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Electronic structure of double-wall carbon nanotubes �DWNTs� consisting of two concentric graphene
cylinders with extremely strong covalent bonding of atoms within the individual graphitic sheets, but very
weak van der Waals type interaction between them is calculated in the terms of the linear augmented cylin-
drical wave �LACW� method. A one-electron potential is used and the approximations are made in the sense of
muffin-tin �MT� potentials and local density functional theory only. The atoms of DWNT are considered to be
enclosed between cylinder-shaped potential barriers. In this approach, the electronic spectrum of the DWNTs
is governed by the free movement of electron in the interatomic space of two cylindrical layers, by electron
scattering on the MT spheres, and by electron tunneling between the layers. We have calculated the complete
band structures and densities of states in the Fermi level region of the purely semiconducting zigzag DWNTs
�n ,0�@ �n� ,0� �10�n�23 and 19�n��32� with interlayer distance 3.2 Å��d�3.7 Å. Analogously data
are obtained for metallic armchair �n ,n�@ �n� ,n�� nanotubes �n=5 or 4 and n�=10 or 9�. According to the
LACW calculations, the interwall coupling results in a distinctly stronger perturbation of the band structure of
inner tube as compared to that of the outer one. In the case of semiconducting DWNTs, the minimum gap E11

between the singularities of the conduction and valence bands of the shell tubules decreases from
0.15 to 0.22 eV or increases from 0.7 to 0.15 eV, if dividing n� by three leaves a remainder of 1 or 2,
respectively. In both cases, the �E11 shifts of the gap do not decay, but slightly oscillate as one goes to the
tubules with larger diameters d. For inner tubules, the �E11 shift depends strongly on the d. For n mod 3=2
series with 10�n�16, the shifts �E11 are positive, the maximum values of �E11 being equal to 0.39 and
0.32 eV, respectively. As one goes to the inner tubules with larger diameters, the shift �E11 quickly decays and
thereupon varies between 0.06 and −0.05 eV. In the case of armchair DWNTs, the interlayer coupling does not
break down the metal-type character of the band structure of the tubules. The high-energy shift of the � states
relative to the occupied � states is seen to be the most significant effect of the interlayer interaction in the
armchair double-wall pair. The large shifts of optical gaps of the tubules due to formation of the DWNTs
complicate the determination of the structure of DWNTs on the basis of optical data. On the other hand, the
results obtained open the opportunity to classify experimental data on the DWNTs more specifically.

DOI: 10.1103/PhysRevB.74.155442 PACS number�s�: 73.22.�f, 73.63.Fg

I. INTRODUCTION

The double-wall carbon nanotubes �DWNTs� can be con-
sidered as a limiting case between the single-wall carbon
nanotubes �SWNTs� and multiwall carbon nanotubes
�MWNTs�. The DWNT consists of two concentric graphene
cylinders with extremely strong covalent bonding of atoms
within the individual graphitic sheets, but very weak van der
Waals type interaction between them. The DWNTs are very
important from theoretical and experimental standpoint.
They are essential for electronic device applications, because
DWNTs are the molecular analogues to coaxial cables. Thus,
a metallic@semiconducting or semiconducting@metallic
DWNT can be, respectively, a molecular conductive wire
covered by an insulator or a molecular capacitor in a
memory device.1–3 It is believed that the double-shell carbon
cylinders would exhibit enhanced field emission, mechani-
cal, thermal, and filters properties when compared to
SWNTs.4

The production and characterization of DWNTs attracted
the attention of numerous scientists. The DWNTs have been
produced by several techniques such as the arc discharge
method,5,6 the catalytic chemical vapor deposition method,7

and a method utilizing fusion reactions of fullerenes in

SWNTs.8,9 The DWNT yield can be greater than 95%.10 The
two constituent tubules of the DWNT can be characterized in
detail by measuring the Raman spectra and high-resolution
transmission electron microscopy.11–13 Particularly, the indi-
ces of the two coaxial layers of a DWNT can be assigned
based on the radial breathing mode frequencies, and the
atomic correlations between two graphene layers in DWNT
can be obtained using electron microscopy. In the DWNTs,
the interlayer spacing is not a constant, ranging from 3.4 Å
�the interlayer distance of graphite� to 4.1 Å.12 Recently, the
electronic structure of individual DWNTs suspended in water
and in air over trenches was studied using optical absorption,
emission, and time-resolved photoluminescence spectros-
copy; it was shown experimentally that interaction of the two
layers influences the optical transitions of the inner and outer
tubules.14,15

Theoretical studies of the nanotube electronic structure
perturbations due to interwall interaction in DWNTs have
received much attention since 1993.1 However, the full un-
derstanding of intertube transfer effects has not been
achieved yet. The first calculation for a band structure of
DWNT was done using the tight-binding �-electronic tech-
nique, which sensitively includes all symmetry constraints,
but in a strongly simplified Hamiltonian.1 It was shown that
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the energy dispersion relations of SWNTs are weakly per-
turbed by the interlayer interaction. More specifically, the
calculated energy band structures of the best matched
commensurate1 metallic@metallic armchair �5,5�@�10,10�
and zigzag �9,0�@�18,0� nanotubes with the number of
carbon atoms ratio in the layers equal to 1:2 yield a
metallic DWNT when a weak interlayer coupling between
the concentric nanotubes is introduced. The calculated co-
axial incommensurate zigzag metallic@semiconducting
�9,0�@�17,0� and semiconducting@metallic �10,0�@�18,0�
nanotubes also retain their individual metallic and semicon-
ducting identities when the weak interlayer interaction is
turned on. Finally, two coaxial semiconducting zigzag tu-
bules remain semiconducting when the weak interlayer cou-
pling is introduced.

