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The first-order unified linear instability analysis (LISA) of the governing equation for the evolution of
surfaces and interfaces under capillary, electromigration (EM), and elastostatic forces is developed. A formal
treatment of the thermomigration (Soret effect) driven by the nonuniform temperature distribution caused by
exothermic phase transformation (growth) at the surface and interfacial layers is presented and its apparent
influence on the capillary force in connection with the stability is also established in a concise analytical form.
This unified approach, which relies on a rigorous theory of irreversible thermodynamics of surfaces and
interfaces, seriously considers the anisotropies associated with the generalized growth mobility, the interfacial
specific Gibbs free energy (i.e., the surface stiffness), and the surface diffusivity in thin solid films. The
singularity in the surface stiffness at the cusp regions of the Wulff construction of the surface Gibbs free energy
is fully elaborated by using a modified cycloid-curtate function as a basis for generating the Dirac § distribu-
tion, which shows an unusually strong anomalous effect on the surface morphological instability even in the
absence of EM forces, as illustrated clearly by the graphical representation of the EM-induced instability
threshold level as a function of tilt angle and wave number, in a three-dimensional plot for various intrinsic and
normalized system parameters. In the development of LISA theory special attention is paid to the origin of the
elastostatic forces, which include not only the elastic strain energy density, but also the elastic dipole tensor
interaction between mobile atomic species and the applied stress field. The profound influence of the anoma-
lous surface stiffness anisotropy on the surface morphological evolution under the applied stress system is
demonstrated by three-dimensional computer graphics applied for copper and silicon thin single-crystal solid
films having, respectively, sixfold {111}- and fourfold {100}-symmetric singular (vicinal) planes as the top
surfaces, which reveal the fine features of the theory and give insight into some controversial issues related to
LISA in the literature. This unified approach also considers the stress dependence of the generalized growth
mobility and its profound influence on the stability of the interface displacement and roughening in thin solid
films. As a special application of the theory, the effects of uniaxial and biaxial applied stresses on the recrys-
tallization and the interfacial morphological evolution of amorphous Si deposited on silicon substrates are
thoroughly analyzed and excellent quantitative agreement is found with the published experimental data in the

literature.
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I. INTRODUCTION

For many years, the subject of capillary-driven morpho-
logical evolution at the surfaces and interfaces of crystalline
solids, especially under the action of applied force fields
such as electrostatic and thermomechanical stress systems,
has represented a challenging theoretical problem in materi-
als science, without having been exposed to any robust non-
equilibrium thermodynamic treatments in crystalline solids,
which is just the opposite of the case of fluid systems, where
highly sophisticated nonequilibrium thermodynamic theo-
ries, advocated originally by Bedeaux,! having quite a differ-
ent context and objectives, are available in the literature. 2
This situation has started to change very recently,*® because
the submicroscopic nature of electronic devices has pushed
surfaces and interfaces into the front lines as primary agents
in the determination of the catastrophic failure of the inter-
connected thin metallic lines used in microelectronic indus-
tries. Similarly, in the last two decades, the invention of the
scanning tunneling microscope (STM) has simulated studies
of nanoscale activities on solid surfaces. The most interesting
finding is the self-assembly of monolayer atoms on solids
surfaces into nanoscale features.”8
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Theoretical studies of interconnected surfaces under the
electromigration force have also revealed a variety of mor-
phological scenarios. Krug and Dobbs’ and Schimschak and
Krug!'® showed that a crystal surface can be destabilized by
an external electromigration (EM) field in a material having
anisotropic adatom surface diffusivity. Their linear instability
analysis (LISA) strictly relies on uniformly tilted surfaces
and/or small slope approximations, respectively. They also
assumed that the field is almost constant along the surface.
Nevertheless, it may be instructive to explore several aspects
of the morphological instability of crystal surfaces and face-
ting transitions. Later studies undertaken by Schimschak and
Krug,'! Gungor and Maroudas,'> and Ogurtani and Oren'
put more emphasis on the crucial role of surface diffusion
anisotropy and crystalline texture'* in the development of the
unusual morphological variations of preexisting edge or in-
ternal voids causing catastrophic electrical breakdown. The
latter authors also successfully studied the intergranular mo-
tion of internal voids in “bamboo” metal lines, which has
received scant attention in the literature as mentioned in a
recent paper by Nathan et al.,'> who performed exploratory
computer simulations of the EM-induced surface evolution
with transgranular and intergranular edge voids assuming
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that the triple junction (TJ) sustains its equilibrium configu-
ration. They also observed that the EM forces slow down the
development of an intergranular groove along the positively
tilted grain boundary (GB).

Very recently, Ogurtani and Akyildiz'®!” have observed
the profound effects of the reflecting and/or free-moving
boundary conditions on EM-induced grain boundary groov-
ing (GBG) and cathode voiding in their computer simulation
studies. These computer experiments showed irrevocably
that in the electromigration-dominating regime GB voiding
can be completely arrested by applied current above the
well-defined threshold level and the dynamical dihedral
angles rotate gradually towards the windward side while
keeping their angular difference invariant, but having fine-
scale random fluctuations due to the strong nonlinear con-
nectivity associated with global entropy production.

