives the following set of coupled linear equations:

�� − �2 + i��Am���

= Bm��� + �
k

VAPk
VPkSeik·xm

�2�� − �k + i���� − �s + i
�s

2
�

+ �
m�

Am�����
k

�VAPk
�2

�2

e−ik·�xm�−xm�

� − �k + i�
, �18�

�� − �3 + i��Bm���

= *Am��� + �
m�

Bm�����
k�

�VBPk�
�2

�2

e−ik�·�xm�−xm�

�� − �k� + i��
.

�19�

The sums over k and k� are evaluated in the same way as
described above. Although the general model is formulated
in three-dimensional space, we now restrict the calculations
to the forward direction only. It can be argued that photons
that reach the detector from a nonforward direction have ex-
perienced different optical paths and thus have different op-
tical path lengths. Therefore, since we must sum over all
coherent paths, destructive interference between the nonfor-
ward paths makes their contribution negligible. If only for-
ward scattering is considered, all paths have the same optical
path length and give a nonzero contribution to the radiation
detected.

In this one dimension, the sum over m can be limited by
assuming that an absorber nucleus m can only be excited by
radiation coming from other nuclei m� that are located up-
stream �xm�	xm� and not by radiation scattered from nuclei
downstream. In the first case all possible optical path lengths
are the same and will add constructively, while in the latter
they are not �see also Ref. 9 for a more quantitative treatment
of this approximation�. The terms with m=m� yield the ra-
diative decay �2/3

r of the excited states and again, all other
decay channels can be added to this decay leading to the total
decay rate �2/3. The set of equations can then be rewritten as

�� − �2 + i
�2

2
�Am���

= Bm��� −
i��2

r

2
�VPkS

�
� ei��/c�xm

�� − �s + i
�s

2
�

−
i�2

r

2 �
m�=1

m−1

Am����ei��/c��xm−xm��, �20�

�� − �3 + i
�3

2
�Bm���

= *Am��� −
i�3

r

2 �
m�=1

m−1

Bm����ei��/c��xm−xm��, �21�

with �i
r the partial radiative decay rate from �i� to �1�. Fur-

thermore, we have defined

��2
r � �VPkA

�
�−1

V

�2
��2 � d3k�VAPk
�2��� − �k� , �22�

where it is assumed that VPkA varies little around �=�k. We
now cast Eqs. �20� and �21� in a more symmetrical form by
solving them for Am��� and Bm���, but still expressing them
as a function of Am���� and Bm����,
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Am��� = ei��/c�xm�S+��� + �
m�=1

m−1 �− i�2
r

2
� �3

�+�−
Am����e−i��/c�xm�

+ �
m�=1

m−1 �

�2
��− i�3

r

2
� �2

�+�−
Bm����e−i��/c�xm�� , �23�

Bm��� = ei��/c�xm��*

�3
�S+���

+ �
m�=1

m−1 �− i�3
r

2
� �2

�+�−
Bm����e−i��/c�xm�

+ �
m�=1

m−1 �*

�3
��− i�2

r

2
� �3

�+�−
Am����e−i��/c�xm�� ,

�24�

with S+��� defined in Eq. �26�. We have adopted the short-

hand notation �s/2/3=�−�s/2/3+ i
�s/2/3

2 and �±=�−�±, where
we have introduced the two new frequencies �± according to

�± =
��2 − i

�2

2
� + ��3 − i

�3

2
�

2

±����2 − i
�2

2
� − ��3 − i

�3

2
�

2
�

2

+ ��2. �25�

These frequencies arise due to the mixing interaction  and,
hence, should be interpreted as the eigenfrequencies of the
mixed levels.

For the moment, let us neglect the phase factor ei�� /c�xm

in Eqs. �23� and �24�. They only give rise to an overall phase
factor of the solution of Am �and Bm� proportional to xm.
According to this set of equations, there are five ways to
reach state �2� or state �3� in nucleus m, corresponding, re-
spectively, with Am��� and Bm���. These five paths can be
divided into one source path S+���, two intranuclear paths
�transitions in nucleus m� and two extranuclear paths �tran-
sitions in different nuclei�. It is obvious that every scattering
process should include �and start with� the source path,
which is given by the expression

S+��� � �VPkS

�
��− i��2

r

2
� �3

�s�+�−
. �26�

As we consider the incidence of a �+ photon, the source path
always yields an excitation to state �2� �in any nucleus m�.

The two intranuclear paths arise due to the mixing inter-
action and are schematically depicted in Fig. 3.

The two extranuclear paths are shown in Fig. 4 and rep-
resent the process of �+ ��−� emission in nucleus m� and
absorption of this �+ ��−� photon by nucleus m, with m�
	m.

Now, to find a solution for Am��� and Bm���, for arbitrary
m, it is a question of counting. First, to reach state �2� or �3�
in nucleus m, not all preceding nuclei must participate in the
scattering process. If n nuclei are involved, then

Am��� = �
n=0

m−1 �m − 1

n
�Am

n ��� , �27�

where the binomial coefficient gives the number of ways n
nuclei can be picked out of a set of m−1 nuclei. Am

n ���
describes the amplitude of state �2� in nucleus m, for the case
where the photon has first been scattered by n preceding
nuclei.

