
Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps

Daniel Huertas-Hernando,1 F. Guinea,2 and Arne Brataas1,3

1Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
2Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco E28049 Madrid, Spain

3Centre for Advanced Study, Drammensveien 78, 0271 Oslo, Norway
�Received 23 June 2006; revised manuscript received 16 August 2006; published 24 October 2006�

A continuum model for the effective spin-orbit interaction in graphene is derived from a tight-binding model
which includes the � and � bands. We analyze the combined effects of the intra-atomic spin-orbit coupling,
curvature, and applied electric field, using perturbation theory. We recover the effective spin-orbit Hamiltonian
derived recently from group theoretical arguments by Kane and Mele. We find, for flat graphene, that the
intrinsic spin-orbit coupling �int��2 and the Rashba coupling due to a perpendicular electric field E, �E��,
where � is the intra-atomic spin-orbit coupling constant for carbon. Moreover we show that local curvature of
the graphene sheet induces an extra spin-orbit coupling term �curv��. For the values of E and curvature profile
reported in actual samples of graphene, we find that �int��E��curv. The effect of spin-orbit coupling on
derived materials of graphenelike fullerenes, nanotubes, and nanotube caps, is also studied. For fullerenes, only
�int is important. Both for nanotubes and nanotube caps �curv is in the order of a few Kelvins. We reproduce
the known appearance of a gap and spin-splitting in the energy spectrum of nanotubes due to the spin-orbit
coupling. For nanotube caps, spin-orbit coupling causes spin-splitting of the localized states at the cap, which
could allow spin-dependent field-effect emission.
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I. INTRODUCTION

A single layer of carbon atoms in a honeycomb lattice,
graphene, is an interesting two-dimensional system due to its
remarkable low energy electronic properties,1–3 e.g., a zero
density of states at the Fermi level without an energy gap,
and a linear, rather than parabolic, energy dispersion around
the Fermi level. The electronic properties of the many real-
izations of the honeycomb lattice of carbon such, e.g., bulk
graphite �three dimensional �3D��, carbon nanotube wires
�one dimensional �1D��, carbon nanotube quantum dots �zero
dimensional �0D��, and curved surfaces such as fullerenes,
have been studied extensively during the last decade. How-
ever, its two-dimensional �2D� version, graphene, a stable
atomic layer of carbon atoms, remained for long ellusive
among the known crystalline structures of carbon. Only re-
cently, the experimental realization of stable, highly crystal-
line, single layer samples of graphene,4–7 have been possible.
Such experimental developments have generated a renewed
interest in the field of two-dimensional mesoscopic systems.
The peculiar electronic properties of graphene are quite dif-
ferent from that of 2D semiconducting heterostructures
samples. It has been found that the integer Hall effect in
graphene is different than the “usual” quantum Hall effect in
semiconducting structures.8–11 Moreover, it has been theo-
retically suggested that a variety of properties, e.g., weak
�anti�localization,12–17 shot-noise18 and anomalous tunneling,
Klein’s paradox,19 are qualitatively different from the behav-
ior found in other 2D systems during the last decades. All
these predictions can now be directly investigated by experi-
ments. The activity in graphene, both theoretically and ex-
perimentally, is at present very intense. However so far, the
work has mainly focused on �i� the fact that the unit cell is
described by two inequivalent triangular sublattices A and B
intercalated, and �ii� there are two independent k points, K

and K�, corresponding to the two inequivalent corners of the
Brillouin zone of graphene. The Fermi level is located at
these K and K� points and crosses the � bands of graphene
�see Fig. 1 for details�. These two features provide an exotic
fourfold degeneracy of the low energy �spin-degenerate�
states of graphene. These states can be described by two sets
of two-dimensional chiral spinors which follow the massless
Dirac-Weyl equation and describe the electronic states of the
system near the K and K� points where the Fermi level is
located. Neutral graphene has one electron per carbon atom
in the � band, so the band below the Fermi level is full
�electronlike states� and the band above it is empty �holelike
states�. Electrons and holes in graphene behave like relativ-
istic Dirac fermions. The Fermi level can be moved by a
gate voltage underneath the graphene sample.4 State-of-the-
art samples are very clean, with mobilities �
�15 000 cm2 V−1 s−1,6 so charge transport can be ballistic
for long distances across the sample. From the mobilities of
the actual samples, it is believed that impurity scattering is
weak. Furthermore, it has been recently suggested that the
chiral nature of graphene carriers makes disordered regions
transparent for these carriers independently of the disorder,
as long as it is smooth on the scale of the lattice
constant.13,14,20

Less attention has been given to the spin so far. The main
interactions that could affect the spin degree of freedom in
graphene seem to be the spin-orbit coupling and exchange
interaction. It is not known to which extent magnetic impu-
rities are present in actual graphene samples. Their effect
seems small though, as noticed recently when investigating
weak localization and universal conductance fluctuations in
graphene.14 Spin-orbit interaction in graphene is supposed to
be weak, due to the low atomic number Z=6 of carbon.
Therefore both spin-splitting and spin-flip due to the combi-
nation of spin-orbit and scattering due to disorder is sup-
posed to be not very important. As a result, the spin degree
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of freedom is assumed to have a minor importance and spin
degenerate states are assumed. Besides, the spin degeneracy
is considered to be “trivial” in comparison to the fourfold
degeneracy previously mentioned, described by a pseudospin
degree of freedom. At present, there is a large activity in the
study of the dynamics of this pseudospin degree of
freedom.8–26

We think that the physics of the electronic spin in
graphene must be investigated in some detail, however. Al-
though it could be that the electronic spin is not as important
or exotic as the pseudospin when studying bulk properties,
edge states may be quite different. Induced magnetism at the
edges of the surface of graphite samples irradiated with pro-
tons have been reported.27 Moreover, perspectives of spin-
tronic applications in graphene could be very promising, so it
is important to clarify the role of the electronic spin. This is
one of the main purposes of the present paper. Moreover, we
feel that the existent knowledge about the spin-orbit interac-
tion in graphene is not yet complete24 and that certain, both
quantitative and qualitative, points must be discussed in
more detail. That is why we focus our discussion on the

spin-orbit coupling. The effect of other interactions as the
exchange interaction will be discussed elsewhere.

Spin-orbit coupling in graphene has an intrinsic part,
completely determined from the symmetry properties of the
honeycomb lattice. This is similar to the Dresselhauss spin-
orbit interaction in semiconducting heterostructures.28 Group
theoretical arguments allow to obtain the form of the effec-
tive Hamiltonian for the intrinsic spin-orbit coupling around
the K, K� points.24,29,30 It was predicted that this interaction
opens-up a gap �int in the energy dispersion. However, the
strength of this intrinsic spin-orbit coupling is still a subject
of discussion, although it is believed to be rather small, due
to the weakness of the atomic intra-atomic spin-orbit cou-
pling of carbon �. If an electric field E is applied perpen-
dicular to the sample, a Rashba interaction31 �E will also be
present in graphene. Analogous to the intrinsic coupling,
group theoretical arguments allow deducing the form of the
Rashba interaction.24,25 The strength of this Rashba spin-
orbit coupling is also still under discussion.