Bradley'® examined the effects of electromigration on the
dynamics of corrugated interconnect-vapor interfaces using a
multiple-scale asymptotic analysis by neglecting the capil-
lary effects. This very powerful technique was first intro-
duced by Drazin and Johnson' to deduce the governing
Korteweg—de Vries (KdV) equation for the irrotational two-
dimensional (2D) motion of an incompressible inviscid fluid.
During the derivations of the KdV equations by Drazin and
Johnson!? and Bradley'8 very special initial data for the non-
linear partial differential equation are chosen in order to get
the solitary-wave solution, which represents at the limit a
highly hypothetical and physically unobservable disturbance
on the surface. This compressed and highly stretched solitary
wave travels on the surface of a current-carrying metallic
thin film in the direction of the applied EM field. The propa-
gation velocity and the width of the solitons decrease with
increasing amplitude. The most interesting work on the EM-
induced edge stability in single-crystal metal lines was car-
ried by Mahadevan et al.?° They employed a phase field (PF)
technique to study this moving-boundary problem numeri-
cally by assuming that the mobility of an adatom is aniso-
tropic, having fourfold symmetry with a 45° tilt angle. Ma-
hadevan et al.?® showed that if the applied current density is
below the threshold level, the notch smoothes away in the
course of time; otherwise, the perturbation produces an edge
instability and grows to become a slit-shaped void propagat-
ing at 45° to the line edge.

The most recent and thorough linear instability analysis of
the surface topological evolution affected by the electromi-
gration and capillary forces alone has been performed by
Brush and Oren utilizing a governing equation, which was
originally derived by Ogurtani?' using a rigorous microdis-
crete formulation of the irreversible thermodynamics of sur-
faces and interfaces. This approach has produced very rich
information on the electromigration-induced surface insta-
bilities and the limitations and validity of the LISA theory in
the prediction of stability requirements in the case of finite-
size periodic surface modifications.

The stability of the stressed solid surfaces under a variety
of environmental conditions still today is a challenging the-
oretical problem. Asaro and Tiller’ made a first serious at-
tempt to develop an equilibrium thermodynamic model of
interfacial morphological evolution during stress corrosion
cracking by adding the elastic strain energy density (ESED)
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directly to the chemical potential defined only at the surface.
Unfortunately, like most authors, the ESED appears with a
wrong sign in their formula. As shown by Ogurtani and
Oren’ the main reason for this sign conflict in the literature is
due to the fact that starting with Herring,? the interface dis-
placement process has been treated as an isothermal revers-
ible process by minimizing the total Helmholtz free energy
OF =0, rather than the dissipation function approach for non-
equilibrium processes as indicated by Guggenheim?* for
natural isothermal processes, without imposing any volumet-
ric constraints on the composite system. This nonequilibrium
approach puts the generalized Gibbs free energy back into
the front line for natural isothermal processes, and strangely
enough the strain energy density enters into this characteris-
tic function with a negative sign,>'3 especially in those ma-
jority of cases where the stress dependence of the entropy
density is almost negligible.” Since the appearance of any
surface disturbances, in first order, regardless of the wave
number decrease, the elastic strain energy density?® conse-
quently causes an equal amount of increase in the Gibbs free
energy density of the bulk phase, which would then be an
unnatural isothermal change that can never take place in
nature.?* One should also mentioned here that the sign con-
flict in the strain energy density also appears in other au-
thors’ studies related to the interfaces and triple junctions,
notably Rice and Chuang,”’ Suo and Wang,?® and Gungor
and Maroudas,” who all base in their work on the equilib-
rium treatment of Herring.?3

Later studies of Srolovitz*® first considered a stress ap-
plied to the solid in the direction nominally in the plane of
the interface. He tried to adapt the chemical potential by
referring the work of Herring®! on stress-assisted grain
boundary diffusion, which considers only the stress normal
to the surface. Srolovitz’® proceeds alone the line of Asaro
and Tiller?? by dropping Herring’s formula, which does not
contribute to the traction-free solid surfaces, and rather add-
ing the elastic strain energy density to the chemical potential
directly. There are also some inconsistencies in their
formulations??3° of the trace and the deviatoric part of the
2D stress tensor even though the hoop stress is correct,
which can be easily detected by comparing them with the
calculation of Gao,>? who utilized the more sophisticated
method of Muskhelishvili*? in a 2D complex representation,
successfully. That problem in the trace yields a sign conflict
in the calculation of the stress-assisted bulk drift diffusion.
All these models not only suffer from the sign conflict (the
healing effect of rough surfaces is now replaced by the sur-
face instability) but also predict identical behavior for solids
under tension and compression in contradiction to some re-
cent experimental results under etchirlg,34 because stress en-
ters through the elastic strain energy density quadratically.

Hillig and Charles®® and Chuang and Fuller®® realized that
the ESED contribution to the driving force is inadequate to
explain the experimental findings. They postulated an ad hoc
reaction kinetic theory, where the activation energy depends
on the applied stress system through a fictitious activation
strain, which is still an ill-defined and obscure quantity.
Spencer et al.>”3® made an extensive analysis of the morpho-
logical instability of growing epitaxially strained dislocation-
free solid film based on the surface diffusion driven by the
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stress-dependent chemical potential, where the elastic strain
energy density again appears to be additive (sign conflict) in
the so-called chemical potential like almost all other investi-
gators mentioned previously, including Grinfeld.*® They
found that the critical film thickness for instability depends
on the growth rate of the film itself, and they claimed that
there are no stable nonlinear steady-state solutions that can
be described by long-wave theory. Lu et al.** have measured
the pressure dependence of the solid-phase epitaxial growth
(SPEG) rate of self-implanted Si (100) in the temperature
range of 530—550 °C and pressure up to 3.2 GPa (32 kbar).
They found that the growth rate is enhanced by a factor of 5
over that at 1 bar atmospheric pressure and the measured
activation volume is negative, about —28% of the atomic
volume. Later Aziz et al.*! studied the motion of the inter-
face between crystalline and amorphous silicon (100) under
the nonhydrostatic stress system. They have observed that
the SPEG growth rate on the tensile side is greater than on
the compressive side of elastically bent wafers. They have
developed an activation strain tensor concept in connection
with the kinetic expression using the technique advocated by
Rice,*> which has certain pinholes in the definition and usage
of the Helmholtz and Gibbs free energy densities in contrast
to the Gibbs chemical thermodynamics and further assuming
that strain and stress are homogeneous functions of space.
Barviosa-Carter et al.** have studied the effect of the in-
plane stress system on the rate of growth of SPEG and the
morphological instability of the corrugated Si (001) inter-
face. They also performed computer simulations relying on
an ad hoc kinetic formula based on empirical information
and found that the corrugated interface is stable under ten-
sion and roughens under compression.