Closer examination of the interwall vibronic interaction
effects was performed in the terms of tight-binding calcula-
tions with parametrization of the linear combination of
atomic orbitals �LCAO� matrix elements based on ab initio
results for simpler structures.16,17 The electronic structure
was calculated for three DWNTs in a Fermi level EF region.
For the �5,5�@�10,10� DWNT, it was predicted that the weak
intertube interaction periodically opens and closes four
pseudogaps in the density of states due to symmetry lower-
ing during the low-frequency librational motion about and
vibrational motion normal to the double-tube axis. As the
intertube interaction is switched on in the �9,0�@�18,0�
DWNT, the 30 meV gap opens.17 In the semiconducting
�8,0�@�17,0� system, the intertube interaction reduces the
gap of the noninteracting system by 0.1 eV.17 The band
structure of the �5,5�@�10,10� DWNT obtained using a
pseudopotential method and a plane-wave basis18 resembles
the tight-binding results.17 Using a scattering technique
based on a LCAO Hamiltonian, the ballistic quantum con-
ductance of �10,10�@�15,15� finite nanotube was
calculated.19 It was found that the interwall interaction
blocks certain conduction channels and redistributes the cur-
rent nonuniformly across the walls providing an explanation
for the unexpected integer and noninteger conductance val-
ues reported for multiwall nanotubes.20

Using the self-consistent plane-wave pseudopotential cal-
culations, the work functions of the small-diameter DWNTs
starting from the �4,0�@�13,0� and �3,3�@�8,8� nanotubes
were studied.21 In the case of DWNTs with ultrasmall inner
tubules, the calculations show that the electrostatic interwall
charge transfer induced effects result in the few tenth of eV
�up to 0.5 eV� band shift due to the large �up to 1.25 eV�
difference between the Fermi energies of the inner and outer
tubules. It is very important for our work that these effects
decrease drastically as one goes to the DWNTs with larger
diameters. Particularly, in the largest zigzag �8,0�@�17,0�
and armchair �5,5�@�10,10� DWNTs calculated,21 the shifts
are equal to 0.05 eV and 0.02 eV, respectively, that is negli-
gible in comparison with the tunneling effects studied in our
paper �see below�. The charge transfer between the inner and
outer tubules of the DWNTs with larger diameters is shown
to be negligible, because the Fermi level energies are equal
for the SWNTs with diameters larger than 1 nm.21

Finally, with due account of the cylindrical geometry of
the nanotubes, a numerical technique for a local-density-

functional calculation of the nanotubes electronic structure
was presented and applied to DWNTs,22 but for strongly
oversimplified structural model of the nanotubes, where the
point charges of the individual C4+ ions in the walls with
graphitic honeycomb lattice were replaced by the two-
dimensional infinitely thin structureless charged “sheets” of
cylindrical symmetry with uniform surface-charge density.

A linear augmented cylindrical wave �LACW�
method23–25 is a more satisfying local-density-functional ap-
proach to determining the electronic states of nanotubes, in
which one takes into account the cylindrical geometry of the
nanotubes and considers a real approximately van der Waals
width of the cylindrical layer and a real atomic structure of
nanotubes. It is the aim of this work to study the perturba-
tions of the electronic band structures and densities of states
�DOS� of the core and shell tubes due to the intertube cou-
pling in DWNTs in the terms of this method. For this pur-
pose, we calculate the complete band structure of the purely
semiconducting zigzag �n ,0�@ �n� ,0� and purely metallic
armchair �n ,n�@ �n� ,n�� DWNTs and use the results to cor-
relate the minimum direct energy gaps E11 between the con-
duction and valence band singularities with the nanotubes
diameters. It is to be noted that the latest optical absorption
and time-resolved photoluminescence measurements of
DWNTs have shown that one can determine experimentally
the partial DOS and interband optical transition energies as-
sociated with core and shell tubes.9,14

Previously, the LACW method was successfully used to
correlate the minimum direct energy gaps between the con-
duction and valence band singularities of metallic and semi-
conducting SWNTs with the nanotube structure and optical
absorption spectra.26,27 The effects of transition metal inter-
calation on the electronic properties of the carbon and boron-
nitride nanotubes, as well as an influence of impurity atoms
on the carbon and boron-nitride SWNTs band structure were
studied using this approach too.23–25,28,29 On the basis of
LACW method, a simple model for the electronic structure
of SWNTs embedded in a crystal matrix was developed and
used to discuss the transport properties of devices with nano-
tubes encapsulated in a semiconductor crystal.30

The LACW method, as applied to the nanotubes, has ad-
vantage over the conventional LCAO and plane-wave
pseudopotential methods. While low level LCAO calcula-
tions are relatively easy to do, improving the accuracy
quickly becomes both technically demanding and computa-
tionally very expensive.31 The main concern with approaches
of the LCAO method is the transferability of the basis set;
moreover, the LCAO basis is adequate to achieve good re-
sults for the valence band, but not for the conduction band,
because this basis does not include the delocalized conduct-
ing plane-wave type functions. The plane-wave pseudopo-
tential calculations suffer from a slow convergence and an
unfavorable scaling: the number of basis functions and time
taken to perform such a calculation on a computer increases
asymptotically with the cube of the number of atoms.31 This
cubic scaling is a consequence of the purely delocalized na-
ture of the plane-wave basis set. For example, in the case of
the DWNTs, the single-electron wave functions were ex-
panded in about 3�105 plane waves;21 the LACW calcula-
tions of these systems require about 103 basis functions. One
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way around slow convergence of the plane-wave pseudopo-
tential method is a construction of the generalized Wannier
functions by confining them to spherical regions centered on
atoms as in a muffin-tin approach.31 However, this version of
pseudopotential methods has not been yet applied to the
nanotubes. The basis of the LACW method has both local-
ized and delocalized components. Finally, the main argument
for using cylindrical waves is to account for the cylindrical
geometry of the nanotubes in an explicit form that offers the
obvious advantages.