We follow a different approach. We set up a tight binding
model where we consider both the � and � bands of
graphene and the intra-atomic spin-orbit coupling �. We also
include curvature effects of the graphene surface and the
presence of a perpendicular electric field E. Starting from this
model, we obtain an effective Hamiltonian for the � bands,
by second order perturbation theory, which is formally the
same as the effective Hamiltonian obtained previously from
group theoretical methods29,30 by Kane and Mele.24 More-
over, we show that curvature effects between nearest-
neighbor atoms introduce an extra term �curv into the effec-
tive spin-orbit interaction of graphene, similar to the Rashba
interaction due to the electric field �E. We obtain explicit
expressions for these three couplings in terms of band struc-
ture parameters. Analytical expressions and numerical esti-
mates are given in Table I

We find that the intrinsic interaction �int�10 mK is two
orders of magnitude smaller than what was recently
estimated.24 Similar estimates for �int have been reported
recently.26,32,33 Moreover, we find that for typical values of
the electric field as, e.g., used by Kane and Mele24 �E
�70 mK. Similar discussion for �E has appeared also
recently.33 So spin-orbit coupling for flat graphene is rather
weak. Graphene samples seem to have an undulating surface
however.14 Our estimate for the typical observed ripples in-
dicates that �curv�0.2 K. It seems that curvature effects on

TABLE I. Dependence on band structure parameters, curvature, and electric field of the spin-orbit cou-
plings discussed in the text in the limit V1	V2 �widely separated � bands�. The parameters used are 

�0.264 Å �Ref. 36�, E�50 V/300 nm �Refs. 4 and 24�, �=12 meV �Refs. 38 and 39�, Vsp��4.2 eV,
Vss��−3.63 eV, Vpp��5.38 eV and Vpp��−2.24 eV �Refs. 40 and 41�, V1=2.47 eV, V2=6.33 eV, a
=1.42 Å, l�100 Å, h�10 Å and R�50–100 nm.

Intrinsic coupling, �int 3

4

�2

V1
�V1

V2
�4 0.01 K

Rashba coupling
�electric field E�50 V/300 nm�, �E

2�2

3

�
eE
V2

0.07 K

Curvature coupling, �curv ��Vpp�−Vpp��

V1
� a

R1
+

a

R2
��V1

V2
�2 0.2 K

FIG. 1. �Color online� Black �full� curves: � bands. Red
�dashed� curves: � bands. The dark and light green �gray� arrows
give contributions to the up and down spins at the A sublattice,
respectively. The opposite contributions can be defined for the B
sublattice. These interband transitions are equivalent to the pro-
cesses depicted in Fig. 3.
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the scale of the distance between neighboring atoms could
increase the strength of the spin-orbit coupling at least one
order of magnitude with respect that obtained for a flat sur-
face. More importantly, this type of “intrinsic” coupling will
be present in graphene as long as its surface is corrugated
even if E=0 when �E=0.

The paper is organized as follows: The next section pre-
sents a tight binding Hamiltonian for the band structure and
the intra-atomic spin-orbit coupling, curvature effects and a
perpendicular electric field. Then, the three effective spin-
orbit couplings �int, �E, �curv for a continuum model of the
spin-orbit interaction for the � bands in graphene at the K
and K� points are derived. Estimates of the values are given
at the end of the section. The next section applies the effec-
tive spin-orbit Hamiltonian to �i� fullerenes, where it is
shown that spin-orbit coupling effects play a small role at
low energies, �ii� nanotubes, where known results are recov-
ered, and �iii� nanotubes capped by semispherical fullerenes,
where it is shown that the spin-orbit coupling can lead to
localized states at the edges of the bulk subbands. The last
calculation includes also a continuum model for the elec-
tronic structure of nanotube caps, which, to our knowledge,
has not been discussed previously. A section with the main
conclusions completes the paper.

II. DERIVATION OF CONTINUUM MODELS FROM
INTRA-ATOMIC INTERACTIONS

A. Electronic bands

The orbitals corresponding to the � bands of graphene are
made by linear combinations of the 2s, 2px, and 2py atomic
orbitals, whereas the orbitals of the � bands are just the pz
orbitals. We consider the following Hamiltonian:

H = HSO + Hatom + H� + H�, �1�

where the atomic Hamiltonian in the absence of spin-orbit
coupling is

Hatom = �p �
i=x,y,z;s�=↑,↓

cis�
† cis� + �s �

s;s�=↑,↓
cs,s�

† cs,s�. �2�

where �p,s denote the atomic energy for the 2p and 2s atomic
orbitals of carbon, the operators ci;s� and cs;s� refer to pz, px,
py and s atomic orbitals, respectively, and s�= ↑ ,↓ denote the
electronic spin. HSO refers to the atomic spin-orbit coupling
occuring at the carbon atoms and the terms H�, H� describe
the � and � bands. In the following, we will set our origin of
energies such that ��=0. We use a nearest-neighbor hopping
model between the pz orbitals for H�, using one parameter
Vpp�. The rest of the intra-atomic hoppings are the nearest-
neighbor interactions Vpp�, Vsp�, and Vss� between the
atomic orbitals s, px, py of the � band. We describe the �
bands using a variation of an analytical model used for three-
dimensional semiconductors with the diamond structure,34

and which was generalized to the related problem of the
calculation of the acoustical modes of graphene.35 The model
for the sigma bands is described in Appendix A. The bands
can be calculated analytically as function of the parameters,

V1 =
�s − �p

3
,

V2 =
2Vpp� + 2�2Vsp� + Vss�

3
. �3�

The band structure for graphene is shown in Fig. 1.

B. Intra-atomic spin-orbit coupling

The intra-atomic spin-orbit coupling is given by HSO

=�L� s� �Ref. 36� where L� and s� are, the total atomic angular
momentum operator and total electronic spin operator, re-
spectively, and � is the intra-atomic spin-orbit coupling con-
stant. We define

s+ 	 
0 1

0 0
� ,

s− 	 
0 0

1 0
� ,

sz 	 
 1
2 0

0 − 1
2

� ,

L+ 	 �0 �2 0

0 0 �2

0 0 0
 ,

L− 	 � 0 0 0

�2 0 0

0 �2 0
 ,

Lz 	 �1 0 0

0 0 0

0 0 − 1
 ,

�pz� 	 �L = 1,Lz = 0� ,

�px� 	
1
�2

��L = 1,Lz = 1� + �L = 1,Lz = − 1�� ,

�py� 	
+ i
�2

��L = 1,Lz = 1� − �L = 1,Lz = − 1�� . �4�

Using these definitions, the intra-atomic spin-orbit Hamil-
tonian becomes

HSO = �
L+s− + L−s+

2
+ Lzsz� . �5�

The Hamiltonian Eq. �5� can be written in second quantiza-
tion language as
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HSO = ��cz↑
† cx↓ − cz↓

† cx↑ + icz↑
† cy↓ − icz↓

† cy↑ + icx↓
† cy↓ − icx↑

† cy↑

+ H.c.� , �6�

where the operators cz,x,y;s�
† and cz,x,y;s� refer to the corre-

sponding pz, px, and py atomic orbitals. The intra-atomic
Hamiltonian is a 6�6 matrix which can be split into two
3�3 submatrices,

HSO = 
HSO
11 0

0 HSO
22 � . �7�

The block HSO
11 acts on the basis states �pz↑ �, �px↓ �, and

�py↓ �,

HSO
11 =

�

2 � 0 1 i

1 0 − i

− i i 0
 . �8�

On the other hand HSO
22 ,

HSO
22 =

�

2 � 0 − 1 i

− 1 0 − i

− i i 0
 �9�

acts on �pz↓ �, �px↑ �, and �py↑ � states. The eigenvalues of
these 3�3 matrices are +�, �J=3/2� which is singly degen-
erate and −� /2, �J=1/2� which is doubly degenerate.