The anisotropy in the reaction mobility can come directly
from the entropy of the activated complex, exp(AS™/k),
which corresponds to the steric or probability factor, for-
mally introduced in the theory of activated collisions in
chemical reactions.** The steric factor is closely related to
the probability of occurrences of certain atomic temporal
configurations in the vicinity of the saddle point, such that
the hopping attempt by the activated complex, having
enough kinetic energy to surmount the barrier, becomes a
successful jump. In fact, measurements by Csepregi et al.*’
of the epitaxial regrowth rate of crystalline Si from Si-
implanted amorphous Si (SPEG) shows that the growth rate
has a well-defined activation energy of 2.35+0.1 eV, which
does not show any dependence on the orientations of the
(111), (110), (100), and (511) directions. Since these experi-
ments have been done on unstrained flat samples, they
clearly indicate that the growth rate anisotropy has nothing to
do with the surface Gibbs free energy and the elastic dipole
tensor interaction (EDTI) anisotropy either. Therefore, it is
directly connected to the mobility through the steric or acti-
vation entropy factor as we pointed out above. While adapt-
ing the same kinetic theory in their stability analysis, Liang
and Suo® stated clearly that there is no a priori information
available regarding the sign of the activation strain tensor in
a given reaction and its connection with any mobile point-
defect configuration. They also employed a quasithermody-
namics treatment of the lump system, using an obscure con-
cept such as the free energy, without paying any attention to
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the restrictive mathematical definitions of the characteristic
functions (Gibbs, Helmholtz, energy, etc.) in Gibbs chemical
thermodynamics®* using like most authors straight additivity
in their formulation of the various ill-defined energy contri-
butions, having completely different thermodynamic charac-
teristics, to the so-called the total free energy of the system
including the surface, the ESED in their driving force ex-
pression appears with an improper sign. Then they claimed
that this contribution alone destabilizes the surface rough-
ness. Close inspection shows that they are actually using not
even the Helmholtz free energy variation but the minimum
internal energy criterion 6U=0, which is a valid thermody-
namic characteristic function for isochoric (8V=0) and adia-
batic (isentropic, 85=0) processes. Furthermore, Liang er
al.* adapted in their analysis an ad hoc kinetic law, which is
first obtained empirically and later improved by some
transition-state theoretical considerations. In the work of Li-
ang et al.*® and Barviosa-Carter et al.,*’ besides misspelling
the sign of the ESED contribution to the driving force, there
are some additional shortcomings related to arguments of the
function representing their kinetic equation.

It is the main objective of the present paper to furnish a
unified and tractable mathematical model of the linear stabil-
ity theory of surfaces and interfaces, which can be easily
adapted for computer simulations to deal with the above-
cited intricate problems by only relying on the rigorous me-
soscopic nonequilibrium thermodynamics of surfaces and
interfaces™>® combined with the well-accepted hypothesis of
the transition-state theory of reaction kinetics. In Secs. III
and IV the predictions of the LISA theory are thoroughly
furnished by unique and sound analytical expressions, which
are supported by 3D computer graphics, while they are com-
pared with the available experimental observations, and we
find excellent agreement between them.

II. PHYSICAL AND MATHEMATICAL MODELING

According to the microdiscrete formulation of the irre-
versible thermodynamics of surfaces and interfaces, which
was extensively elaborated and applied by Ogurtani®*® and
Ogurtani and Oren*® for multicomponent systems, the evo-
lution kinematics of surfaces or interfacial layers (the gener-
alized cylindrical surfaces in 3D space) may be described by
the well-posed moving-boundary value problem in 2D space
for ordinary points in terms of normalized and scaled param-
eters and variables.

In the present enlarged rigorous formulation, which may
formally cover the thermomigration or so-called thermal
drift diffusion known also as the Soret effect*” in condensed
states, the full emphasis is given to the effects of the applied
stress system on the growth kinetics and the instabilities as-
sociated with the morphological evolution of anisotropic sur-
faces and interfaces. The anisotropic parts of the surface drift
diffusion and the surface-specific Gibbs free energy of the
interfacial layer are represented by the angular-dependent
prefactors D(6,¢;m) and 7(9, (Aﬁ;m), respectively. The
angles 6 and ¢ (tilt angle) give the orientations of the local
tangent vector of the surface contour line in 2D space and the
principal axis of the diffusion dyadic, which coincides with
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one of the crystallographic directions, with respect to the x
axis of the global Cartesian coordinate system. For this
simple geometric construction, one assumes implicitly that
the sidewalls and/or upper and lower surfaces of the single-
crystal thin-film specimens coincide with one of those lower-
Miller’s index crystalline planes such as {100}, {110}, and
{111} in faced-centered-cubic (fcc) structures. Similarly, the

angle 6 measures the inclination of the local surface normal
over which drift diffusion is taking place with respect to the

same reference system. ¢ is the tilt angle of the surface nor-
mal of the arbitrarily chosen vicinal crystallographic plane
with respect to the x axis. Here n=2m takes the set of num-
bers {n=2,4,6} for fcc structures and represents the degree
of folding (27/n) or the order of the rotational symmetry
operation. The rotational symmetry axis that is characterized
by the symbol C, corresponds to the zone axis of a set of
planes and coincides with the surface normal vector associ-
ated with one of the low-index crystallographic plane
(singular-vicinal planes), making up the sidewalls and/or up-
per and lower surfaces of the single-crystal thin films.