II. THEORY

A. Electron potential

The LACW method is just a reformulation for cylindrical
multiatomic systems of the linear augmented plane-wave
�LAPW� theory.32–34 In common with the standard and most
simple LAPW technique for bulk materials,32–34 in LACW
method, a one-electron potential is used and the approxima-
tions are made in the sense of muffin-tin �MT� potentials and
local density functional theory only. However, the electronic
potential of a nanotube differs drastically from that of bulk
material. Indeed, infinite motion of an electron is possible in
any direction in a crystal, but it is obviously limited in the
case of nanotubes by their size and shape. In terms of the
LACW method, the atoms of DWNT are considered to be
enclosed between two essentially impenetrable �in our
model, infinite� cylinder-shaped potential barriers �b1 and
�a2, because there are two vacuum regions �v on the outside
of the tubule 2 and on the inside of the tubule 1 �Fig. 1�. On
the other hand, the cylinder-shaped potential barriers �a1 and
�b2 on the outside of the tubule 1 and on the inside of the
tubule 2 are penetrable �finite� ones, so that electron tunnel-
ing exchange between the tubules 1 and 2 is possible. The
radii a1, b1 and a2, b2 of these barriers are chosen so that the
regions confined by barriers accommodate a significant por-
tion of the electron density of the tubules 1 and 2, respec-
tively. Based on our previous calculations of the SWNTs, for
zigzag nanotubes, we take aj =Rj +2.3 a.u., bj =Rj −2.3 a.u.,
and the cutoff energy Ecut=50 eV �here, Rj is radius of the
tubule j�. For armchair nanotubes, we take aj =Rj +2.4 a.u.,
bj =Rj −2.6 a.u., and Ecut=100 eV. This choice determines
up to 600 basis functions for SWNTs and up to 1100 basis
functions for DWNTs and permits a description of all the
valence and the most important low-lying conduction band
states, but not the nearly free electron states located about
2.3 Å away from the carbon layer �3 or 4 eV above EF, 2 or
1 eV below vacuum�.35

For simplicity, we treat the classically forbidden region
� f between barriers �a1 and �b2 as a homogenous medium
with a constant classically impenetrable potential Vf. This
potential is treated as a parameter. To characterize the barrier
Vf, we used the dimensionless barrier parameter � defined as
�=Vf /	, where 	 is energy gap between the Fermi level of
the SWNTs and the interspherical potential.30 All the results
presented here are obtained for �=7 determined with account
of the graphite band structure. In graphite, the interlayer in-
teractions introduce band splitting and shift of roughly
2–1 eV. For example, the three-dimensional graphite calcu-

lations using the first principle muffin-tin and full-potential
Korringa-Kohn-Rostoker technique suggest that the pertur-
bations of valence � and � bands are equal to 4–2 and
1–0.5 eV, respectively.36 In DWNTs with the same inter-
layer separation, the band splitting and shift should be
roughly less by half, because every graphene layer interacts
with two neighbor layers in graphite, but there is only one
interlayer coupling in the nanotube. Moreover, we would ex-
pect the interlayer interaction to decrease additionally for the
nanotubes in comparison to graphite due to hybridization of
� and � states because of some curvature of the tubules.
Therefore, in this paper, the potential Vf common for all
DWNTs studied is chosen so that the average band splitting
and shifts due to the intertube interaction are about 0.5 eV in
the �5,5�@�10,10� DWNT; the �5,5� and �10,10� tubes show
the graphitic interwall separation of 3.4 Å when nested.

Finally, the electronic potential is spherically symmetrical
in the �I,1
 and �I,2
 regions of MT spheres 
 of atoms of
tubules 1 and 2, respectively. Inside these spheres, we calcu-
late the electron potential by means of the local density ap-
proximation with Slater exchange.37–39 As usually, the radii
of the MT spheres were chosen so that the atomic spheres
touch, but do not overlap.

In the interatomic regions �II,1 and �II,2, the one-electron
potential is constant; this constant potential is taken as the
origin for measurements of energy.

FIG. 1. DWNT �above� and cross section of the electronic po-
tential along N0M line �below�. Here, NT1 and NT2 are the inner
and outer tubes, respectively; �II,1 and �II,2 are the interstitial re-
gions of these tubules; the �
1 and �
2 are the muffin-tin regions
of the tubules 1 and 2, respectively; the �b1 and �a2 are the inner
and outer impenetrable cylindrical potential barriers between the
DWNT and vacuum regions �v; Vf is a potential energy in � f

region between the finite cylindrical potential barriers �a1 and �b2.
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In the LACW method, as different from the LAPW ap-
proach to bulk materials, the muffin-tin approximation re-
quires an introduction of free parameters, namely, the width
of cylindrical layer for the SWNTs and the constant potential
Vf of the classically impenetrable region for the DWNTs.
This complicates the self-consistent calculations of nano-
tubes in the terms of the LACW method. Both for the self-
consistent and non-self-consistent calculations, the results
depend on the choice of these parameters, the best fitted
parameters being different in these cases. Particularly, our
test self-consistent calculations of the SWNTs using a regular
k-point mesh, where seven points were equally spaced be-
tween Brillouin zone center and boundary, show that the ef-
fect of self-consistency is virtually equivalent to that of a
change of the width of cylindrical layer. Here, we perform
the non-self-consistent calculations of the band structure of
the DWNTs in order to avoid this ambiguity in the choice of
parameter Vf, the electron density of the nanotubes being
constructed as the superposition of the atomic ones. Surely,
the non-self-consistent approach is more adequate for the
systems without a significant change transfer. Therefore, we
study the experimentally relevant semiconducting zigzag
DWNTs with relatively large diameters starting from the
�10,0�@�19,0� nanotube, as well as the metallic armchair
�5,5�@�10,10� nanotube, for which the change transfer be-
tween the inner and outer tubules is negligible.21 The band
shifts and charge transfer effects are more pronounced in the
small-diameter DWNTs, and the band structure results in
these systems would be more sensitive both to the choice of
the Vf and to the self-consistency corrections of the potential
profile given in the Fig. 1. In order to improve the fixed
potential and to perform the self-consistent LACW calcula-
tions of the nanotubes, one must develop a full-potential ver-
sion of the model.

In the muffin-tin LACW approach, the electronic spec-
trum of the DWNTs is governed by the free movement of
electron in the interatomic space of two cylindrical layers, by
electron scattering on the MT spheres, and by electron tun-
neling through classically forbidden region � f between the
layers.