The term L+s−+L−s+ of the intra-atomic spin-orbit cou-
pling Hamiltonian, Eq. �5�, allows for transitions between
states of the � band near the K and K� points of the Brillouin
zone, with states from the � bands at the same points. These
transitions imply a change of the electronic degree of free-
dom, i.e., a “spin-flip” process.

We describe the � bands by the analytical tight binding
model presented in Appendix A. The six � states at the K
and K� points can be split into two Dirac doublets, which
disperse linearly, starting at energies ���K ,K��=V1 /
2±�9V1

2 /4+V2
2 and two flat bands at ���K ,K��=−V1±V2.

We denote the two � Dirac spinors as �1 and �2, and the
two other “flat” orbitals as ��1 and ��2. The intra-atomic
spin-orbit Hamiltonian for the K and K� point becomes

HSO K 	
�

2
� d2r��2

3
�cos
�

2
���AK↑

† �r���1AK↓�r��

+ �BK↑
† �r���1BK↓�r��� + sin
�

2
���AK↑

† �r���2AK↓�r��

+ �BK↑
† �r���2BK↓�r���� +�2

3
��AK↑

† �r��

+ �BK↑
† �r����1↓�r�� + H.c. ,

HSO K� 	
�

2
� d2r��2

3
�cos
�

2
���AK�↑

† �r���2AK�↓�r��

+ �BK�↑
† �r���2BK�↓�r��� + sin
�

2
�

���AK�↑
† �r���1AK�↓�r�� + �BK�↑

† �r���1BK�↓�r����
+�2

3
��AK�↑

† �r�� + �BK�↑
† �r����2↓�r�� + H.c. ,

�10�

where � stands for the two component spinor of the � band,
and cos�� /2� and sin�� /2� are matrix elements given by

� = arctan
 �3V1�/2
��9V1

2�/4 + V2
2� . �11�

Next we would like to consider two possibilities: �i� A
curved graphene surface. �ii� The effect of a perpendicular
electric field applied to flat graphene. In the latter case we
must consider another intra-atomic process besides the intra-
atomic spin-orbit coupling, the atomic Stark effect.

C. Effects of curvature

In a curved graphene sheet, a hopping between the orbit-
als in the � and � bands is induced.37 First we will use a
simple geometry to illustrate the effect of curvature between
neighboring atoms. This geometry is schematically shown in
Fig. 2 where we first consider two atoms at the same height
along the axis of the tube. In this geometry we consider that
the pz orbitals are oriented normal to the surface of the nano-
tube, the px orbitals are oriented along the surface circumfer-
ence �Fig. 2� and the py orbitals are parallel to the nanotube
axes. The curvature modifies the hopping between the two
atoms compared to the flat surface for the pz and px orbitals
but will not change, for this simple case, the hopping be-
tween py orbitals. The �reduced� pz-px hopping Hamiltonian
is the sum of three terms,

HT = �
s�

�Vpp� cos2��� + Vpp� sin2����cz1s�
† cz0s�

− �Vpp� sin2��� + Vpp� cos2����cx1s�
† cx0s�

+ Vsp� sin2���cz1s�
† cs0s� + sin���cos����Vpp� − Vpp��

��cz1s�
† cx0s� − cx1s�

† cz0s�� + H.c. , �12�

FIG. 2. �Color online� Sketch of the relevant orbitals, px and pz

needed for the analysis of spin-orbit effects in a curved nanotube.
The arrows stand for the different hoppings described in the text.
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where 0 and 1 denote the two atoms considered and � is the
angle between the fixed Z axis and the direction normal to
the curved surface �Fig. 2�. The angle �, in the limit when the
radius of curvature is much longer than the interatomic spac-
ing, a	R, is given by ��a /R.

The hopping terms induced by �intrinsic� curvature dis-
cussed here break the isotropy of the lattice and lead to an
effective anisotropic coupling between the � and � bands in
momentum space.

The previous discussion can be extended to the case of
general curvature when the graphene sheet has two different
curvature radii, R1 and R2 corresponding to the x and y di-
rections in the plane. In that case, the factor R−1 must be
replaced by R1

−1+R2
−1. We now expand on ��a /R1,2	1. By

projecting onto the Bloch wave functions of the � and �
bands at the K and K� points, we find

HTK 	 �Vpp� − Vpp���3

2

 a

R1
+

a

R2
� � d2r��cos
�

2
�

���AK↑
† �r���1BK↑�r�� + �BK↑

† �r���1AK↑�r��� + sin
�

2
�

���AK↑
† �r���2BK↑�r�� + �BK↑

† �r���2AK↑�r���� + H.c.

�13�

and a similar expression for the K� point.
The induced spin-orbit coupling, however, includes only

contributions from the four � bands at K and K� with ��

=V1 /2±��9V1
2� /4+V2

2, as those are the only bands coupled
to the � band by the intra-atomic spin-orbit term considered
here, Eq. �10�. We now assume that the energies of the �
bands are well separated from the energy of the � bands
���=0 at the K and K� points�. Then, we can use second-
order perturbation theory and from Eq. �10� and Eq. �13� we
obtain an effective Hamiltonian acting on the states of the �
band,

Hcurv K� 	 − i
��Vpp� − Vpp��V1

2V1
2 + V2

2 
 a

R1
+

a

R2
� � d2r�

���AK↑
† �r���BK↓�r�� − �BK↓

† �AK↑� ,

Hcurv K�� 	 − i
��Vpp� − Vpp��V1

2V1
2 + V2

2 
 a

R1
+

a

R2
� � d2r�

��− �AK�↓
† �r���BK�↑�r�� + �BK�↑

†
�AK�↓� .

�14�

D. Effect of an electric field

Now we discuss the atomic Stark effect due to a perpen-
dicular electric field E. In this case, we need to consider the
�s� orbital of the � bands at each site, and the associated
hopping terms. The Hamiltonian for this case includes the
couplings

HE = �
i=1,2;s�=↑,↓

�
eEcis;s�
† ciz;s� + �scis;s�

† cis;s� + H.c.�

+ Vsp� �
s�=↑,↓

�axc1x;s�
† c0s;s� + ayc1y;s�

† c0s;s� + H.c.� ,

�15�

where 
= �pz�ẑ�s� is a electric dipole transition which induces
hybridization between the s and pz orbitals and where ax and
ay are the x and y components of the vector connecting the
carbon atoms 0 and 1. First, we consider the situation ax=1
and ay =0. Again Vsp� is the hopping integral between the 2s
and 2px ,2py atomic orbitals corresponding to the � band. We
can now have processes such as

�pz0↑�→
E

�s0↑� ——→
Vsp�

�px1↑�→
�

�pz1↓� ,

�pz0↑�→
�

�px0↓� ——→
Vsp�

�s1↓�→
E

�pz1↓� . �16�

The intermediate orbitals �s0� and �px1� are part of the sigma
bands. As before, we describe them using the analytical fit-
ting discussed in Appendix A. The �s0� is part of the disper-
sive bands, and it has zero overlap with the two nondisper-
sive � bands. The processes induced by the electric field, in
momentum space, lead finally to

HEK 	 
eE�1

3
� d2r��sin
�

2
���AK↑

† �r���1AK↑�r��

+ �BK↑
† �r���1BK↑�r��� + cos
�

2
�

���AK↑
† �r���2AK↑�r�� + �BK↑

† �r���2BK↑�r���� + H.c.