The governing equation for the surface evolution may be
rewritten in the following explicit form by assuming that the
diffusing species are isotropic (monovacancy or self-
interstitial mechanisms) and, therefore, they can only interact

with the hydrostatic part of the stress tensor, ITr a/3 (see
the Appendix). Hence, the stress-field—elastic-dipole interac-
tion energy may have the following simplification in the case
of isotropic stress-assisted diffusion: wugp,=—Q,\,® c—
—(1/3)Q, Tr A, Tr g. Here ), is the effective elastic dipole
tensor of the mobile atomic species, which is described in
our previous publication!® thoroughly. The stress-affected

phase transformation mobility M,,(g,B;T), which depends
on the temperature exponentially (Arrhenius connection), as
in the case of the recrystallization of amorphous Si, may also
be dependent on the orientation of the interface, represented
by the angle B with respect to the (100) direction. Keeping
all these possible complications in mind, one may write the
following enlarged expression for the interface displacement
velocity including the phase transformation in normalized
and scaled space and time domain:

- J| = 1% — _
Vardz__ D(a’(ﬁ;m)__[Agbv"'X'ﬁ-"Eo’Tr gb/O'_YO'TO'
M M’

+ ?(é,qs;mm} — My, (0, B T Ay, + Y0, p3m)K]

+ ME i - Vo(Tr Gyp) — MY it - Vo(T), (1)

where T=T/T,, is the homologous temperature associated
with the steady-state temperature distribution due to the
Joule heating as well as the heat evolution during the exo-
thermic phase transition taking place at the surface and/or
interfacial layer. Y, and Y, are dimensionless parameters
and may be called the thermomigration intensity factors,
which are, respectively, associated with the surface layer and
the bulk phase, which will be defined later in this section.
The last two terms in the above expression represent the

PHYSICAL REVIEW B 74, 155422 (2006)

stress and temperature gradient-assisted particle bulk drift
diffusion to the interfacial layer, which eventually may con-
tribute to the surface layer displacement, where k is the local
curvature and is taken to be positive for a concave solid
surface (troughs) and negative for a crest. In our adapted
convention, the line normal 7 is always directed towards the
solid bulk region and the normalized interface displacement

velocity at the ordinary points is given by V,,=#AV,,;. Here €
is the curvilinear coordinate along the surface (arc length),

V, is the gradient operator in the 2D scaled space with re-
spect to €, x is the electron wind intensity (EWI) parameter,

and O is the normalized electrostatic potential generated at
the surface layer due to the applied electric field intensity.
A,,8=Ag,,=(g,—g,) by definition is the volumetric Gibbs
free energy density of transformation (GFEDOT) (Ag,, <0,
evaporation; Ag,,>0, condensation) normalized with re-
spect to the minimum value of the specific surface Gibbs free
energy of the interfacial layer denoted by gg, where A, is
the forward difference operator as is defined above implic-

itly. M,,(g,3;T) is the normalized temperature- and stress-
dependent generalized transformation mobility (i.e., recrys-
tallization or condensation). The stress and orientation

dependence of M,, is formulated by the author using a
transition-state theoretical argument, which will be fully
elaborated in Sec. V. In this paper v represents the realistic
void region, which contains a fluid phase including the amor-
phous solid state that shows rapid shear strain relaxation
(high fluidity) compared to the mass flow due to drift diffu-
sion along the boundary layer at the test temperatures.

In the present enlarged formulation of the problem, an
overbar still indicates the following scaled and normalized

quantities: "'
= t/’To, E= 6/60, K= K€(), W0= W0/€0, (2)
a,b
- 57T,
L=L/€0, Yo.b=T—OO,
R O
» - 2
_ gt < 9 €|Z|Eo€0
A = 5 13': _, = —’ 3
S 91' E0€0 Qo'g(()r ( )

)

= _ tooo Vv

s Ep= —0|Tr A,
3 o

where T, is the melting temperature of the bulk and s%b is

the Soret coefficient, which has the dimension of energy/K

and is a rather difficult atomistic interpretation, especially in

transition metals.’%2 Z<0 and s;=0 have opposite sign
when compared with Al atoms. That means the thermomi-
gration particle flux follows the direction of the heat flow,
from the high-temperature region towards the low-
temperature region. Tr ¢=Tr g/ oy is the normalized trace of
the local stress tensor, and oy is one of the applied remote
stress components (i.e., the applied uniaxial stress along the
longitudinal direction) acting on the interconnect film. In the
case of monovacancy mechanisms of diffusion, Tr );Zio
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and Tr ), <O are the traces of the elastic dipole tensors of
the mobile monovacancy at the interfacial layer and in the
bulk phase, respectively, which are both negative quantities
and should not be confused with the activation volume of
diffusion associated with the vacancy mechanism, which is a
positive quantity. Therefore, for the drift diffusion operating
with the monovacancy (or even for the self-interstitial)
mechanisms the parameters defined above, Z,, ,, are positive
or negative quantities depending on the sign of the applied
stress system and may be called the stress-field—elastic-
dipole tensor interaction intensities for the interfacial layer
and bulk solid phase, respectively. Since in general we have
assumed that the traction is equal to zero for the free surfaces
in the plain strain condition in 3D space, the trace may be
given by Tr ¢=(1+v)0y, where 0,=0,/0y is identified as
the normalized hoop stress. v is Poisson’s ratio. In these
equations, E; denotes the electric field intensity directed
along the specimen longitudinal axis. E is the usual Young

modulus. e|2| is the effective charge, which may be given in

terms of atomic fractions x' by Z=3xZ!, for multicompo-
nent alloys.