Each nucleus can interact in four possible ways, depend-
ing on the polarization state of the absorbed and emitted
photon: ��, ��, ��, and ��, where the first sign corre-
sponds to absorption and the second to emission. However,
there are certain restrictions. If a nucleus has emitted a �+

photon, then the next nucleus must absorb this �+ photon,
and, hence, this next nucleus has only two possible ways of
interacting ��� and ���. Therefore, it is better not to con-
sider all possible nuclear configurations, as they are not truly
independent, but to consider the combination of emission in
one nucleus and absorption in a following one. In Fig. 5 it is
shown that these extranuclear combinations �or enc� can as-
sume values of � and �, independent of the preceding enc.
They also coincide with the extranuclear paths identified in
Fig. 4.

If there are n+1 absorber nuclei �n preceding+the last
one� and if we apply the initial condition of a �+ incident
photon and the final condition of arriving in state �2� �or �3��,
there are n enc. Thus, there are 2n possible paths contributing
to Am

n ���.
If there are p enc+, then there should be n− p enc− pro-

cesses. However, the number of intranuclear paths, corre-
sponding to the number of changes in polarization, depends
on how the p enc+ are arranged between the n− p enc−. For
example, for n=5 and p=3, the ����� enc series yield a
different number of intranuclear paths than the �����

FIG. 3. Pictographical representation of the two intranuclear
paths along with their mathematical expression.

FIG. 4. Pictographical representation of the two extranuclear
paths 	or extranuclear combinations �enc�
 along with their math-
ematical expression.
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enc series. It can be shown that, if k denotes the number of
enc+ enclosed by at least one enc− �preceding and succeed-
ing�, then

�
k=0

p �n − p − 1

k
�� ��2

�2�3
�k+1

�
l=0

�p−k−1� �p − k − 1

l
��k + 2

l + 1
�

for Am
n ���, and

*

�3
�
k=0

p �n − p

k
�� ��2

�2�3
�k

�
l=0

�p−k−1� �p − k − 1

l
��k + 1

l + 1
�

for Bm
n ��� are the amplitudes of intranuclear paths belonging

to each �n , p� pair. The sum over l accounts for the possible
ways to arrange �p−k� other enc+ on �k+2� 	or �k+1�

places.

Finally, taking into account the above prescription, we can
reconstruct the solutions

Am��� =
− i��2

r

2
�VPkS

�
��3ei��/c�xm

�s�+�−
�1 + �

n=1

m−1 �m − 1

n
� 1

��+�−�n

� ��− i�2
r�3

2
�n

+ �
p=0

n−1 �− i�3
r�2

2
�n−p�− i�2

r�3

2
�p

� ��n − p − 1

p
�� ��2

�2�3
�p+1

+ �
k=0

p−1 �n − p − 1

k
�

�� ��2

�2�3
�k+1

�
l=0

�p−k−1� �p − k − 1

l
��k + 2

l + 1
���� �28�

and

Bm��� =
− i��2

r

2
�VPkS

�
�*ei��/c�xm

�s�+�−
�1 + �

n=1

m−1 �m − 1

n
� 1

��+�−�n

� �
p=0

n �− i�3
r�2

2
�n−p�− i�2

r�3

2
�p��n − p

p
�� ��2

�2�3
�p

+ �
k=0

p−1 �n − p

k
�� ��2

�2�3
�k

�
l=0

�p−k−1� �p − k − 1

l
�

��k + 1

l + 1
��� , �29�

where the phase factors are again explicitly included. The

binomials in the above expressions of course vanish when-
ever the lower term exceeds the upper term.

3. Solution of the photon wave function

Let us first consider the �+ photon field. Substituting the
expression for S��� and Am��� into Eq. �9�, we find an ex-
pression for Pk

+���,

Pk
+��� = �VPkS

�
� 1

�s�� − �k + i���1 −
i�2

r

2 �
m=1

N

Pk,m
+ ����

�30�

with

Pk,m
+ ��� = ei�xm/c���−�k� �3

�+�−
�1 + �

n=1

m−1

��m − 1

n
� 1

��+�−�n��− i�2
r�3

2
�n

+ �
p=0

n−1 �− i�3
r�2

2
�n−p�− i�2

r�3

2
�p��n − p − 1

p
�

�� ��2

�2�3
�p+1

+ �
k=0

p−1 �n − p − 1

k
�

�� ��2

�2�3
�k+1

�
l=0

p−k−1 �p − k − 1

l
��k + 2

l + 1
���� .�31�

The interpretation of Pk
+��� is straightforward. The first term

is the amplitude of a photon k that is not scattered �the origi-
nal �+ source photon�, while the subsequent terms describe
the amplitudes for scattering at position x1 ,x2 , . . . ,xm. The
factor �s

−1 will eventually lead to a convolution of the �fre-
quency� spectrum of the photon field with the spectrum of
the incident field, centered at �s.