�17�

Note that this Hamiltonian mixes the states in the � band
with states in the � bands which are orthogonal to those in
Eq. �10�. Combining Eq. �17� and Eq. �10� we obtain, again
by second order perturbation theory, an effective Hamil-
tonian for the � band

HEK� 	 − i
2�2

3

�
eEV2

2V1
2 + V2

2 � d2r�

���AK↑
† �r���BK↓�r�� − �BK↓

† �AK↑� ,

HEK�� 	 − i
2�2

3

�
eEV2

2V1
2 + V2

2 � d2�r��

��− �AK�↓
† �r���BK�↑�r�� + �BK�↑

†
�AK�↓� . �18�

The zero overlap between the states in the � bands in Eq.
�17� and Eq. �10� imply that only transitions between differ-
ent sublattices are allowed.

Defining a 4�4 spinor
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�K�K�� =�
�A↑�r��
�A↓�r��
�B↑�r��
�B↓�r��


K�K��

, �19�

it is possible to join Eqs. �14� and �18� in the following
compact way:

HRK� = − i�R� d2r��K
† ��̂+ŝ+ − �̂−ŝ−��K

=
�R

2
� d2r��K

† ��̂xŝy + �̂yŝx��K, �20�

HRK�� = − i�R� d2r��K�
† �− �̂+ŝ− + �̂−ŝ+��K�

=
�R

2
� d2r��K�

† ��̂xŝy − �̂yŝx��K�, �21�

where

�R = �E + �curv,

�E =
�V2

2V1
2 + V2

2
2�2

3

eE� �

2�2

3

�
eE
V2

,

�curv =
�V1

2V1
2 + V2

2��Vpp� − Vpp��
 a

R1
+

a

R2
��

�
��Vpp� − Vpp��

V1

 a

R1
+

a

R2
�
V1

V2
�2

, �22�

where the limit V1	V2 �widely separated � bands� has been
considered to approximate the above expressions.

Equations �20�–�22� constitute one of the most important
results of the paper. First, we recover the effective form for
the “Rashba-type” interaction expected from group-
theoretical arguments recently.24 Even more importantly, our
result shows that this effective spin-orbit coupling for the �
bands in graphene to first order in the intra-atomic spin-orbit
interaction � is given by two terms.

�i� �E corresponds to processes due to the intra-atomic
spin-orbit coupling and the intra-atomic Stark effect between
different orbitals of the � and � bands, together with hop-
ping between neighboring atoms. The mixing between the �
and � orbitals occurs between the pz and s atomic orbitals
due to the Stark effect 
 and between the pz and px,y due to
the atomic spin-orbit coupling �. This contribution is the
equivalent, for graphene, to the known Rashba spin-orbit
interaction31 and it vanishes at E=0.

�ii� �curv corresponds to processes due to the intra-atomic
spin-orbit coupling and the local curvature of the graphene
surface which couples the � and � bands, together with hop-
ping between neighboring atoms. The mixing between the
� and � orbitals in this case occurs between pz and px,y
atomic orbitals both due to the atomic spin-orbit coupling �
and due to the curvature. This process is very sensitive to
deformations of the lattice along the bond direction between

the different atoms where the p part of the sp2 orbitals is
important.

E. Intrinsic spin-orbit coupling

We can extend the previous analysis to second order in
the intra-atomic spin-orbit interaction �. We obtain effective
couplings between electrons with parallel spin. The coupling
between first nearest neighbors can be written as

�pz0↑��→
�

�px0↓�→
V�

�px1↓�→
�

�pz1↑� ,

�pz0↑�→
�

−
1

2
�px0↓� +

�3

2
�py0↓�→

V� 1

2
�px2↓� −

�3

2
�py2↓�

→
�

�pz2↑� ,

�pz0↑�→
�

−
1

2
�px0↓� −

�3

2
�py0↓�→

V� 1

2
�px3↓� +

�3

2
�py3↓�

→
�

�pz3↑� , �23�

where the label 0 stands for the central atom. These three
couplings are equal, and give a vanishing contribution at the
K and K� points. The intrinsic spin-orbit coupling vanishes
for hopping between neighboring atoms, in agreement with
group theoretical arguments.24,29,30 We must therefore go to
the next order in the hopping. Expanding to next nearest
neighbors, we find a finite contribution to the intrinsic spin-
orbit coupling in a flat graphene sheet, corresponding to pro-
cesses shown in Fig. 3.

In this case, both the dispersive and nondispersive bands
contribute to the effective �-� coupling, as schematically
shown by the different arrows in Fig. 1. In order to estimate
quantatively the magnitude of the intrinsic coupling, we con-
sider processes represented in Fig. 3, which are second order
in �, in momentum space, finally obtaining

FIG. 3. �Color online� Sketch of the processes leading to an
effective intrinsic term in the � band of graphene. Transitions
drawn in red �dark gray�, and indicated by SO, are mediated by the
intra-atomic spin-orbit coupling.
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HintK�K�� = ±
3

4

�2

V1

V1
4

�V2
2 − V1

2��2V1
2 + V2

2�

�� d2r��AK�K��↑
† �r���AK�K��↑�r��

− �AK�K��↓
† �r���AK�K��↓�r��

− �BK�K��↑
† �r���BK�K��↑�r��

+ �BK�K��↓�r���BK�K��↓�r�� , �24�

where the � sign corresponds to K�K��, respectively. We
define the intrinsic spin-orbit coupling parameter �int in the
limit V1	V2 �widely separated � bands� as

�int =
3

4

�2

V1

V1
4

�V2
2 − V1

2��2V1
2 + V2

2�
�

3

4

�2

V1

V1

V2
�4

. �25�

Our Hamiltonian, Eq. �24�, is equivalent to the one derived
in Ref. 24,

HTSO intrinsic =� d2r��int�
†��̂z�̂zŝz�� , �26�

where �̂z= ±1 denotes the K�K�� Dirac point and �
= ��K ,�K��

T.

III. NUMERICAL ESTIMATES

We must now estimate �int, �E, and �curv. We have

=3ao /Z�0.264 Å,36 where Z=6 for carbon and ao is
the Bohr radius, E�50 V/300 nm,4,24 the atomic spin-
orbit splitting for carbon �=12 meV→1.3�102 K,38,39

the energy difference between the �-2pz orbitals and the
�-sp2 orbitals ��−����14.26−11.79� eV=2.47 eV, the
energy difference between the 2p and the 2s atomic
orbitals �s−�p��19.20−11.79� eV=7.41 eV and the hop-
pings between the 2s ,2px ,2py ,2pz orbitals of neighboring
atoms as Vsp��4.2 eV, Vss��−3.63 eV, Vpp��5.38 eV,
and Vpp��−2.24 eV.40,41 We have V1=2.47 eV and V2
=6.33 eV. We estimate �int��3�2 /4V1��V1 /V2�4�0.1
�10−5 eV→0.01 K. �int is two orders of magnitude smaller
than the estimate in Ref. 24. The discrepancy seems to arise
first, because the intrinsic spin-orbit splitting �int estimated
here is proportional to the square of the intra-atomic spin-
orbit coupling �2, instead of being proportional to it, as
roughly estimated in Ref. 24. Besides, a detailed description
of the � bands is necessary to obtain the correct estimate.
Spin-orbit splittings of order 1–2.5 K have been discussed in
the literature for graphite.42 However in graphite, the cou-
pling between layers is important and influences the effective
value of the spin-orbit splitting, typically being enhanced
with respect to the single layer value.30,43,44

For the other two couplings, we use the full expression
obtained for �E and �curv and not the limiting form V1	V2,
in order to be as accurate as possible. First, we obtain �E
= �2�2/3� �
eE�V2 / �2V1

2+V2
2���0.6�10−5 eV→0.07 K.