B. Basis functions

To construct the basis wave functions � �linearized aug-
mented cylindrical waves, LACWs� for DWNT, the solutions
of the wave equation for the classically forbidden, inter-
spherical, and MT regions of two tubules should be sewn
together so that the resulting LACWs are continuous and
differentiable anywhere in the system. In the interspherical
region of the nanotubes and in the classically forbidden re-
gion between the tubules, the LACWs are the solutions of
the Schrödinger equation for a free electron movement; in
the cylindrical coordinates Z ,R ,�, this equation takes the
form �in atomic Rydberg units�

�− � 1

R

�

�R
R

�

�R
+

1

R2

�2

��2 +
�2

�Z2� + U�R����Z,R,��

= E��Z,R,�� , �1�

where

U�R� = � 0, b1 � R � a1, b2 � R � a2,


 , R � b1,R � a2,

Vf , a1 � R � b2.
� �2�

Due to cylindrical symmetry of the potential U�R�, the
solutions of Eq. �1� have the form �=�PMN
=�P�Z��M����	M	N�R�, where

�P�Z,k� =
1

c

exp�iKPZ�, KP = k + kP,

kP = P�2�/c�, P = 0, ± 1, ± 2, . . . . �3�

The function �P�Z ,k� corresponds to the movement of an
electron along the Z axis in a one-dimensional system with
periodic boundary conditions; c is a lattice constant for the Z
direction; k is a one-dimensional crystal momentum, −� /c
�k�� /c. The function

�M��� =
1


2�
exp�iM��, M = 0, ± 1, ± 2, . . . �4�

corresponds to the rotation of an electron about the Z axis.
The function �	M	N�R� corresponds to the radial movement
of an electron in the interspherical regions �II,j �j=1,2� of
the two tubules and in the classically forbidden region � f; it
is a solution of the equation

�−
1

R

d

dR
R

d

dR
+

M2

R2 ��	M	,N�R� + U�R��	M	,N�R�

= E	M	,N�	M	,N�R� . �5�

Here, E	M	,N is the energy spectrum, and N is the radial quan-
tum number. The energy

E = Kp
2 + E	M	,N �6�

corresponds to the wave function �PMN�Z ,R ,��.
In the regions �II,j, U�R�=0 and Eq. �5� takes the form of

the Bessel equation40,41

� d2

dR2 +
1

R

d

dR
+ �	M	,N

2 −
M2

R2 ��II,	M	,N�R� = 0, �7�

where �	M	,N= �E	M	,N�1/2. Any solution of this equation is rep-
resented by a linear combination of cylindrical Bessel func-
tions of the first JM and second YM kinds,

�II,	M	,N�R� = CM,N
J,j JM��	M	,NR� + CM,N

Y,j YM��	M	,NR�, j = 1,2.

�8�

In the � f region, U�R�=Vf and � f ,	M	,N�R� must obey the
equation

� d2

dR2 +
1

R

d

dR
− �Vf − �	M	,N

2 � −
M2

R2 �� f ,	M	,N�R� = 0. �9�

We calculate the DWNT electron energy levels located be-
low the potential Vf of the classically forbidden region. At
Vf ��	M	,N

2 , Eq. �9� is the modified Bessel equation.40,41 Its
solutions are the linear combinations of modified Bessel
functions of the first KM and second IM kinds,
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� f 	M	,N�R� = CM,N
K KM��	M	,N

f R� + CM,N
I IM��	M	,N

f R� , �10�

where �	M	,N
f = �Vf −�	M	,N

2 �1/2.
The function �IIf ,	M	N�R� should vanish at R=b1 and R

=a2,

CM,N
J,1 JM��	M	,Nb1� + CM,N

Y,1 YM��	M	,Nb1� = 0, �11�

CM,N
J,2 JM��	M	,Na2� + CM,N

Y,2 YM��	M	,Na2� = 0, �12�

be continuous and differentiable at R=a1 and R=b2,

CM,N
J,1 JM��	M	,Na1� + CM,N

Y,1 YM��	M	,Na1�

= CM,N
K KM��	M	,N

f a1� + CM,N
I IM��	M	,N

f a1� , �13�

CM,N
J,2 JM��	M	,Nb2� + CM,N

Y,2 YM��	M	,Nb2�

= CM,N
K KM��	M	,N

f b2� + CM,N
I IM��	M	,N

f b2� , �14�

�	M	,N�CM,N
J,1 JM� ��	M	,Na1� + CM,N

Y,1 YM� ��	M	,Na1��

= �	M	,N
f �CM,N

K KM� ��	M	,N
f a1� + CM,N

I IM� ��	M	,N
f a1�� ,

�15�

�	M	,N�CM,N
J,2 JM� ��	M	,Nb2� + CM,N

Y,2 YM� ��	M	,Nb2��

= �	M	,N
f �CM,N

K KM� ��	M	,N
f b2� + CM,N

I IM� ��	M	,N
f b2�� ,

�16�

and be normalized



b1

a2

	�IIf ,	M	,N�R�	2RdR = 1. �17�

From Eqs. �11�–�17� we obtain the coefficients CM,N
J,j and

CM,N
Y,j �j=1,2�, CM,N

K , CM,N
I , and �	M	,N.

Thus, in regions �II,1, �II,2, and � f, the form of the basis
function �IIf ,PMN is finally determined. It is a cylindrical
wave and

Ĥ�IIf ,PMN = �Kp
2 + �	M	,N

2 ��IIf ,PMN. �18�

It is worth noting that, in the interspherical regions �II,1 and
�II,2 of DWNT, the cylindrical wave �II,PMN�Z ,� ,R� has
the same analytical form of the linear combination of the
functions JM and YM �8� as in the case of an isolated
SWNT;23–25 only the equations for �	M	,N, CM,N

J,j , and CM,N
Y,j , as

well as their numerical values change.
As in LAPW theory or in LACW model of SWNT, inside

the MT sphere 
 of the tubule j in the local spherical coor-
dinate system � ,� ,�, the LACW �PMN of the double tube is
expanded in spherical harmonics Ylm�� ,��,

�I,j
,PMN��,�,�� = 
�
l=0,




�
m=−l

l

�Alm,j
ul,j
�El,j
,��

+ Blm,j
u̇l,j
�El,j
,���Ylm��̂� . �19�

Here, ul,j
 is the solution of the radial Schrödinger equation

ĤMTul,j
��� = El,j
ul,j
��� �20�

for energy El,j
, �̂= �� ,��, and u̇l,j
�El,j
 ,��
=�ul,j
�El,j
 ,�� /�El,j
. In Rydberg units, this equation takes
the form