According to Refs. 7–11, one can represent the �one-
dimensional� radiation wave function ��x , t� as an infinite
sum of plane waves

��x,t� = �
k

ei�kx−�kt�

�L
pk�t� =

�L

2
c
�

−�

�

d�ke
−i�k�t−x/c�pk�t�

�32�

with pk�t� the time-dependent �classical� amplitude of a plane
wave with wave number k. We admit that this transition from
the quantum to the classical domain is rather sudden and
should be more thoroughly derived. In the appendix we will
justify this suggestion for the photon wave function. For
now, we take Eq. �32� for granted and continue the derivation
of the wave function.

It is also possible to express ��x , t� in frequency domain
by a Fourier transformation of Eq. �32�,

FIG. 5. Schematical representation of scattering of a �+ incident
photon leading to the excitation of state �2� in nucleus m. Each
nucleus that takes part in the process is depicted by a circle where
the left half represents the absorption and the right half the emission
process. The dashed squares represent the independent extranuclear
combinations �see text�.
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��x,�� = �
−�

�

dt��x,t�ei�t �33�

�34�

If we consider the �k-dependent terms of Pk
+��� in Eq. �30�,

then we distinguish the mth absorber term 	Pk,m
+ ���
, which

has a phase factor proportional to xm, and a source term
	Ps�x ,��
, without phase factor.26 The calculation of the in-
tegral over �k is reduced to the integration of these
�k-dependent terms,

�s�x,�� � �
−�

�

d�k
ei�k�x/c�

� − �k + i�
�35�

� 2
iei��x/c���x� for � → 0+ �36�

and

�k,m
+ �x,�� � ei��xm/c��

−�

�

d�k
ei�k	�x/c�−�xm/c�


� − �k + i�
�37�

� 2
iei��x/c���x − xm� for � → 0+. �38�

The appearance of the ��x� Heaviside step function ensures a
physical meaningful result. For the source term this means
the detector position x should be downstream of the source
�nucleus�, located at x=0, whereas the mth absorber term
only is relevant when this mth nucleus is in front of the
detector.

The �+ photon wave function is now calculated as

�+�x,�� = ei��x/c��s����1 + �
n=0

N−1 � N

n + 1
��n

+���� �39�

with the source term

�s��� = − �VPkS
�L

�c
� 1

�s
�40�

and the absorber terms

�n
+��� =

1

��+�−�n+1��− i�2
r�3

2
�n+1

+ �
p=0

n−1 �− i�3
r�2

2
�n−p�− i�2

r�3

2
�p+1

� ��n − p − 1

p
�� �2�

�2�3
�p+1

+ �
k=0

p−1 �n − p − 1

k
�

�� �2�
�2�3

�k+1

�
l=0

p−k−1 �p − k − 1

l
��k + 2

l + 1
��� . �41�

It is seen that, due to the reconstruction of the total wave
packet, the dependence on the positions of the individual
scattering centers disappears. Instead, the field amplitude
gains a uniform phase factor, which only depends on the total
path length x between its creation in the source and its de-
struction at the detector.

The derivation of the �− photon wave function is com-
pletely analogous. Eventually, we obtain the �− wave func-
tion

�−�x,�� = ei��x/c��s����
n=0

N−1 � N

n + 1
��n

−��� �42�

with �s��� defined in Eq. �40� and

�n
−��� = �− i��2

r�3
r

2
� *

��+�−�n+1��
p=0

n �− i�3
r�2

2
�n−p�− i�2

r�3

2
�p

� ��n − p

p
�� �2�

�2�3
�p

+ �
k=0

p−1 �n − p

k
�� �2�

�2�3
�k

� �
l=0

p−k−1 �p − k − 1

l
��k + 1

l + 1
��� . �43�

Except for the source term, the expression of the �− wave
function bears a very close resemblance with the �+ wave
function. So, once the photon has undergone one scattering,
both fields develop in more or less the same way.

In the case without mixing interaction �=0�, the photon
fields reduce to

�+�x,�� = ei��x/c��s����1 + �
n=1

N �N

n
��−

i�2
r

2

1

�2
�n� ,

�44�

�−�x,�� = 0, �45�

which is exactly the Fourier transform of the time-dependent
photon wave function calculated by Hoy8 in the case of scat-
tering in a single-resonance nuclear medium 	see Eq. �A24�
in Ref. 8
.

FIG. 6. �Color online� Simulation of the transmitted radiation in
the thin absorber limit and for different values of �3 with a fixed
mixing strength =�2.
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If the detector is not polarization sensitive, the measurable
transmitted intensity in the case of a �+ source photon as a
function of �s is given by

I��s� =
1

2

�

−�

�

d�	��+�x,���2 + ��−�x,���2
 , �46�

which is the observable that can be obtained experimentally.

III. RESULTS AND DISCUSSION

A. Thin absorber limit

We start the discussion of Eq. �39� and Eq. �42� with the
most simple case, i.e., a thin absorber or N=1. This corre-
sponds to a system where multiple scattering effects are neg-
ligible. Also in the most common experiments where optical
EIT is observed, i.e., in vapors, dynamical effects are not
taken into account. This limiting case, therefore, presents an
ideal opportunity to make a comparison between optical EIT
�in an atomic �-scheme� and the nuclear level mixing in-
duced transparency.