This estimate for �E, depends on the external electric field
chosen. Our estimate, for the same value of the electric field,

is two orders of magnitude bigger than the estimate in
Ref. 24. So far curvature effects have been excluded. Curva-
ture effects will increase the total value for the effective
spin-orbit interaction in graphene. Graphene samples seem
to have an undulating surface.14 The ripples observed seem
to be several Å height and a few tens nm laterally.14

First we consider the simplest example of a ripple being a
half-sphere of radius R. The part of the sphere which inter-
sects the plane of flat graphene and therefore constitutes
the ripple, is assumed to have a typical height h	R so the
radius R is roughly of the same order of magnitude of the
lateral size in this case. It seems possible to identify ripples
of lateral size in the range 50 nm–100 nm in Ref. 14.
Choosing a=1.42 Å and R1�R2�50 nm,14 we
obtain �curv= �2a /R� ��Vpp�−Vpp���V1 / �2V1

2+V2
2���2.45

�10−5 eV→0.28 K. Choosing R1�R2�100 nm we obtain
�curv�1.22�10−5 eV→0.14 K. Now we consider a differ-
ent model where we assume that the sample has random
corrugations of height h and length l.13 The graphene surface
presents then an undulating pattern of ripples of average ra-
dius R� l2 /h.13 Choosing l�100 Å and h�10 Å,13 we ob-
tain again R�100 nm, which leads to the same value for
�curv�1.22�10−5 eV→0.14 K. In any case, it seems clear
that due to curvature effects, the effective spin-orbit coupling
in graphene could be higher for curved graphene than for
perfectly flat graphene. Moreover, spin-orbit coupling in
�curved� graphene would be present even for E=0. A more
detailed discussion and/or study of the local curvature and/or
corrugation of graphene is needed in order to obtain more
accurate estimates.

To conclude this section we present the effective Hamil-
tonian for the � bands of graphene including the spin-orbit
interaction,24

HT =� d2r��†
− i�vF��̂x�̂x + �̂z�̂y�̂y� + �int��̂z�̂zŝz�

+
�R

2
��̂xŝy + �̂z�̂yŝx��� , �27�

where �vF=�3�oa /2, a�2.46 Å being the lattice constant
for graphene, �o�3 eV the McClure intralayer coupling
constant,30,45 �int�0.01 K, �R=�E+�curv the Rashba-
curvature coupling �RCC�, where �E�0.07 K for E
�50 V/300 nm and �curv�0.2 K. Table I summarizes the
main results obtained in the paper for the effective spin-orbit
couplings in a graphene layer.

IV. APPLICATION TO FULLERENES, NANOTUBES
AND FULLERENE CAPS

A. Spherical fullerenes

When topological deformations in the form of pentagons
are introduced in the hexagonal lattice of graphene, curved
structures form. If 12 pentagons are introduced, the graphene
sheet will close itself into a sphere forming the well-known
fullerene structure.46 The usual hexagonal lattice “lives” now
on a sphere and presents topological defects in the form of
pentagons. The continuum approximation to a spherical
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fullerene leads to two decoupled Dirac equations in the pres-
ence of a fictitious monopole of charge ±3/2 in the center of
the sphere which accounts for the presence of the 12
pentagons.47,48 The states closest to the Fermi level are four
triplets at �=0. We consider the effect of the spin-orbit cou-
pling on these triplets first.

Both the coupling induced by the Rashba-Curvature, Eqs.
�20� and �21�, and the intrinsic coupling, Eq. �24�, are written
in a local basis of wave functions where the spin is oriented
perpendicular to the graphene sheet, �� ,� , � ↑ � , �� ,� , � ↓ �.
It is useful to relate this local basis with a fixed basis inde-
pendent of the curvature. Such relation depends on the cur-
vature of the graphene sheet considered. In the case of a
fullerene the graphene sheet is in a sphere. The details are
given in Appendix B.

The gauge field associated to the presence of fivefold
rings in the fullerene can be diagonalized using the basis

�̃AKk�s�r�� = �AKk�s�r�� + i�BK�k�s�r�� ,

�̃BK�k�s�r�� = − i�BK�k�s�r�� + �AKk�s�r�� . �28�

Equivalent transformation is obtained exchanging A↔B.
In this basis, the wave functions of the zero energy states

are47

� + 1sK� 	� 3

4�
cos2
�

2
�ei�
 �AK�

i�BK��
� � �s� ,

�0sK� 	� 3

2�
sin
�

2
�cos
�

2
�
 �AK�

i�BK��
� � �s� ,

�− 1sK� 	� 3

4�
sin2
�

2
�e−i�
 �AK�

i�BK��
� � �s� ,

� + 1sK�� 	� 3

4�
sin2
�

2
�ei�
 �AK�

− i�BK��
� � �s� ,

�0sK�� 	 −� 3

2�
sin
�

2
�cos
�

2
�
 �AK�

− i�BK��
� � �s� ,

�− 1sK�� 	� 3

4�
cos2
�

2
�e−i�
 �AK�

− i�BK��
� � �s� , �29�

where �AK� and �BK�� are envelope functions associated to
the K and K� points of the Brillouin zone and corresponding
to states located at the A and B sublattices, respectively. Note
that, at zero energy, states at K�K�� are only located at sub-
lattice A�B� sites. �s� denotes the usual spinor part of the
wave function corresponding to the electronic spin s= ↑ ,↓.
The Hamiltonian Hint couples orbitals in the same sublattice
whereas HR couples orbitals in different sublattices. So HR
has zero matrix elements between zero energy states, as it

does not induce intervalley scattering, mixing K and K�
states.13 In the ��+1↑ � , �+1↓ � , �0↑ � , �0↓ � , �−1↑ � , �−1↓ �� ba-
sis, the Hamiltonian for the K point of a fullerene looks like

HS-Oint
K =�

�int 0 0 0 0 0

0 − �int �2�int 0 0 0

0 �2�int 0 0 0 0

0 0 0 0 �2�int 0

0 0 0 �2�int − �int 0

0 0 0 0 0 �int

 .

�30�

The Hamiltonian for K� is HS-O int
K� =−HS-O int

K .
Diagonalizing the Hamiltonian Eq. �30�, we obtain that

each set of spin degenerate triplets obtained in the absence of
the spin-orbit interaction split into

� = + �int → ��:
� + 1↑�, �− 1↓�,�1

3
� + 1↓�

+�2

3
�0↑�,�1

3
�− 1↑� +�2

3
�0↓�� ,

� = − 2�int → �−2�:
�2

3
� + 1↓� −�1

3
�0↑�,�2

3
�− 1↑�

−�1

3
�0↓�� , �31�

Each of these solutions is doubly degenerate, correspond-
ing to the K and K� points. In principle, many-body effects
associated to the electrostatic interaction can be included by
following the calculation discussed in Ref. 49.