1

�

�2

��2 ��ul,j
� + �El,j
 − Vj
��� −
l�l + 1�

�2 �ul,j
 = 0. �21�

Here, Vj
��� is the local density spherically symmetric po-
tential in the region of the MT sphere j
. Coefficients Alm,j

and Blm,j
 are selected so that both the LACW �PMN and its
derivative have no discontinuities at the boundaries of the
MT spheres. However, the analytical form of the cylindrical
wave �II,PMN near the MT spheres of the nanotube remains
unaltered in going from the SWNT to the DWNT. Therefore,
the analytical expressions for coefficients Alm,j
 and Blm,j

presented for the SWNT in Refs. 23–25 remain valid in the
case of DWNT,

Alm,j
 = rj

2 Dlm,j


PMNalm,j

PMN�rj
� , �22�

Blm,j
 = rj

2 Dlm,j


PMNblm,j

PMN�rj
� . �23�

Here, rj
 is a radius of MT sphere of atom 
 of tubule j,

Dlm,j

PMN =

1

2c

� �2l + 1���l − 	m	�!�
��l + 	m	�!� �1/2

�− 1��0.5�m+	m	+l��il

�exp�i�KPZj
 + M� j
��

��− 1�M�CM,N
J,j Jm−M��	M	,NRj
�

+ CM,N
Y,j Ym−M��	M	,NRj
�� , �24�

alm,j

PMN�rj
� = I2,j


PMN�rj
�u̇l,j
�rj
� − I1,j

PMN�rj
�u̇l,j
� �rj
� ,

�25�

blm,j

PMN�rj
� = I1,j


PMN�rj
�ul,j
� �rj
� − I2,j

PMN�rj
�ul,j
�rj
� .

�26�

Where Zj
, � j
, and Rj
 are cylindrical coordinates of the
atom 
 of tubule j; ul,j
� =�ul,j
 /�� and u̇l,j
� =�ul,j
 /�� are
radial derivatives of the ul,j
 and u̇l,j
 functions; finally, I1
and I2 are integrals of the augmented Legendre polynomials
Pl

	m	,

I1 = 2

0

�/2

exp�i�KPrj
 cos ���Jm��	M	,Nrj
 sin ��Pl
	m	

��cos ��sin �d� , �27�

I2 = 2

0

�/2

exp�i�KPrj
 cos ����iKP cos �Jm��	M	,Nrj
 sin ��

+ �1/2��	M	,N sin �� � �Jm−1��	M	,Nrj
 sin ��

− Jm−1��	M	,Nrj
 sin ���Pl
	m	�cos ��sin �d� . �28�

Thus, at b1�R�a1 and b2�R�a2, the LACWs �MNP of
DWNT have the same analytical form as for the noninteract-
ing SWNTs, whereas, in the � f region of DWNT,
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�MNP�Z,�,R� = ei�k+kP�ZeiM��CM,N
K KM��	M	,N

f R�

+ CM,N
I IM��	M	,N

f R�� . �29�

C. Overlap integrals and Hamiltonian matrix elements

The integral ��P2M2N2
	�P1M1N1

� of the product of the
LACWs �P2M2N2

* and �P1M1N1
over the unit cell � is equal

to the integral of the product of cylindrical waves �II,f ,P2M2N2

*

and �II,f ,P1M1N1
over the interspherical regions �II,1 and �II,2

and classically forbidden region � f plus the sum of the inte-
grals of the product of spherical parts of the LACWs
�I,j
,P2M2N2

* and �I,j
,P1M1N1
over the MT regions,



�

�P2M2N2

* �P1M1N1
dV

= 

�II,1+�II,2+�f

�II,f ,P2M2N2

* �II,f ,P1M1N1
dV

+ �
j=1,2

�





�j


�I,j
,P2M2N2

* �I,j
,P1M1N1
dV . �30�

The integral over �II,1+�II,2+� f is equal to the integral over
� minus the sum of the integrals over the MT regions. Due
to the fact that the cylindrical waves as solutions of the
Schrödinger equation �1� are orthonormalized, the integral
over � is equal to the product of the 	 functions. As a result,
Eq. �30� takes the form

��P2M2N2
	�P1M1N1

�

= 	P2M2N2,P1M1N1

− �
j=1,2

�





�j


�II,P2M2N2

* �II,P1M1N1
dV

+ �
j=1,2

�





�j


�I,j
,P2M2N2

* �I,j
,P1M1N1
dV . �31�

Inasmuch as both the cylindrical wave �II,PMN and spheri-
cally symmetrical part �I,j
,PMN of LACW in the MT re-
gions have the same form for DWNT and constituent tu-
bules, the expression for overlap integrals obtained for the
SWNT23–25 can be readily rewritten for the DWNT,

��P2M2N2
	�P1M1N1

� = 	P2M2N2,P1M1N1
−

1

c
�− 1�M2+M1 �

j=1,2
�



exp�i��kP1
− kP2

�Zj
 + �M1 − M2�� j
��

� �
m=−





�CM2,N2

J,j Jm−M2
��	M2	,N2

Rj
� + CM2,N2

Y,j Ym−M2
��	M2	,N2

Rj
���CM1,N1

J,j Jm−M1
��	M1	,N1

Rj
�

+ CM1,N1

Y,j Ym−M1
��	M1	,N1

Rj
���I3,j

P2M2N2,P1M1N1 − rj


4 �
l=	m	


 �2l + 1���l − 	m	�!�
2��l + 	m	�!�

Slm,j

P2M2N2,P1M1N1�rj
�� , �32�

where

I3 = 2

0

�/2 

0

rj


cos�r�kP1
− kP2

�cos ��Jm��	M2	,N2
r sin ��

�Jm��	M1	,N1
r sin ��sin �r2d�dr ,

Slm,j
�rj
� = �alm,

P2M2N2�*alm,


P1M1N1 + Nl,j
�blm,

P2M2N2�*blm,


P1M1N1,

�33�

Nl,j
 = 

0

rj


�ul,j
�2r2dr . �34�

Analogously, for the Hamiltonian matrix elements of
DWNT we have



�

�P2M2N2

* Ĥ�P1M1N1
dV

= 

�II,1+�II,2+�f

�IIf ,P2M2N2

* Ĥ�IIf ,P1M1N1
dV

+ �
j=1,2

�





�j


�I,j
,P2M2N2

* ĤMT�I,j
,P1M1N1
dV .