The various generalized mobilities are all normalized with
respect to the mobility of the surface diffusion denoted by

]\;IU. They are given, respectively, by

~  Dy,h, ~ D/N/,
M,=—2-<% M,= 4
TkTQ, T kTQ, “)
and
My, - M
My, =—2=2 M,= Aho- (5)

Here, (), is the mean atomic volume of the chemical species

in the surface layer of the solid phase. ISU is the isotropic part
(i.e., the minimum value) of the surface diffusion coefficient.
In the earlier description, we have tried to scale the time and
space variables {z,€} in the following fashion: first of all,

M, an atomic mobility associated with mass flow at the
surface layer, is defined by the relationship given in the pre-
vious paragraph, and then a new time scale is introduced by

T0="L5/ (Q(Z,j\;laga), where ¢ is the arbitrary length scale and
in the present paper the original thickness of the thin film is
chosen as a natural scaling length: namely, €,=h,.

In Eq. (1) the expression denoted by D(6,¢;m) is the
angular part of the anisotropic surface diffusion, which may
be represented by the following expression, assuming that Dy,
is the minimum diffusivity or isotropic limiting value:

D(6,p;m) =D(6,p;m)IDy={1 +A cos[m(6— ¢)]}. (6)

In the above relationships, A=0 is the anisotropy constant
and n=2m corresponds to the 277/n degree of rotational fold-
ing associated with the zone axis of a given family of planes
over which diffusion has taken place during the morphologi-
cal evolution of surfaces of a thin single-crystal film. In the
case of sidewall morphological evolution, the zone axis co-
incides with the initially undisturbed upper surface normal of

PHYSICAL REVIEW B 74, 155422 (2006)

the film; otherwise, it lies in the plane of the substrate along
the some crystallographic directions of the single-crystal me-
tallic interconnects.

A. Anisotropy in the surface Gibbs free energy and the cusp
singularity

In Eq. (1), the expression denoted by )7/(9,3);m)
E{?(é,g%;mﬂ%@,(@,q@;m)} is the angular part of the sur-
face stiffness, given by [9(0,d;m)/"]. By following the
general trend, one may introduce the trigonometric represen-
tation by defining the tilt angle ¢ such that the surface nor-
mal of a selected vicinal plane coincides with the x axis
when ¢ becomes equal to zero, $=0:

V6, sm) = 16, sm)/ yo ={1 + B sin’[m(6- $)I}, (7)

where 7, is the minimum value of the surface Gibbs free
energy density and B=0 is the surface-specific Gibbs free
energy anisotropy constant which is a positive quantity in the
above ad hoc representation and measures the fractional de-
grees of roughness on the Wulff construction of the surface-
specific Gibbs free energy. Using the above relationship de-
noted as Eq. (7) in connection with the calculation of [z

— Pyl (992], one may easily deduce the surface stiffness for-
mula as

2
PL=B) costam(i- 1.

(8)

where 6=[m/2- 6] is the angle between the line normal vec-
tor of the diffusion plane of a generalized cylindrical surface
projected onto 2D space (surface normal in 3D) and the x
axis of the global Cartesian reference system. In Fig. 1, the
normalized surface-specific Gibbs free energy y and the an-

W6, dim) = (1 +BI2)| 1 -

gular part of the surface stiffness y=(y/9°) are illustrated in
the polar plot for sidewall planes of a thin-film metallic
single-crystal interconnect line, having a surface texture de-
noted by (001), where n=2m=4.

According to Eq. (8), if the surface-specific Gibbs free
energy anisotropy constant satisfies the inequality B
<2/[|(1-4m?)|-1], then the surface stiffness can be posi-
tive definite, regardless of the orientation of the surface with
respect to the EM direction. That means one should have the
following set of upper limits for the anisotropy constants:
B=<{1,1/7,1/17} in the case of twofold, fourfold, and six-
fold symmetries, respectively. Otherwise, the system enters
into the anomalous surface stiffness-induced instability re-
gime. As can be seen from Fig. 1 for a given anisotropy
constant B=0.2>1/7 for the set of planes belonging to the
[001] zone axis, imperfect faceting may occur at the cusp
orientations (vicinal planes), because of the appreciable
negative surface stiffness appearing in the directions (1*10),
where one has concave topography (maxima in free energy
profile). These negative surface stiffness spikes may cause
inherent anomalous instability along those directions as will
be discussed later in this paper. In general, the factional
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Surface stiffness
--- Surface Gibbs free energy

180

FIG. 1. (Color online) Typical behavior of the surface-specific
Gibbs free energy and surface stiffness for a set of fourfold sym-
metry planes {01%0} and {1*00} in a fcc crystal having the [001]
zone axis normal to the thin-film surface. The anisotropy constant
B=0.2. The negative spikes of the surface stiffness for the sidewall
drift diffusion are clearly seen along the (11*0) directions, which
indicates inherent anomalous instability.