B. Spin-orbit coupling in nanotubes

The previous continuum analysis can be extended to
nanotubes. We use cylindrical coordinates, z ,�, and, as be-
fore, define the spin orientations �↑�, �↓� as parallel and anti-
parallel to the z axis. The matrix elements relevant for this
geometry can be easily obtained from Eq. �B1� in Appendix
B, by choosing �=� /2. The eigenstates of the nanotube can
be classified by longitudinal momentum, k, and by their an-
gular momentum n, �±,k,n= ±�vF

�k2+n2 /R2, where R is the
radius of the nanotube. After integration over the circumfer-
ence of the nanotube �d�, the Hamiltonian of a nanotube
including spin-orbit interaction is
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HS-O R
�A��
�B��

� = 
 0 �vF�k − in/R� + �i�R�ŝz

�vF�k + in/R� − �i�R�ŝz 0
�
�A��

�B��
� , �32�

where the �= ±1 corresponds to the K�K�� Dirac point. Note
the basis states �A�� and �B�� used to define Eq. �32� are
spinors in spin subspace where the matrix ŝz acts on �see
Appendix C for details�. The contribution from the intrinsic
spin-orbit �int becomes zero after integrating over the nano-
tube circumference �Appendix C�. The spin-orbit term
i�R�ŝz in Eq. �32� is equivalent to the term proportional to
�̂y obtained in Eqs. �3.15� and �3.16� of Ref. 37. It is impor-
tant to note that the spin orientations �↑�, �↓� in Eq. �32� are
defined along the nanotube axis, whereas the spin orienta-
tions used in Eqs. �3.15� and �3.16� of Ref. 37 are defined
perpendicular to the nanotube surface. On the other hand, we
do not find any contribution similar to the term proportional
to �x�r� in Eq. �3.15� and �3.16� in Ref. 37. In any case, such
contributions are not important as they vanish after integrat-
ing over the circumference of the nanotube.37 Besides, our
results are in agreement with the results obtained in Ref. 50.

The energies near the Fermi level, n=0, are changed by
the spin-orbit coupling, and we obtain

�k = ± ����R�2 + ��vFk�2. �33�

There is an energy gap ��R at low energies, in agreement
with the results in Refs. 37 and 51. The ��R gap originates
as a consequence of the Berry phase gained by the electron
and hole quasiparticles after completing a closed trajectory
around the circumference of the nanotube under the effect of
spin-orbit interaction �R.37 Similarly, �R will give rise to a
small spin splitting for n�0,37,51

�k = ± ����R�2 + ��vF�2�k2 + �n/R�2� + 2�n/R��vF�R�ŝz.

�34�
For a single wall nanotube of radius R1�6,12, 24 Å and

R2→�, a�1.42 Å and for E=0, we get �R�12,6, 3 K,
respectively.

C. Nanotube caps

1. Localized states at zero energy

An armchair �5N�5N� nanotube can be ended by a
spherical fullerene cap. The cap contains six pentagons and
5N�N+1� /2–5 hexagons. When N=3�M, the nanotube is
metallic. An example of such a fullerene cap is given in Fig.
4. The boundary between the semispherical fullerene and the
nanotube is a circle �Fig. 5�. The solutions of the continuum
equations must be continuous across this boundary, and they
must satisfy the Dirac equations appropriate for the sphere in
the cap and for the torus in the nanotube, respectively.

The boundary of the nanotube in the geometry shown in
Fig. 5 is a zigzag edge. Hence, zero energy states can be
defined,52,53 which at this boundary will have a finite ampli-
tude on one sublattice and zero on the other. There is a zero

energy state, ��n� at this boundary, for each value of the
angular momentum around the nanotube n. They decay to-
wards the bulk of the nanotube as

�n�z,�,K� = Cein�e−�nz�/R, n � 0,

�n�z,�,K�� = Cein�e−�nz�/R, n � 0, �35�

where we are assuming that the nanotube is in the half space
z�0 �see Fig. 5�.

A zero energy state in the whole system can be defined if
there are states inside the gap of the nanotube ��R, which
can be matched to the states defined in Eq. �35�. At the
boundary we have �=� /2, cos�� /2�=sin�� /2�=1/�2.

FIG. 4. �Color online� Left, one-fifth of a fullerene cap closing
an armchair nanotube. The full cap is obtained by gluing five tri-
angles like the one in the figure together, forming a pyramid. A
pentagon is formed at the apex of the pyramid, from the five tri-
angles like the one shaded in green �gray� in the figure. The edges
of the cap are given by the thick black line. The cap contains six
pentagons and 70 hexagons, and it closes a 25�25 armchair nano-
tube. Right, sketch of the folding procedure of a flat honeycomb
lattice needed to obtain an armchair nanotube capped by a semi-
spherical fullerene.
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Hence, we can combine states �ls K� and �ls K��, l= ±1 in
Eq. �29� in such a way that the amplitude at the boundary on
a given sublattice vanishes,

� + 1s�A 	
1
�2

�� + 1sK� + � + 1sK���

=� 3

8�
ei�
�AK�

0
� � �s� ,

�− 1s�A 	
1
�2

��− 1sK� + �− 1sK���

=� 3

8�
e−i�
�AK�

0
� � �s� ,

� + 1s�B 	
1
�2

�� + 1sK� − � + 1sK���

=� 3

8�
ei�
 0

i�BK��
� � �s� ,

�− 1s�B 	
1
�2

��− 1sK� − �− 1sK���

=� 3

8�
e−i�
 0

i�BK��
� � �s� . �36�

These combinations match the states decaying into the
nanotube, Eq. �35�. This fixes the constant C in Eq. �35� to
be C=�3/ �8��. Note that the wave functions with l=0 can
only be matched to states that do not decay into the bulk of
the nanotube, i.e., with n=0.

Thus, there are two states per spin s, �+1s�, �−1s�, local-
ized at the cap and with finite chirality, n= ±1. A sketch
of this procedure is shown in Fig. 5. This continuum
approximation is in general agreement with the results in
Ref. 54.

As in the case of a spherical fullerene, only the intrinsic
spin-orbit coupling mixes these states. The energies of the
�±1s�A states are not affected by �int, as the contribution

from �+1s�, is canceled by the contribution from �−1s�. On
the other hand, the states �±1s�B split in energy, as the
�+1s� and �−1s� contributions add up,

� + 1,s = ↑,↓�B → �↑,↓ = ± �int,

�− 1,s = ↑,↓�B → �↑,↓ = � �int. �37�

Note that each state has a finite chirality.

2. Localized states induced by the spin-orbit interaction

The remaining states of a spherical fullerene have multi-
plicity 2l+1, where l�2 and energy �l= ±�vF /
R�l�l+1�−2. The angular momentum of these states along a
given axis, m, is −l�m� l. The subbands of the nanotube
with angular momentum ±m, have gaps within the energy
interval −�m=−�vF�m� /R����m=vF�m� /R. Thus, there is
a fullerene eigenstate with l=2 and angular momentum m
= ±2 which lies at the gap edge of the nanotube subbands
with the same momentum. The fullerene state is

�l=2m=2��,�� 	
1

4�2�
e2i�
 sin����1 + cos�����K� − �1 + cos����2�K��

i�1 + cos����2�K� + i sin����1 + cos�����K��
� , �38�

which can be matched, at �=� /2, to the nanotube eigenstate,

�m=2�z,�� 	
1

4�2�
e2i�
 �K� − �K��

i�K� + i�K��
� . �39�

The spin-orbit coupling acts as a position dependent potential on this state, and it shifts its energy into the m=2 subgap,
leading to the formation of another localized state near the cap.