From Eq. �39� and Eq. �42� we obtain

�1
+�x,�� = ei��x/c��s����1 + �− i�2

r

2
� �3

�+�−
� , �47�

�1
−�x,�� = ei��x/c��s����− i��2

r�3
r

2

*

�+�−
� , �48�

where all parameters have been defined in the preceding sec-
tion. If we disregard the convolution with the source spec-
trum, then the transmitted intensity is given, to first order in
�2

r , by

I��� = 1 + 2 Im��2
r

2

�3

�+�−
� . �49�

This intensity of the transmitted radiation is simulated in Fig.
6 in the case of =�2 and for different values of �3.

A first interesting feature is the appearance of the two
frequencies �± in the expression of the photon fields, as de-
fined in Eq. �25� �now hidden in the notation of �±�. If �2
=�3 and �2=�3, then �±=�2±− i�2 /2. In this case the
transmitted intensity also reduces to

I1��� = 1 −
�2

r�2

2 � 1

�� − �2 − �2 +
�2

2

4

+
1

�� − �2 + �2 +
�2

2

4
� , �50�

which is just a sum of two Lorentzian absorption lines, cen-
tered at �+ and �−, respectively. These frequencies can thus
be identified as the eigenfrequencies of the new levels that
arise from the mixing interaction. These are called mixed
levels and are split by 2 .18 It has been argued before,3,19

that a model of EIT in terms of mixed levels �also called

dressed states� is equivalent to a model that explicitly in-
cludes a mixing interaction in the bare levels, which is in
agreement with this model.

Furthermore, Eq. �50� implies that, if �2=�3, no interfer-
ence is present in the transmitted spectrum. This can be un-
derstood as follows. The transparency effect as known in
optical EIT relies on the creation of a coherence between the
states �1� and �3�, i.e., the creation of a dark state.20 Any
decay of these levels, here �3, immediately implies the decay
of this coherence. If the decoherence is as fast a process as
the creation of the coherence ��, there is no way to obtain
the destructive interference that is necessary for the appear-
ance of a transparency window. This implies that, if �2=�3,
any reduction in absorption at the center of the initial absorp-
tion line is solely due to the Stark splitting of the levels.

In Fig. 6 it is seen that, if �3	�2, the absorption at the
center of the levels decreases with decreasing �3. This cor-
responds to a typical case of optical EIT, where level �3� is a
stable or metastable state. However, if �3��2 there is con-
structive interference in the absorption of the resonant radia-
tion, giving rise to an enhanced absorption at the center of
the levels. We can therefore conclude that, although at first
sight the nuclear EIT scheme seems to show strong equiva-
lence with the optical �-scheme, a thin-absorber-limit analy-
sis reveals that the difference in relaxation rates leads to two
really distinct pictures, i.e., with or without �destructive� in-
terference.

B. Thick absorber

Another important difference with a common, vapor-
based, optical EIT system is the large probability of more
than one scattering process. On its path through a thick me-
dium �crystal� the gamma photon will encounter many nuclei
with which it can interact. Moreover, all scattering events are
coherent because, like in every standard Mössbauer setup,
only the forward scattered radiation is considered.

Simulations of the transmitted intensity for the cases N
=5, 10, 20, 30, 50, and 80 are shown in Figs. 7–9, respec-
tively. Each right-hand figure shows the individual contribu-
tions of the transmitted radiation that has changed polariza-
tion �I+−+ I−+� and the radiation that has retained its
polarization �I+++ I−−�, while the left-hand figure shows the
total spectrum. We have also included the case of a �− inci-
dent photon, which is no more than interchanging the label 2
with label 3 in the equations for a �+ incident source photon.
Because we are considering the nuclear �-scheme, we set
�3=�2. The partial radiative decay rates �2

r and �3
r are sub-

stituted with their real experimental values: �2
r = �C12�2�r

=�r /3 and �3
r = �C13�2�r=�r, with Cij the product of the

Clebsch-Gordan coefficient and the rotation matrix element
of the �i�− �j� transition14 and �r� /10 in 57Fe. The maximal
resonant absorption is limited to 30%, which corresponds to
the experimental situation. It is seen that this maximum ab-
sorption is almost reached for N=50 and saturation clearly
broadens the spectrum for N=80.

From these simulations the following observations can be
drawn. First, the transparency effect of the mixing interaction
reduces with increasing number of effective nuclei. For ex-
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FIG. 7. �Color online� Simu-
lated spectrum for N=5 �top� and
N=10 �bottom� for different val-
ues of mixing interaction strength
. The right-hand figure shows
the individual contributions of the
transmitted radiation that has
changed polarization �I+−� and the
radiation that has kept its polariza-
tion �I++�, while the left-hand fig-
ure shows the total transmitted
radiation.