variations in the anisotropy constant are in the range of
|6B/B|<0.20 for the series of vicinal planes {111}<{110}
<{100} for most fcc and beec metals and alloys.>** Using
the above expression, one may obtain the following normal-
ized relationship, which enters directly into the growth rate
formula, which is valid for the first-order perturbation theory,
where one has { 6],_,— 0}:

B(1 —4m?)
B+2

X (surface stiffness). 9)

a2, )= (1 + B/2){ 1+ (=1)™! cos(2m$)}

The representation of the surface Gibbs free energy by
various trigonometric functions is very convenient for the
discussion and analysis of its effects on the morphological
evolution, as long as one does not deal with secondary fine
features of the faceting and the equilibrium shapes of small
crystals. Unfortunately, these cited features are very sensitive
functions of the topography of the cusp regions in the con-
struction of the surface-specific Gibbs free energy profile,?
which is associated with the low-index crystal planes (singu-
lar or vicinal planes). According to the present findings one
of the best analytical representative functions, which simu-
lates the cusps on the Wulff topography, for numerical treat-
ments may be achieved by mapping the cycloid-curtate
curve around the unit circle in the polar coordinate system.
The parametric representation of the curtate-cycloid curve®
is given by the following set of equations after some modi-
fication or scaling procedures to suit our present physical
objectives:

N =yl + ¥ cos()}, x() ={{+asin(Q)}. (10)

The parameter 7, is the mean value of the anisotropic
surface-specific Gibbs free energy (density). Since the wave-
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length of the periodic extension of the above-modified curve
is given by A=2r, the basic range (the fundamental interval)
of the variation of the rolling angle s may be described by
[0,2n]. However, for the mapping procedure advocated in
this paper a much better choice may be [7,(2n+1)7], such
that the surface normal of a selected vicinal (singular) plane
coincides with the x axis when the tilt angle 6 becomes equal

to zero, ¢p=0, where n=2m is the degree of folding associ-
ated with the rotation symmetry of the zone axis. The param-
eter denoted by W =[a/7y,], which may be called the Wulff
surface roughness (WSR) parameter, measures fractional
variations of the surface Gibbs free energy with respect to
the mean value and strictly corresponds to the anisotropy
constant by definition. As we will show later in this section,
it is a very important constant, which has an upper bond or a
threshold value for a given « parameter, above which the
capillary forces can no longer sustain or contribute to the
stability of the surface disturbances. The corresponding pa-
rameter for W in the trigonometric representation of the an-
isotropic surface Gibbs free energy is denoted by B, as de-
fined previously. Above the threshold value of the WSR
parameter, the surface stiffness takes negative values along
certain sets (continuous) of directions in the Wulff construc-
tion. The parameter « describes topographic (shape) varia-
tions of the Wulff construction especially at the cusp regions
in 2D space. When a=0, the Wulff contour in the polar plot
becomes a circle with a radius of y,, and when a=1 (bifur-
cation between curtate and prolate cycloids), the contour
forms periodic perfect cusps (the cracks) with periodicity of
2/n. Otherwise, in the range of 0 <@ <1, the contour is an
undulating but smooth periodic curve, peaking between the
cusps regions. The a parameter may be called the Wulff sur-
face topography (WST) index; it will be clear very soon why
it deserves that name. One may derive the following simple

parametric relationship between a set of angles {9, (2)} defined
previously and the surface stiffness and rolling angle s using
some legal calculus manipulations in connection with the
definition of the surface stiffness, y=+y+ vy Hence, one
writes, for the surface stiffness formula using the parametric
representation in polar coordinates,

9(g)=yo{— e

n m +{1+W¥ Cos({)}} ,

x(é’):n(é— p+m)V r<{<Qn+1)mV0=< (6- b)
(11)

where the WST index [0 < a<(1] acts as a bifurcation adjust-
ment or fine-tuning parameter for the cycloid, such that, at
the upper limit, the transition from the curtate to the prolate
cycloid curves takes place, which is accompanied by the for-
mation of a Dirac & distribution function singularity in the
surface stiffness. The onset of the WSR parameter (WSR
instability threshold), where the surface stiffness just enters
into or touches the region of negative values in the Wulff
polar diagram, is obtained for a given value of the WST
index number from the detailed numerical analysis of Eq.
(11). The WSR instability threshold level is plotted in Fig. 2

<2,
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FIG. 2. (Color online) The instability threshold level of the
Wulff surface roughness parameter (WSRP) is plotted with respect
to the WST index number, which describes the form of the surface
stiffness at the cusp regions, where a Dirac J singularity enters into
the scenario at a— 1.

as a function of the WST index number for various zone axes
{nC2,4,6} in fcc crystalline solids.

In Fig. 2, there are two distinct sectors, where the basic
function generating the Dirac ¢ distribution at the cusp re-
gions shows completely different shapes: a smooth
Gaussian-like form and a sharp peak with dimples at the
shoulders, respectively. The first sector corresponds to the
WST index numbers given by (0<a=<0.35), where the
minima in the surface stiffness profile irrevocably occur at
[{min=27,...,2n7], and it is characterized by the Wulff sur-
face contour having smooth Gaussian-like periodic undula-
tions at the cusp regions.