�35�

Again, the integral over �II,1+�II,2+� f is equal to the inte-
gral over � minus the sum of the integrals over the MT
regions. In �, cylindrical wave �IIf ,PMN is the solution of
Schrödinger equation �1� with energy Kp

2 +�	M	,N
2 �18�. As a

result, Eq. �35� takes the form
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��P2M2N2
	Ĥ	�P1M1N1

� = �KP2
KP1

+ �	M2	,N2
�	M1	,N1

�	P2M2N2,P1M1N1
− �

j=1,2
�





�j


�II,P2M2N2

* �− ���II,P1M1N1
dV

+ �
j=1,2

�





�j


�I,j
,P2M2N2

* ĤMT�I,j
,P1M1N1
dV . �36�

In the MT regions, the functions �II,PMN and �I,j
,PMN have the same analytical form in the case of double-tubule and
noninteracting constituent tubules. Thus, the equation for Hamiltonian matrix elements of DWNT can be easily obtained from
that of SWNT,23–25

��P2M2N2
	Ĥ	�P1M1N1

� = �KP2
KP1

+ �	M2	,N2
�	M1	,N1

�	P2M2N2,P1M1N1
−

1

c
�− 1�M2+M1 �

j=1,2
�



exp�i��kP1
− kP2

�Zj
 + �M1 − M2�� j
��

� �
m=−





�CM2,N2

J,j Jm−M2
��	M2	,N2

Rj
� + CM2,N2

Y,j Ym−M2
��	M2	,N2

Rj
���CM1,N1

J,j Jm−M1
��	M1	,N1

Rj
�

+ CM1,N1

Y,j Ym−M1
��	M1	,N1

Rj
���KP2
KP1

I3,j

P2M2N2,P1M1N1 + �	M2	,N2

�	M1	,N1
I3,j
�P2M2N2,P1M1N1 + m4

2I4,j

P2M2N2,P1M1N1

− rj

4 �

l=	m	


 �2l + 1���l − 	m	�!�
2��l + 	m	�!�

�El,j
Slm,j

P2M2N2,P1M1N1�rj
� + �lm,j


P2M2N2,P1M1N1�rj
��� , �37�

where

I3� = 2

0

�/2 

0

rj


cos�r�kP1
− kP2

�cos ��Jm� ��	M2	,N2
r sin ��

� Jm� ��	M1	,N1
r sin ��sin �r2d�dr , �38�

I4 = 2

0

�/2 

0

rj


cos�r�kP1
− kP2

�cos ��Jm��	M2	,N2
r sin ��

� Jm��	M1	,N1
r sin ���sin ��−1d�dr , �39�

�lm,j
 = �I2
*I1 + I1

*I2� · ul,j
ul,
� − I2
*I2 · ul,j
ul,j
 − I1

*I1 · ul,j
� ul,j
� .

�40�

Finally, using the secular equation

det���P2M2N2
	Ĥ	�P1M1N1

� − En�k���P2M2N2
	�P1M1N1

�� = 0,

�
P1M1N1

���P2M2N2
	Ĥ	�P1M1N1

�

− En�k���P2M2N2
	�P1M1N1

��cnk,P1M1N1
= 0, �41�

we calculate the dispersion curves En�k� of DWNT and cor-
responding electronic wave functions

�nk�r� = �
PMN

cnk,PMN
�PMN�r� . �42�

In order to better appreciate how the electronic structure of
DWNT evolves from that of the two constituent tubules, for
the eigenstate �nk�r�, it is instructive to calculate the prob-

abilities wj,nk and wf ,nk that electron is located on the tubule
j and in the classically forbidden region

wj,nk = �
PMN

	cnk,PMN
	2

�
�CM,N

J,j �2 + �CM,N
Y,j �2

�
i=1,2

��CM,N
J,i �2 + �CM,N

Y,i �2� + �CM,N
I �2 + �CM,N

K �2
,

j = 1,2, �43�

wf ,nk = �
PMN

	cnk,PMN
	2

�
�CM,N

I �2 + �CM,N
K �2

�
i=1,2

��CM,N
J,i �2 + �CM,N

Y,i �2� + �CM,N
I �2 + �CM,N

K �2
.

�44�

In our case of high barrier Vf and weak interlayer cou-
pling, the probabilities wj,nk are about 1 or 0 for different
dispersion curves and virtually independent on momentum k.
In all the DWNTs considered below, the probabilities wj,nk
were either larger than 0.99, or smaller than 0.01. Therefore,
the energy dispersion relations Ej,n�k� of DWNT can be char-
acterized by the number of tubule j, on which electron is
basically located, and one can present two band structures for
DWNT corresponding to states of the inner and outer tu-
bules, the total band structure of the DWNT being just a
superposition of band structures of the core and shell sys-
tems.
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III. RESULTS

We first consider the semiconducting zigzag DWNTs. Ex-
perimental data42 and our previous band structure calcula-
tions of semiconducting zigzag SWNTs �n ,0� with the val-
ues of diameter d from 4 to 20 Å testify that the minimum
direct energy difference E11=E��c1����−E��v1���� between

the singularities of the conduction and valence bands depend
on whether dividing n by three leaves a remainder of 1 or 2
�n mod 3=1 or n mod 3=2�. The gap energy E11�d−1� is os-
cillating function that gradually decays to zero as d−1 goes to
zero, reaches a maximum at d−1 between 0.08 and 0.1 Å−1

�13�n�16�, and decreases abruptly at d−1�0.1 Å−1 �n
�11�. The curve E11�d−1� for n mod 3=1 is located totally
above analogous curve for n mod 3=2. For zigzag SWNTs
with about the same diameters, these gaps are approximately
less by half for tubules with n mod 3=2 than for those with
n mod 3=1. Thus, the �n ,0� SWNTs with n mod 3=2 and 2
can be thought of as the wide and low gap semiconductors,
respectively �Table I�. In the semiconducting zigzag SWNTs,
the dependence of the E11 on whether n mod 3=1 or 2 is a
result of then trigonal warping effects which shift the transi-
tion energies from the linear relation on d−1 in the high en-
ergy region if n mod 3=1 and in the low energy region if
n mod 3=2.42–45

Here, we have calculated the complete band structures
and densities of states in the Fermi level region of the 20
purely semiconducting DWNTs �n ,0�@ �n� ,0� with 10�n
�23 and 19�n��32. We omit the metallic structures hav-
ing n or n� evenly divisible by 3 and consider the DWNTs
with interlayer distance 3.2 Å��d�3.7 Å.