In the following, we consider only the RCC �R. In order to analyze the extension of the state, we assume that the localized
state decays in the nanotube, z�0 as

FIG. 5. �Color online� �Up� Sketch of the matching scheme used
to build a zero energy state at a fullerene cap. �Down� The wave
function is one-half of a zero energy state at the cap, matched to a
decaying state towards the bulk of the nanotube. See text for details.
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�m=2�z,�� 	
C

4�2�
e2i�e�z/R
 �K� − �K��

i�K� + i�K��
� . �40�

We match this wave function to that in Eq. �39� multiplied by
the same normalization constant, C. We assume that the state
is weakly localized below the band edge, so that the main
part of the wave function is in the nanotube, and �	1. Then,
we can neglect the change in the spinorial part of the wave
function, and we will fix the relative components of the two
spinors as in Eq. �39� and Eq. �40�. The normalization of the
total wave function implies that

C−2 =
13

16
+

1

4�
, �41�

where the first term on the right-hand side �rhs� comes from
the part of the wave function inside the cap, Eq. �39�, and the
second term is due to the weight of the wave function inside
the nanotube, Eq. �40�. As expected, when the state becomes
delocalized, �→0, the main contribution to the normaliza-
tion arises from the “bulk” part of the wave function.

The value of � is fixed by the energy of the state,

�2 = n2 −
�2R2

��vF�2 , �42�

where the energy of the state � is inside the subgap �m of the
nanotube because of the shift induced by the spin-orbit inter-
action �R.

We now calculate the contribution to the energy of this
state from the RCC, which is now finite, as this state has
weight on the two sublattices,

�Rashba � ± C2�R
 1

16�
+

31

80
� � ±

�R

4

1 −

59�

20
� .

�43�

The rhs of Eq. �43� can be described as the sum of a bulk
term, ±�R /4, and a term due to the presence of the cap,
whose weight vanishes as the state becomes delocalized, �
→0. The absolute value of the Rashba-curvature contribu-
tion is reduced with respect to the bulk energy shift, which
implies that the interaction is weaker at the cap.

The bulk nanotube bands are split into two spin subbands
which are shifted in opposite directions. The surface states
analyzed here are shifted by a smaller amount, so that the
state associated to the subband whose gap increases does not
overlap with the nanotube continuum. Combining the esti-
mate of the energy between the gap edge and the surface
state in Eq. �43� and the constraint for � in Eq. �42�, we find

� �
59�RR

20�vF
. �44�

Finally, the separation between the energy of the state and
the subgap edge is

� �
�vF�2

8R
. �45�

For a C60 fullerene of radius R�3.55 Å we obtain, for E
=0, a value �R /4�3 K. This effect of the spin-orbit inter-
action can be greatly enhanced in nanotube caps in an exter-
nal electric field, such as those used for field emission
devices.55 In this case, spin-orbit interaction may allow for
spin-dependent field emission of such devices. The applied
field also modifies the one electron states, and a detailed
analysis of this situation lies outside the scope of this paper.

V. CONCLUSIONS

We have analyzed the spin-orbit interaction in graphene
and similar materials, like nanotubes and fullerenes. We have
extended previous approaches in order to describe the effect
of the intra-atomic spin-orbit interaction on the conduction �
and valence � bands. Our scheme allows us to analyze, on
the same footing, the effects of curvature and perpendicular
applied electric field. Moreover, we are able to obtain realis-
tic estimates for the intrinsic �int and Rashba-curvature �R
=�E+�curv effective spin-orbit couplings in graphene. We
have shown that spin-orbit coupling for flat graphene is
rather weak �int�10 mK and �E�70 mK for E
=50 V/300 nm. Moreover curvature at the scale of the dis-
tance between neighboring atoms increases the value of the
spin-orbit coupling in graphene �curv��E��int. This is be-
cause local curvature mixes the � and � bands. Graphene
samples seem to have an undulating surface.14 Our estimate
for the typical observed ripples indicates that �curv could be
of order �0.2 K. A more detailed study of the curvature of
graphene samples is needed in order to obtain a more precise
estimate. We conclude that the spin-orbit coupling �R ex-
pected from symmetry arguments,24 has a curvature-intrinsic
part besides the expected Rashba coupling due to an electric
field �R=�E+�curv. Therefore �R can be higher for curved
graphene than for flat graphene. �curv is in a sense a “intrin-
sic and/or topological” type of spin-orbit interaction in
graphene which would be present even if E=0, as long as the
samples present some type of corrugation. One important
question now is how these ripples could affect macroscopic
quantities. It has been already suggested that these ripples
may be responsible for the lack of weak �anti�localization in
graphene.13,14 Other interesting macroscopic quantities in-
volving not only the pseudospin but also the electronic spin
may be worth investigation. These issues are beyond the
scope of the present paper and will be subject of future work.

It is also noteworthy that our estimates �R��int, is oppo-
site to the condition �R	�int obtained by Kane and Mele24

to achieve the quantum spin Hall effect in graphene. So the
quantum spin Hall effect may be achieved in neutral
graphene �E=0� only below �0.01 K and provided the
sample is also free of ripples so the curvature spin-orbit cou-
pling �curv	�int. Further progress in sample preparation
seems needed to achieve such conditions although some pre-
liminary improvements have been recently reported.14 More-
over, corrugations in graphene could be seen as topological
disorder. It has been shown that the spin Hall effect survives
even if the spin-orbit gap �int is closed by disorder.26 A de-
tailed discussion of the effect of disorder on the other two
spin-orbit couplings �E, �curv will be presented elsewhere.
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The continuum model derived from microscopic param-
eters has been applied to situations where also long range
curvature effects can be significant. We have made estimates
of the effects of the various spin-orbit terms on the low en-
ergy states of fullerenes, nanotubes, and nanotube caps. For
both nanotubes and nanotube caps we find that �R�1 K. For
nanotubes we have clarified the existent discussion and re-
produced the known appearance of a gap for the n=0 states
and spin-splitting for n�0 states in the energy spectrum. For
nanotube caps states, we obtain indications that spin-orbit
coupling may lead to spin-dependent emission possibilities
for field-effect emission devices. This aspect will be investi-
gated in the future.

Note added. At the final stages of the present paper, two
reports32,33 have appeared. In these papers similar estimates
for �int�10−3 meV have been obtained for the intrinsic spin-
orbit coupling. Moreover similar discussion for the effect of
a perpendicular electric field has been also discussed in Ref.
33. Our approach is similar to that followed in Ref. 33. The
two studies overlap and although the model used for the �
band differs somewhat, the results are quantitative in agree-
ment, �E�10−2 meV.

The two reports32,33 and our work agree in the estimation
of the intrinsic coupling, which turns out to be weak at the
range of temperatures of experimental interest �note, how-
ever, that we do not consider here possible renormalization
effects of this contribution24,56�.

On the other hand, the effect of local curvature �curv on
the spin-orbit coupling has not been investigated in Refs. 32
and 33. We show here that this term �curv is as important as,
or perhaps even more important than the spin-orbit coupling
due to an electric field �E for the typical values of E reported.
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APPENDIX A: TWO PARAMETER ANALYTICAL FIT TO
THE SIGMA BANDS OF GRAPHENE

A simple approximation to the sigma bands of graphene
takes only into account the positions of the 2s and 2p atomic
levels, �s and �p, and the interaction between nearest neigh-
bor sp2 orbitals. The three sp2 orbitals are

�1� 	
1
�3

��s� + �2�px�� ,

�2� 	
1
�3
��s� + �2
−

1

2
�px� +

�3

2
�py��� ,

�3� 	
1
�3
��s� + �2
−

1

2
�px� −

�3

2
�py��� . �A1�

The two hopping elements considered are

V1 = ��i�Hatom�j��i�j =
�s − �p

3
,

V2 = ��i,m�Hhopping�i,n��m,n:nearest neighbors

=
Vss� + 2�2Vsp� + 2Vpp�

3
, �A2�

where i , j=1,2 ,3 denote “bonding” sp2 states and n ,m de-
note atomic sites. V1 depends on the geometry and/or angle
between the bonds at each atom and V2 depends on the co-
ordination of nearest neighbors in the lattice. V1 and V2
therefore determine the details of band structure for the �
bands.34 The energy associated with each “bonding” state
�i�Hatom�i��i=1,2,3�= ��s+2�p� /3 is an energy constant indepen-
dent of these details and not important for our discussion
here.