These surface stiffness minima are also closely associated
with the maxima of the surface Gibbs free energy profiles.
Hence, in the lower-WST-index sector, the surface stiffness
can be positive definite as long as one has the following
inequality satisfied by the Wulff surface roughness param-
eter:  U<V={(1+a)*/[n*-(1+a)*}<{4/(n*-4)}, ..,
where W denotes the threshold level of the WSR param-
eter, above which the capillary-induced instabilities start to
play a predominant role, which is also plotted as dashed lines
for various fold numbers in this figure. Figure 2 clearly in-
dicates that there is drastic decrease in the threshold level of
the WSR parameter if one goes from the set of planes be-
longing to the (110) zone axis towards the sequence of sets
of planes described by (100) and (111) zones.

The same figure also shows that with an increase in the
WST index number, the threshold level of the WSRP shows
first a linear increase in semilogarithmic scale and then sud-
denly turns at the knee points given by ay,..=0.35 towards
the monotonically decreasing sector, where one has to im-
pose much more severe instability requirements on the sur-
face roughness parameter. This region corresponds to the
upper-WST-index sector bounded by the interval 0.30< «
=<1, where the shape of the cusp on the Wulff construction
becomes very important in the role played by the capillarity
term in the instability, which cannot be deduced from the
trigonometric representation of the Wulff surface topography,
as will be illustrated later in this paper.
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One may even give a tentative proof by some mathemati-
cal arguments, mostly adapted from the theory of generalized

functions,’® that the surface stiffness function 9(s) advocated
in this paper, after the proper normalization and the interval
setting, forms the basic function of the Dirac & distribution
function. In the upper-WST-index sector, where the minima
occur at the shoulders of the surface stiffness profile in the
cusp regions, the capillarity-induced instability—which may
be called anomalous—becomes a great problem since one
has a drastic decrease in the threshold level of the WSR
parameter in that region as can be seen in Fig. 2. The real
influence of this basic function, which is used in the repre-
sentation of the surface stiffness, on the capillary-induced
stability and faceting is still waiting to be explored by com-
puter simulations. Another important advantage to using this
basic function is that it can be easily adapted to the rounding
effect of the temperature fluctuations on the surface-specific
Gibbs free energy profile at the cusp regions by just playing
with the WST index number as a function of temperature
using some phenomenological relationship.

Typical polar plots of the surface Gibbs free energy and
the surface stiffness are demonstrated in Fig. 3, for two dif-
ferent sectors in the WST-index-number range. Figure 3(a),
which belongs to the lower-WST-index sector and is situated
in the instability region, clearly shows that there is a factor of
2 improvements in the surface stiffness associated with qua-
sicusp regions for the same anisotropy constants compared to
Fig. 1, which is based on the trigonometric function. The
instabilities along the (11*0) directions do not change very
much due to the high value of the WSR parameter above the
threshold level compared to the mean surface Gibbs free en-
ergy.

In Fig. 3(b), the behavior of the surface stiffness profile is
illustrated in the upper-WST-index sector, keeping the WSR
parameter the same and above the threshold level, by zoom-
ing in on the polar origin, which clearly reveals the details of
the subsidiary (negative) spikes arising from the dimples of
the main peaks at the cusps. A close inspection also shows
traces of (110) spikes (negative) with much less intensity.

B. Driving forces originated from the applied elastostatic
field

There is great confusion in the literature, as discussed
critically in our recent paper,’ in appreciating the fundamen-
tal difference between the EDTI force and the fictitious
chemical force implicitly associated with the gradient of the
inhomogeneous ESED, since its individual identity in the
thermodynamics sense can only be justified rigorously if the
entropy density were independent of the stress field. Other-
wise, it appears as a first-order approximation in the gener-
alized Gibbs or Helmholtz free energy (with opposite sign)
as a separate entity in conjunction with an additional term
due to the stress-field—latent-heat-tensor’ interaction given

by l_,l;”OT® o, where the stress dependences are quadratic and

linear, respectively. I:ZOT is the latent-heat tensor referred to

the unstrained state.’

For solid-to-solid interfacial reactions, one has to employ
the following exact expression for the ESED contribution to
the GFEDOT with the proper sign:
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FIG. 3. (Color online) Typical behavior of the surface-specific
Gibbs free energy and the surface stiffness illustrated in both WST
index sectors by using the cycloid-curtate curve for the fourfold
symmetry planes {100} having the [001] zone axis in a fcc crystal.
The Wulff surface stiffness topography index (WST) is @=0.20,
and «=0.50, respectively, and the surface roughness parameter is
W=0.15, which is above the threshold level for both regimes.