FIG. 8. �Color online� Simu-
lated spectrum for N=20 �top� and
N=30 �bottom� for different val-
ues of mixing interaction strength
. The right-hand figure shows
the individual contributions of the
transmitted radiation that has
changed polarization �I+−� and the
radiation that has kept its polariza-
tion �I++�, while the left-hand fig-
ure shows the total transmitted
radiation.
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ample, for N=5, a mixing interaction of =�2 /2 almost
reduces the absorption at the line center with 50%, whereas
the same mixing field has almost no observable effect any
more for N=80.

We can also see a shift in the mechanism of the transpar-
ency. First, for small N, the main reason for the transparency
is the Stark splitting of the excited states, which is best seen
in the I+++ I−− spectrum for N=5. For increasing N, however,
the contribution of the I+−+ I−+ part becomes more important,
see also Fig. 10. It first reaches a maximum, at the line cen-
ter, depending on , and then shows a two-or three-peak
structure. This two-peak structure �for =�2 /2� also appears
in the semiclassical Maxwell-Schrödinger model of nuclear
resonant scattering in a �-scheme, see Ref. 21. But the three-
peak structure has no semiclassical analogue. More simula-

tions have shown that the center peak eventually disappears
for large N, leaving behind a two-peak structure.

C. n-hop amplitudes

More insight in the multiple scattering construction of the
final wave function is gained by simulating the different
�n��� terms of Eq. �41� 	or Eq. �43�
, including the preced-
ing binomial coefficient. In Ref. 8 these �n��� terms are re-
ferred to as the n-hop amplitudes,27 because n is the number
of nuclei with which the photon interacts, while hopping
from one to the other. Simulations of the five first n-hop
amplitudes for N=20 are shown in Fig. 11. The left-hand
side of the figure gives the hop amplitudes for =0, ex-
pressed in Eq. �44�, whereas the right-hand side shows the

FIG. 9. �Color online� Simu-
lated spectrum for N=50 �top� and
N=80 �bottom� for different val-
ues of mixing interaction strength
. The right-hand figure shows
the individual contributions of the
transmitted radiation that has
changed polarization �I+−� and the
radiation that has kept its polariza-
tion �I++�, while the left-hand fig-
ure shows the total transmitted
radiation.

FIG. 10. �Color online� Simu-
lated spectrum of the transmitted
radiation that has changed polar-
ization �I+−� for different N and
for =�2 /2 �left-hand side� and
=�2 �right-hand side�.
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�n
+��� terms for =�2 /2. It is clearly seen that the dominant

first term yields a negative contribution, giving rise to the
downward absorption peak in the Mössbauer transmission
spectrum. This is the result of the 
-phase shift8 for single
scattering at resonance. The second term �double scattering�
yields a positive contribution, the third term again negative,
and so on. For increasing n, however, this simple picture is
seen to blur out, leading to an oscillating and rapidly de-
creasing net contribution.

The �n
+��� terms in Fig. 11 show a highly decreasing peak

amplitude for increasing n. It is worthwhile to go into more
detail on this. For simplicity, let us take �2

r =�3
r ��r. Then the

strength �or peak amplitude at resonance� of each n is seen to
be proportional to

�n
+�� = �0� � � N

n + 1
���r

�
�n+1

. �51�

Because the condition that �r	� is always fulfilled, the sec-
ond factor decreases exponentially for increasing n. The bi-
nomial coefficient, however, has a maximum for nN /2.
Hence, the significance of the contribution of an n-hop am-
plitude depends on the interplay between both terms. For
example, the �n=1�-hop amplitude can gain a higher prob-
ability than the �n=0�-hop amplitude if the condition N�1
+ �2�r /�� is satisfied �e.g., if �r /�=0.1 then N�21�. Never-
theless, it is clear from Eq. �51� that terms with n�N /2 will
always yield a very small contribution. Thus, at least one-
half of the n-hop amplitudes can be neglected in the calcu-
lations. In Fig. 12 we illustrate this convergence of n-hop
amplitudes by simulating the I+−+ I−+ spectrum for N=80,
including an increasing number of �n��� terms. The solid
line represents the full solution. It is seen that, already for
n=0 to 12, the spectrum matches the full solution within the
resolving power of the eye.

This information about the rapid convergence of the �n
series can drastically cut into the quite extensive computer
time needed for simulations in the coherent path model.

D. Reduced transparency

This coherent path model also allows us to study the com-
bined effect of different relaxation rates, �2 and �3, and mul-
tiple scattering in thick absorbers. Now, let us again consider

the cases of N=5 and N=20. In Fig. 13 the total transmitted
radiation is shown for =�2 /2 and different values of �3, in
the case of a �+ incident source photon. Comparing the spec-
tra for N=5 with those for N=20, it is seen that the multiple
scattering process destroys the transparency window. This
can be understood as follows: even in a perfect EIT nucleus
��3��2� an incident photon will always show a little absorp-
tion from its wings. In the scattering process with the next
perfect EIT nucleus there is again a little absorption. Even-
tually, the absorption profile will show a considerable ab-
sorption even in the frequency region where there is only
negligible absorption in the single scattering event. Hence,
the effect of a decreasing transparency with increasing thick-
ness is understood as a plain saturation effect.