We label a1 ,a2 ,a3 the amplitudes of a Bloch state on
the three orbitals at a given atom, and �b1 ,b2 ,b3� ,
�b1� ,b2� ,b3�� , �b1� ,b2� ,b3�� the amplitudes at its three nearest
neighbors. These amplitudes satisfy

�a1 = V1�a2 + a3� + V2b1,

�a2 = V1�a1 + a3� + V2b2�,

�a3 = V1�a1 + a2� + V2b3�,

�b1 = V1�b2 + b3� + V2a1,

�b2� = V1�b1� + b3�� + V2a2,

�b3� = V1�b1� + b2�� + V2a3. �A3�

We can define two numbers, an=a1+a2+a3 and bn=b1+b2�
+b3� associated to atom n. From Eq. �A3� we obtain

�� − 2V1�an = V2bn,

�� + V1�bn = V2an + V1 �
n�;n.−n.

an�, �A4�

where �n�;n−nan�= �b1+b2+b3�+ �b1�+b2�+b3��+ �b1�+b2�+b3��
and n−n denotes nearest neighbors.

This equation is equivalent to


� − 2V1 −
V2

2

� + V1
�an =

V1V2

� + V1
�

n�;n.−n.

an�. �A5�

Hence, the amplitudes an satisfy an equation formally iden-
tical to the tight binding equations for a single orbital model
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with nearest-neighbor hoppings in the honeycomb lattice. In
momentum space, we can write


�k̃ − 2V1 −
V2

2

�k̃ + V1
� = ±

V1V2

�k̃ + V1
fk� , �A6�

where

fk� 	 �3 + 2 cos�k�a�1� + 2 cos�k� ã2� + 2 cos�k� �a�1 − a�2��

�A7�

and a�1 ,a�2 are the unit vectors of the honeycomb lattice.
The derivation of Eq. �A6� assumes that an�0. There are

also solutions to Eqs. �A3� for which an=0 at all sites. These
solutions, and Eq. �A6� lead to

�k̃ =
V1

2
±�9V1

2

4
+ V2

2 ± V1V2fk� ,

�k̃ = − V1 ± V2. �A8�

These equations give the six � bands used in the main text.
In order to calculate the effects of transitions between the

� band and the � band on the spin-orbit coupling, we also
need the matrix elements of the spin-orbit interaction at the
points K and K�. At the K point, for instance, the Hamil-
tonian for the � band is

H�K 	�
0 V1 V1 V2 0 0

V1 0 V1 0 V2e2�i/3 0

V1 V1 0 0 0 V2e4�i/3

V2 0 0 0 V1 V1

0 V2e4�i/3 0 V1 0 V1

0 0 V2e2�i/3 V1 V1 0

 .

�A9�

The knowledge of the eigenstates, Eq. �A5� allows us to
obtain also the eigenvalues of Eq. �A9�. The spin-orbit cou-
pling induces transitions from the �K ,A , ↑ � state to the sigma
bands with energies V1±V2 and spin-down, and from the
�K ,A , ↓ � state to the sigma bands with energies

V1 /2±��9V1
2� /4+V2

2 and spin-up. The inverse processes are
induced for Bloch states localized at sublattice B.

In the limit V1	V2, the � bands lie at energies ±V2, with
corrections associated to V1. The spin-orbit coupling induces
transitions to the upper and lower bands, which tend to can-
cel. In addition, the net effective intrinsic spin-orbit coupling
is the difference between the corrections to the up-spin bands
minus those for the down-spin bands. The final effect is that
the strength of the intrinsic spin-orbit coupling scales as
��2 /V1��V1 /V2�4 in the limit V1	V2.

APPENDIX B: MATRIX ELEMENTS OF THE SPIN-ORBIT
INTERACTION IN A SPHERE

Both the coupling induced by the curvature, Eqs. �20� and
�21�, and the interinsic coupling, Eq. �24� can be written, in
a simple form, in a local basis of wave functions where the
spin is oriented perpendicular to the graphene sheet,
�� ,� , � ↑ � , �� ,� , � ↓ �. Using spherical coordinates, � and �
the basis where the spins are oriented parallel to the z axis,
�↑ � , �↓ �, can be written as

�↑� 	 cos
�

2
�ei�/2��,�, � ↑� − sin
�

2
�e+i�/2��,�, � ↓� ,

�↓� 	 sin
�

2
�e−i�/2��,�, � ↑� + cos
�

2
�e−i�/2��,�, � ↓� ,

�B1�

where the states �+ � and �−� are defined in terms of some
fixed frame of reference. From this expression, we find in the
basis ��A↑ � , �A↓ � , �B↑ � , �B↓ �, basis for K,

HS-O
K =�

�int cos��� �int sin���e−i� + i�R sin
�

2
�cos
�

2
� − i�R cos2
�

2
�e−i�

�int sin���ei� − �int cos��� + i�R sin2
�

2
�e+i� − i�R sin
�

2
�cos
�

2
�

− i�R sin
�

2
�cos
�

2
� − i�R sin2
�

2
�e−i� − �int cos��� − �int sin���e−i�

+ i�R cos2
�

2
�ei� + i�R sin
�

2
�cos
�

2
� − �int sin���ei� �int cos���

 �B2�

and for K�,
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HS-O
K� =�

− �int cos��� − �int sin���e−i� − i�R sin
�

2
�cos
�

2
� − i�R sin2
�

2
�e−i�

− �int sin���ei� �int cos��� + i�R cos2
�

2
�e+i� + i�R sin
�

2
�cos
�

2
�

+ i�R sin
�

2
�cos
�

2
� − i�R cos2
�

2
�e−i� �int cos��� �int sin���e−i�

+ i�R sin2
�

2
�ei� − i�R sin
�

2
�cos
�

2
� �int sin���ei� − �int cos���

 . �B3�

APPENDIX C: MATRIX ELEMENTS OF THE SPIN-ORBIT INTERACTION IN A CYLINDER

The previous continuum analysis can be extended to nanotubes. We use cylindrical coordinates, z ,�, and, as before, define
the spin orientations �↑ � , �↓ � as parallel and antiparallel to the z axis. The matrix elements can be obtained in a similar way to
Eq. �B3� by choosing �=� /2,

HS-O
K =�

0 �inte
−i� + i�R/2 − i�R/2e−i�

�inte
i� 0 + i�R/2e+i� − i�R/2

− i�R/2 − i�R/2e−i� 0 − �inte
−i�

+ i�R/2ei� + i�R/2 − �inte
i� 0

 �C1�

and for K�

HS-O
K� =�

0 − �inte
−i� − i�R/2 − i�R/2e−i�

− �inte
i� 0 + i�R/2e+i� + i�R/2

+ i�R/2 − i�R/2e−i� 0 �inte
−i�

+ i�R/2ei� − i�R/2 �inte
i� 0

 . �C2�

After integrating over the nanotube circumference �d� the Hamiltonian above becomes

HS-O
K =�

0 0 + i�R� 0

0 0 0 − i�R�

− i�R� 0 0 0

0 + i�R� 0 0
 �C3�

and for K�

HS-O
K� =�

0 0 − i�R� 0

0 0 0 + i�R�

+ i�R� 0 0 0

0 − i�R� 0 0
 . �C4�
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