TABLE I. Minimum energy gaps of SWNTs.

SWNT E11, eV

�10,0� 0.31

�11,0� 0.32

�13,0� 0.83

�14,0� 0.56

�16,0� 0.89

�17,0� 0.50

�19,0� 0.80

�20,0� 0.46

�22,0� 0.75

�23,0� 0.35

�25,0� 0.70

�26,0� 0.41

�28,0� 0.66

�29,0� 0.38

�31,0� 0.62

TABLE II. Minimum energy gaps E11 of the core and shell
nanotubes in DWNTs and the shifts of the gaps �E11 due to forma-
tion of DWNTs from pairs of SWNTs.

DWNT

E11, eV �E11, eV

core shell core shell

�10,0�@�19,0� 0.64 0.65 0.32 −0.15

�10,0�@�20,0� 0.63 0.53 0.32 0.07

�11,0�@�19,0� 0.71 0.65 0.39 −0.16

�11,0�@�20,0� 0.71 0.53 0.39 0.07

�13,0�@�22,0� 1.02 0.55 0.19 −0.19

�13,0�@�23,0� 1.02 0.50 0.19 0.15

�14,0�@�22,0� 0.70 0.56 0.14 −0.19

�14,0�@�23,0� 0.70 0.50 0.14 0.15

�16,0�@�25,0� 0.94 0.52 0.04 −0.18

�16,0�@�26,0� 0.93 0.48 0.04 0.07

�17,0�@�25,0� 0.45 0.52 −0.05 −0.18

�17,0�@�26,0� 0.45 0.48 −0.05 0.07

�19,0�@�28,0� 0.76 0.46 −0.05 −0.20

�19,0�@�29,0� 0.76 0.46 −0.05 0.07

�20,0�@�28,0� 0.42 0.46 −0.05 −0.20

�20,0�@�29,0� 0.42 0.46 −0.05 0.07

�22,0�@�31,0� 0.75 0.40 0.00 −0.22

�23,0�@�31,0� 0.40 0.40 0.06 −0.22

FIG. 2. �Color online� Band structure of �13,0� SWNT.
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Table II shows the minimum gaps E11 in the DWNTs and
the shifts �E11 of these gaps due to the interwall perturba-
tion. Figures 2–6 and Table III show representative results of
the electronic structure calculations. The complete band
structures and DOS in the Fermi level region of the SWNTs
�13,0� and �22,0� can be compared with the analogous data
for the core �13,0� and shell �22,0� tubules of the DWNT. In
the DWNT �13,0�@�22,0�, both inner and outer nanotubes
belong to the n mod 3=1 series, the minimum energy gap
�0.83 eV� of the small-diameter SWNT �13,0� being larger
than that of the large-diameter SWNT �22,0� �0.76 eV� in
agreement with simple approximate equation E11�d−1

known from �-electronic band structure calculations of the
SWNTs. Our calculations indicate that the minimum gap E11
of �13,0� tube increases by 0.19 eV and that of �22,0� tube
decreases by 0.19 eV due to formation of the DWNT, a sig-
nificant value in device physics. The density of state curves
in the Fermi level region show that there are analogous low
energy shifts of the second gap E22=E��c2����−E��v2����
equal to 0.3 and 0.4 eV in the case of �13,0� and �22,0� tubes,
respectively. The interwall coupling results in a distinctly
stronger perturbation of the band structure of inner tube as
compared to that of outer one. The reason is that an addi-
tional space located between the �b2 and �a2 barriers that
become accessible to electrons of the small-diameter �13,0�
tube due to the formation of DWNT is about 2 times greater

in comparison with a new accessible region between the �b1
and �a1 barriers in the case of electrons of the large-diameter
�22,0� tube. For example, as one goes to the DWNT, the total
valence band width Ev=EF−E��2v�s�� of �13,0� tube de-
creases by 1.40 eV and that of �22,0� tube increases by
0.04 eV only.

In the DWNT �14,0�@�22,0�, the inner tube belongs to the
n mod 3=2 small gap series. Here, the gap of the inner
SWNT �14,0� equal to 0.42 eV is smaller than that of the
outer n mod 3=1 SWNT �22,0� in conflict with the E11
�d−1 equation. As the intertube interaction is switched on,
the gap of the inner tubule grows by 0.14 eV and that of the
outer tubule decreases by 0.19 eV, the relative values of the
gaps E11 of the tubules being reversed in the SWNTs and
DWNT. For the core and shell nanotubes, the gap shifts �E11
induced by the intertube coupling are oppositely directed
both in the �13, 0�@�22,0� and �14, 0�@�22,0� DWNTs. The
�E11 values are positive and negative for the inner and outer
tubules, respectively.

In the �13, 0�@�23,0� DWNT with the wide gap inner and
low gap outer nanotubes, the gap shifts of the two tubules
�E11=0.19 and 0.15 eV are almost equal and have the same
positive sign. This is also true for the �14, 0�@�23,0� DWNT,
where both tubules belong to the low gap n mod 3=2 series;
here, the �E11=0.14 and 0.15 eV for the core and shell sys-
tems.

Table II shows that, independent on the type of core tu-
bule, the gap E11 of the shell nanotube decreases by

FIG. 3. �Color online� Band structure of core �13,0� tubule lo-
cated inside �22,0� tubule.

FIG. 4. �Color online� Band structure of �22,0� SWNT.
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0.15–0.22 eV, if this tube belongs to the n� mod 3=1 series.
On the other hand, for the shell tubes with n� mod 3=2, the
gap shift �E11 is always positive: 0.7��E11�0.15 eV. In
both cases, the �E11 shifts do not decay, but slightly oscillate
as one goes to the tubules with larger diameters d. For inner
tubules, the �E11 shift depends strongly on the d. For
n mod 3=2 and n mod 3=2 series with 10�n�16, the shifts
�E11 are positive, the maximum values of �E11 being equal
to 0.32 and 0.39 eV, respectively. As one goes to the inner
tubules with larger diameters, the shift �E11 quickly decays
and thereupon varies between 0.06 and −0.05 eV.