E. Time-dependent properties

1. Photon wave function in time domain

In Sec. II D 3 an expression for the time-dependent pho-
ton wave function ��x , t� is presented 	Eq. �32�
. It is instruc-
tive to first consider the case when there is only a �decaying�
source nucleus, as in the appendix. The expression for pk�t�
is then given by Eq. �A6�. Substituting its one-dimensional
form in Eq. �32� yields

FIG. 11. �Color online� Simu-
lation of the first n-hop amplitudes
for N=20 with =0 �left-hand
figure� and =�2 /2 �right-hand
figure�.

FIG. 12. �Color online� Simulation of the I+−+ I−+ spectrum for
N=80, including an increasing number of �n��� terms. The solid
line represents the full solution.

QUANTUM MECHANICAL STUDY OF RESONANT… PHYSICAL REVIEW B 74, 155443 �2006�

155443-11



��x,t�

=
�L

2
c
�VPkS

�
��

−�

�

d�ke
−i�k�t−�x/c�+�x0/c��1 − eit��k−�0+i�s/2�

�k − �s + i�s/2
.

�52�

The integral can be solved by conversion to complex coor-
dinates and applying the theory of residues for complex
closed loop integrals. The integral of the second term is non-
zero for � x

c −
x0

c
�	0, i.e., for radiation from the source emitted

in the opposite direction of the detector. Hence, only the first
term gives a physical contribution,

��x,t�

= −
i�L

c
�VPkS

�
�e−i�t−	�x/c�−�x0/c�
���s−i�s/2���t − � x

c
−

x0

c
�� .

�53�

The appearance of the Heaviside step function ensures that
the signal emitted by the source nucleus does not travel
faster than the speed of light in vacuum.

Equation �53� is very similar to the photon wave function
obtained in, Ref. 22, except for a �r−r0�−1 dependence. The
intensity of radiation emitted from a point source into 4

should indeed decrease according to �r−r0�−2. The reason
why we do not obtain this factor is simply because our ap-
proach is one-dimensional. In one dimension the energy of
the field is not distributed over an ever increasing spherical
surface, but instead, propagates undiminished in the one-
dimensional space. In our case, all photons emitted by the
point source have traveled more or less the same distance
before detection. Hence, the �r−r0�−1 factor yields no more
than an overall reduction of intensity.

Let us now turn to the case with an absorber consisting of
N effective nuclei. To find an expression for pk�t�, we make
a Fourier transformation to time domain of Pk��� 	Eq. �30�
.
We only deal with poles with negative imaginary part, which
means that only for t�0 the integral is nonzero. The physi-
cal meaning is obvious.

The calculations are simplified as it turns out that only the
pole �=�k− i� will contribute to the final expression of
��x , t�. When integrated over �k all other poles only give a

contribution if x�xm, i.e., a nonphysical situation in which
the detector �at position x� would be positioned in front of
the absorber nuclei instead of behind.

The integral over �k can again be calculated by applying
the theory of residues. Eventually, one finds the expression
for the �+ photon wave field at position x��xN� and time t,
parametrized by t�= t−x /c with the condition that t��0, for
N effective scattering nuclei,

�N
+�t�� = �s�t���1 + �

n=0

N−1

�
p=0

n

�
k=0

p

�
l=0

p−k−1 � N

n + 1
��n − p − 1

k
�

��p − k − 1

l
��k + 2

l + 1
�

��− i�3
r

2
�n−p�− i�2

r

2
�p+1

���2�k+1�npk
+ �t��� �54�

with

�s�t�� = �− i�L

�c

VPkS

�
�e−it�	�s−i��s/2�
 �55�

and

�npk
+ �t�� =

�s3
p−k�s2
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n+1 + �
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�
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j!
� , �56�

with �ij =�i�−� j� and �i�=�i− i�i /2. All parameters have
been defined previously. In a similar way, one can calculate
the �− photon wave field using the expression for Bm��� and
Eq. �10�. The general expression for the �− photon field is

FIG. 13. �Color online� Simu-
lation of the transmitted radiation
in the case of =�2 /2 for differ-
ent values of �3, for N=5 �left-
hand figure� and for N=20 �right-
hand figure�.
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� . �58�

As these amplitudes have mutually orthogonal polarizations,
the total photon intensity that impinges on a detector at time
t is given by

I�t� = ��+�t��2 + ��−�t��2 �59�

�I++ + I+−, �60�

for a �+ source photon.

2. Simulations

The easiest way to address these photon wave functions is
through numerical simulations. It must be noted that the fol-
lowing simulations are only valid for the ideal case, i.e.,
there is no line broadening �except due to the finite lifetime�,
there are no neighboring absorption lines and all interaction
is resonant �fr=1�.

In order to allow for a correct interpretation of the time-
differential spectra in a three-level nuclear medium, we first
consider the two-level system �=0� as a reference case. In
Fig. 14 the total transmitted intensity for N=50 is plotted for
different values of detuning �=�s−�0, with �s and �0 the
frequency of the source photon and the nuclear transition,
respectively. The other parameters involved are chosen as
�s=� and �r=� /10. In comparison with the bold solid line,
which represents the normal lifetime curve �without ab-
sorber�, there is a considerable speed-up effect at small
times, i.e., the exponential has a steeper slope. It is followed
by a dynamical beat. Both features are pure multiple scatter-
ing effects and have been discussed in detail in many papers,
see, e.g., Refs. 5, 8, and 23–25.