Now let us consider the coaxial best matched metallic
DWNT �5, 5�@�10,10� consisting of a D5d �5,5� nanotube
nested inside the D10h �10,10� nanotube with the diameter
ratio 1:2. In this most commensurate structure, there are two
carbon atoms of the outer tubule for each carbon atom of the
inner tubule; this geometry has many similarities to the AB
stacking of graphite.1 Figures 7 and 8 show all the occupied
and unoccupied electronic states of SWNT �5,5� and the
states of the core tubule �5,5� nested inside of the �10,10�
tubule. The band structure of the �10,10� SWNT can be com-
pared with that of the �10,10� outer tubule as the latter inter-
acts with the inner �5,5� tubule �Figs. 9 and 10�. Figure 11
shows influence of the interlayer interaction on the density of
states of �5, 5�@�10,10� DWNT. The geometry was chosen
to give rise to the most commensurate interlayer stacking,
and the energy dispersion relations are seen to be strongly

TABLE III. Energy levels of the �13,0� and �22,0� SWNTs and
of these tubules in the �13,0�@�22,0� DWNT.

Level

Energy, eV

�13,0�
SWNT

�13,0� core
of DWNT

�22,0�
SWNT

�22,0� shell
of DWNT

�c2��� 0.95 0.79 0.81 0.53
�c1��� 0.41 0.51 0.37 0.29
�v1��� −0.42 −0.50 −0.38 −0.28
�v2��� −1.42 −0.75 −0.99 −0.89
�v1��� −2.35 −2.52 −2.53 −2.27
�v3��� −8.74 −8.89 −8.79 −9.05
�v2��� −17.12 −15.48 −16.89 −16.88
�v1�s� −17.50 −16.10 −17.29 −17.19
�v2�s� −24.01 −22.63 −24.05 −24.10
Sc��� 1.55 1.45 1.36 0.83
Sv��� −2.22 −2.25 −2.32 −2.43
Kc��� 1.79 1.77 1.46 1.83
Kv��� −2.65 −2.67 −2.68 −2.74

FIG. 5. �Color online� Band structure of outer �22,0� tubule
interacting with inner �13,0� tubule.

FIG. 6. �Color online� LACW DOS in the Fermi level region.
Here and in Fig. 11, we use Gaussian broadening with a half-width
of 0.05 eV. �a� �13,0� SWNT; �b� core �13,0� tubule nested in �22,0�
tubule; �c� �22,0� SWNT; �d� shell �22,0� tubule with nested �13,0�
tubule.
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FIG. 7. �Color online� Band structure of �5,5� SWNT.

FIG. 8. �Color online� Band structure of the core �5,5� nanotube
located inside �10,10� tubule.

FIG. 9. �Color online� Band structure of �10,10� SWNT.

FIG. 10. �Color online� Band structure of the outer �10,10� in-
teracting with inner �5,5� tubule.
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perturbed by the interlayer coupling; however, the interlayer
coupling does not break down the metal-type character of the
band structures of the �5,5� and �10,10� tubules. The Fermi
level is located at the intersection of the � bands at about
k= �2/3��� /c� both in the SWNTs and in the double-walled
pair. Formation of the DWNT �5, 5�@�10,10� results in in-
crease of the valence band width Ev of the �5,5� tubule by
1.3 eV, the increase of the Ev of the �10,10� tubule being
only 0.15 eV �Table IV�; again, perturbation of the bands of
core tubule is stronger in comparison with that of the shell
tubule. A high-energy shift of the � states relative to the

occupied � states is seen to be the must significant effect of
the interlayer interaction in the armchair double-wall pair.

This shift results in the significant perturbation of the
most important direct optical �-�* and �-�* transitions.

In the Brillouin zone center, the highest occupied � state
�v1��� is located above the highest occupied � state �v1���
in all armchair SWNTs.26 As the core tubule is nested in the
shell tubule, the direct gap in the � point E11�� ,�*�
=E��c1����−E��v1���� of the �5,5� and �10,10� tubules de-
creases by 0.96 and 0.40 eV, respectively. The energy gap
E11�� ,�*�=E�Sc1��*��−E�Sv1���� between the conduction
and valence �-band singularities of the �5,5� tube increases
and that of the �10,10� tubule decreses by 0.1 eV.

Formation of the �4, 4�@�9,9� DWNT results in the simi-
lar perturbation of the electronic structure of the core and
shell tubules.

In conclusion, the large shifts of optical gaps of the tu-
bules due to formation of the DWNTs complicate the deter-
mination of the structure of DWNTs on the basis of optical
data. On the other hand, the results obtained open the oppor-
tunity to classify experimental data on the DWNTs more
specifically.
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TABLE IV. Energy levels of the �5,5� and �10,10� SWNTs and
of these tubules in the �5,5�@�10,10� DWNT.

Level

Energy, eV

�5,5�
SWNT

�5,5� core
of DWNT

�10,10�
SWNT

�10,10� shell
of DWNT

�c2��� 2.66 2.87 1.37 1.10

�c1��� 0.78 0.78 0.65 0.43

�v1��� −1.47 −0.51 −0.85 −0.67

�v1��� −2.54 −2.66 −2.64 −2.82

�v2��� −6.38 −6.25 −5.72 −5.34

�v2��� −9.59 −9.64 −9.17 −9.30

�v1�s� −15.89 −14.78 −15.49 −15.50

�v2�s� −22.35 −21.04 −21.75 −21.90

Sc1 0.76 0.83 0.48 0.48

Sc2 1.13 1.08 0.98 0.96

Sc3 3.16 3.10 1.73 1.59

Sv1 −1.76 −1.69 −0.84 −0.90

Sv2 −2.57 −2.48 −1.58 −1.64

Kc��� 0.66 0.71 1.02 0.68

Kv��� −2.74 −2.59 −2.33 −2.45

Kv1��� −6.34 −5.39 −5.44 −5.30

Kv2��� −14.58 −13.35 −14.56 −14.65

Ks −17.31 −16.01 −16.79 −16.75

FIG. 11. �Color online� LACW DOSs in the Fermi level region.
�a� �5,5� SWNT; �b� core �5,5� nested in �10,10� tube; �c� �10,10�
SWNT; �d� shell �10,10� with nested �5,5� tube.
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