If the incident radiation is detuned from resonance, the
beating pattern shifts towards smaller times, while its ampli-
tude increases. When ��2�, it is seen that, for certain times,
even more radiation is detected than without absorber.28

Eventually, for large detuning, the spectrum approaches the
normal lifetime curve, as is expected.

Figure 15 shows the simulations of the time-differential
spectra in a nuclear three-level � system ��0� for inci-
dence of a �+ photon. Two absorbers �N=5 and N=20� and
four different values of mixing interaction  are compared.
We have chosen �s=�3=�2 and �2

r =�3
r =�2 /10 and the inci-

dent radiation is tuned at the center of the �mixed� absorption
lines, �s=�2=�3. The bold solid line again represents the
normal lifetime curve.

The speed-up and dynamical beat signatures are now less
pronounced because the absorbers are chosen to be less
thick. A feature for �0 is the appearance of radiation with
the orthogonal polarization state �I+−�. This radiation does
not interfere with the incoming radiation and, hence, does
not display the initial exponential decay curve �which origi-
nates from the decay of the source nucleus�. It contributes to
the total spectrum mainly at times several lifetimes later than
t=0. This delay decreases, however, with increasing ,
along with the amplitude of its contribution. For large , the
spectra tend to coincide with the normal lifetime curve,
which could be compared with the case of a large detuning in
the two-level system. For N=5 the effects are similar but less
pronounced.

Simulations for the case of an optical � scheme �we
choose �3=�2 /100� are presented in Fig. 16. The spectra are
very similar to the case with equal decay rates, except that
the peak amplitude of the I+− contribution is a little higher.
Its shape and position have not changed.

From the solutions of the photon wave functions in the
coherent path model we know that they are superpositions of
n-hop amplitudes, with n �or n+1� the number of real scat-
tering events. It is instructive to also visualize these n-hop
amplitudes in their time-differential form. The first n-hop
amplitudes for N=20 are shown in Fig. 17. As in the time-
integrated picture, the first hop yields a negative contribution
with respect to the �positive� exponential contribution of the
noninteracting part of the radiation. This first hop amplitude
decreases the transmitted intensity for small times, giving
rise to the apparent speed-up effect. The contributions of the
next n-hop amplitudes not only decrease, but also shift to-
wards later times. It can be shown that, for =0, they reach
their maximum strength exactly at tn=n��2 /2�−1. Hence,

FIG. 14. �Color online� Simulated time-differential spectra in a
two-level system �=0� for different values of �=�s−�0.
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each n-hop amplitude is seen to be delayed with respect to
the noninteracting radiation, which has its maximum trans-
mission at t=0. The specific form of tn supports the interpre-
tation that the delay is simply due to the interaction of the
radiation with the nuclear medium, where each interaction
�scattering� adds ��2 /2�−1 to the delay. This also coincides
with the intuitive picture that, upon absorption of the radia-
tion, the nucleus decays with a lifetime of �2

−1 and therefore
slows down the radiation by the same factor.

For =�2, although the concept of a peak amplitude is
less applicable, the contribution of an n-hop amplitude is
also seen to shift towards later times with increasing n. Their
oscillatory behavior, however, makes a straightforward inter-
pretation more cumbersome. At least, we observe that the
n-hop amplitudes for I+− experience more delay than their
I++ counterparts. The creation of the amplitudes belonging to
I+− involves at least one interaction with the mixing field.
This interaction time is the reason for the additional delay.

IV. CONCLUSIONS

A fully quantum mechanical model for resonant scattering
in a nuclear �-scheme is developed. The model allows a
thorough analysis of both the close connection with optical
EIT and the observed reduction of absorption in the FeCO3
Mössbauer experiments.

It is shown that the level mixing or nuclear �-scheme is,
in principle, equivalent with the �-schemes as widely inves-
tigated in quantum optics. However, in the nuclear case, the
excited state is not coupled to a metastable state, which is of
utmost importance for the creation of a dark state and hence
EIT. If the two excited states have the same decay rate, any
reduction in absorption at the line center can only stem from
the nonresonance condition at the Stark split levels.

When multiple scattering is considered, a very interesting
feature emerges from the equations. The breaking of the
axial symmetry by a mixing interaction gives rise to the de-
velopment of the complementary photon polarization state.

FIG. 15. �Color online� Simu-
lated time-differential spectra in a
three-level nuclear � system ��3

=�2� for different values of the
mixing interaction .
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After the first scattering, an incident �+ photon can be trans-
formed into a �− photon. At each subsequent scattering, the
photon can flip its polarization state. It is shown that the
complementary polarization state can be strongly enhanced
by traveling through a thick medium, where the final photon
field is a coherent sum over all possible quantum paths that
have the same final polarization state. Due to its different
polarization state this field does not interfere with the source
field. This is translated to an apparent reduction of absorp-
tion. In a time domain picture this field can display a delay of
several lifetimes with respect to a noninteracting field.

In conclusion, although the observable effects of transpar-
ency and delay of the gamma radiation in the nuclear �
scheme studied are similar to EIT, they have a different
source. They originate from a level mixing induced polariza-
tion change that is enhanced by multiple scattering.
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APPENDIX: THE PHOTON WAVE FUNCTION
IN MORE DETAIL

The aim of this section is to justify the use of Eq. �32� as
the photon wave function. We argue that, following Scully
and Zubairy,22 it is possible to assign a photon wave function
status to the probability that a single photon will lead to the
ejection of a photoelectron in a detector at point r. In reso-
nance fluorescence experiments involving nuclei and gamma
photons, the latter are commonly detected by means of a
proportional counter. The detection principle is based on the
ionization of �gas� atoms, which produces a detectable cur-

rent. In this process the ionizing photon is destroyed. There-
fore, the probability that a photon ionizes a detector atom at
position r and between times t and t+dt is proportional to
w�r , t�dt �Ref. 22� with

w�r,t� = ��� f�E�+��r,t���i��2, �A1�

where ��i� and �� f� are the initial and final state of the photon
field. The photon is annihilated by the positive frequency
part of the electric field operator

E�+��r,t� = �
k,�

Ek�k
�ak,�ei�k·r−�kt�, �A2�

where Ek= ���k /2�0V�1/2, �k
� a unit polarization vector, be-

longing to polarization state �, and ak,� the annihilation op-
erator of a photon with wave vector k and polarization �.

If ��i� corresponds to a single photon state, designated by
����, then �� f� can only coincide with the vacuum state �0�.
Hence, the function

��r,t� = �0�E�+��r,t����� �A3�

can be interpreted as a single photon wave function. It must
be emphasized that in this approach the space and time de-
pendent wave function only emerges from the photon inter-
action with a detector atom.

Let us now try to find an expression for this ���� in the
coherent path model. For simplicity, we only consider a
source nucleus, and deal with the radiation it emits. Substi-
tuting the expression of the source amplitude S��� of Eq.
�17� in Eq. �9� we find that

Pk��� = �VPkS

�
� e−ik·r0

�� − �k + i���� − �s + i
�s

2
� , �A4�

where we have discarded the polarization dependence. Note
that this equation is expressed in its three-dimensional form

FIG. 16. �Color online� Simu-
lated time-differential spectra in
a three-level � system with
�3=�2 /100 and N=20, for differ-
ent values of the mixing inter-
action .
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with r0 the position of the source nucleus. Applying the Fou-
rier transform 	Eq. �3�
 back to time domain, we have

s�t� = e−�st/2 �A5�

and

pk�t� = �VPkS

�
�e−ik·r0

1 − eit��k−�s+i�s/2�

�k − �s + i
�s

2

. �A6�

According to Eq. �1�, the state vector of this system can now
be reconstructed as

���t�� = e−i�ste−�st/2�Se,�0k��

+ �
k
�VPkS

�
�e−i�kte−ik·r0

1 − eit��k−�s+i�s/2�

�k − �s + i
�s

2

�Sg,1k� .

�A7�

However, to stay consistent with the derivation of the photon
wave function, resulting in the definition in Eq. �A3�, we
should express this state vector in an interaction representa-
tion. In this transition only the exponential factors corre-
sponding to the eigenfrequencies of the states are omitted.
The resulting expression now exactly equals Eq. �6.3.17� of
Ref. 22, where the state vector of a decaying two-level atom
is derived in a fully quantum mechanical way. Now, we can
define the single-photon field state by taking the trace over
the nuclear subsystem,

����t�� = �
k

pk�t��1k� �A8�

=�
k
�VPkS

�
�e−ik·r0

1 − eit��k−�s+i�s/2�

�k − �s + i
�s

2

�1k� , �A9�

which actually is a linear superposition of single-photon
states with different wave vectors. Substituting this result
and Eq. �A2� into Eq. �A3�, we find

��r,t� = �
k,k�

Ek��VPkS

�
�e−i�k�tei�k�·r−k·r0�

�
1 − eit��k−�s+i�s/2�

�k − �s + i
�s

2

�0�ak���� �A10�

=�
k

Ek�VPkS

�
�e−i�kteik·�r−r0�

�
1 − eit��k−�s+i�s/2�

�k − �s + i
�s

2

�A11�

=�
k

Ekeik·r−i�ktpk�t� . �A12�

This last expression for the photon wave function equals the
suggested expression in Eq. �32�, except for the Ek factor.
Evaluating the sum over k in the Weisskopf-Wigner approxi-
mation, this term only yields an overall multiplication factor
and can be neglected if one is only interested in relative
magnitudes.

Therefore, we can state that, although the introduction of
the photon wave function in Eq. �32� was only done in a
heuristic way, its use for our purposes is now rigorously
justified.

FIG. 17. �Color online� Simulations of the time-differential
n-hop amplitudes in a two-level system �top figure� and in a three-
level �-nuclear system �middle and bottom figure� with �3=�2.
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