1
U) = Aggv - EQUQ-U/U' : ‘Sv * Oyl

1
Agbv = Aggv - EAbv(Q‘E ®
1
+E‘ng(r/b'§b'g(r/h- (12)

In the case of the crystalline silicon versus amorphous silicon
transformation under the thermostatic stress (hydrostatic)
system, where the traction-free boundary condition is no
longer valid, the above expression should be considered in
the driving force for the growth term as well as for the in-
terface diffusion. In the above relationship, a pseudovector
representation of the linear elasticity is used. §,, are the
isothermal (positive-definite) elastic stiffness (compliance)
matrices, and QU,,, are the mean atomic volumes in the re-
spective phases. Agﬁv represents the thermal part of the
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Gibbs free energy of the transformation of the flat interface.
In the case of the fluid phase or even the amorphous solid
phase, where shear stress relaxation may take place rather
rapidly, the second term in the last expression of Egs. (4)
drops out completely, and one may have Ag,,vaggU
+1/2(Qy,047pSp T4, >0 (condensation or recrystallization).
For a composite system made up of two different elastic
solids separated by an interfacial layer, which has been also
solved by Gao’® using the 2D complex elasticity theory, one
has to consider the stress-assisted bulk drift diffusion due to
the EDTI in both phases. The above-cited relationship, in
connection with Eq. (1), immediately shows that the strain
energy density, regardless of the sign of the hoop stress at the
surface layer, always prefers the condensation (i.e., recrystal-
lization in the case of SPEG) process of flat surfaces and
interfaces due to the growth term, just the opposite of the
general claims.?>3° Similarly, because of the high-strain-
energy density localization at the trough regions compared to
the crests, their displacement velocities will be much higher
than the peaks, which causes a smoothing effect on the sur-
face morphology. During the inverse reaction—namely,
evaporation—just the opposite takes place: the displacement
velocity of the crests will be faster than the trough, which
also causes the surface modulations to smooth out. There-
fore, regardless of the direction of the phase transformation,
the elastic strain energy density has a positive effect on the
surface under any applied stress system and for any modula-
tion wavelength. Later in this section, one may anticipate
that it also causes a healing effect on the surface roughness
by the steady flow of matter from the crest (low-stress-
concentration) regions towards the trough (high-stress-
concentration) region due to its contribution to the surface
drift diffusion term in Eq. (1), again regardless of the sign of
the hoop stress. However, as will be discussed quantitatively
in this work, the influence of the strain energy density on the
overall stability and growth considerations of the surfaces
and interfaces are almost negligible compared to the effects
of the strain-field—elastic-dipole-tensor interactions up to ex-
tremely high stress levels: 21 GPa for silicon and 7.6 GPa
and 15. GPa for aluminum and copper, respectively.

A close inspection of the contribution in Eq. (1) associ-
ated with the bulk diffusion, driven by the elastic dipole
interaction caused by the applied elastostatic field, and
knowledge of the elastic solution of the problem by Gao, "
who has the most elegant, complete, and correct solution of
the problem compared to Asaro and Tiller?? and Srolovitz,*
who have some problem in their 2D stress tensors, especially
in the trace as well as in the deviatoric parts, but still can
give the right answer for the hoop stress, one may observe
later in this paper that the uniaxial tension smooths out the
surface roughness by inhibiting the growth velocity of the
crest regions and by simultaneously enhancing the displace-
ment of the troughs by exactly the same factor, since the
EDTI parameter =,=0 is positive for the atomic hopping
motion via the monovacancies in the case of uniaxial ten-
sion. The effect of the uniaxial compression appears to be
just opposite in the case of bulk diffusion-assisted growth,
where enhancement of the surface modulation or roughness
is encouraged. This prediction is apparently in accordance
with the observation of Aziz et al.,?® who studied the motion
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of the interface between crystalline and amorphous silicon
(100) under the nonhydrostatic stress system. They have ob-
served that the SPEG growth rate of the tensile side is greater
than of the compressive side of elastically bent wafers and
the interface roughness increases on the compressive side.
However, this interpretation may be fictitious; namely, ex-
actly the same conclusion could be reached by the stress
dependence of the generalized growth mobility denoted by
M(B,0y;T) if the EDT associated with the mobile species at
the saddle point configuration has negative trace but positive
in-plain eigenvalues, as is the fact borne out by experiments,
which will be elaborated later in this paper.

C. Stress dependence of the generalized growth mobility

Staying strictly in the domain of irreversible or classical
thermodynamics, one cannot speculate very much on the
generalized mobilities introduced by Onsager linear
theory,®!%% other than their symmetry properties. Therefore,
one has to rely on either the atomistic models exposed to
quantum statistical-mechanics treatments or some other heu-
ristic quasithermokinetics arguments such as the transition-
state theory, which is mostly used in the literature.?%%3 Uti-
lizing the basic concepts of popular transition-state theory,**
one may deduce the generalized mobility from the gross re-
action rate constant by considering not only the forward but
also the backward reactions, which are closely connected
with the mesoscopic structure of the interfacial layer, during
the phase transformation. While elaborating this heuristic
treatment in the context of the enlarged transition-state
theory, the Gibbs free energy of the activated complex sub-
system must be also supplemented by the elastic dipole in-
teraction energy of the mobile atomic species at the saddle
point configuration, as a part of the internal energy of acti-
vation, u". This contribution arises by the mutual interaction
between the externally applied stress system and the induced
strain field generated by the temporal occupation of the
saddle point configuration by the activated atomic species in
the interfacial layer. Keeping this statement in mind, one can
easily calculate the following universal formula for the gross
reaction rate constant R,_,;, for the transformation, symboli-
cally represented by v=b (i.e., recrystallization of amor-
phous Si into the crystalline state or vice versa) with a little
arithmetic manipulations of terms:

(g, — (& +8,)/2]

kT
g, (8 +8)/2]
kT

Ry =20, exp{— }sinh[— Ag,,I2kT]

=N exp{ }[(év = 8y)/KT]

>< (VT = Ttmns)’

defMUb

M0, B;T)=
oo B =" =0 kT

kT

Q[Au, -\ ® . o' ®
Xexp{— M} = Mgb(B;T)eXp(=—g>,
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[Ag,,]

}exp[— Aé’;vb/kT] (v T<Ttrans) s

(13)

=R, exp{ -

where Ry=s(B)kT/h is the attempt frequency and numeri-
cally it is about equal to the Debye vibration frequency
[=10" s7']. Here s(B)=exp[AS, (B)/k] is the steric factor,
as explained previously. Ag), and Ag,,=g,—g,<0 are the
Gibbs free energy of the activation and the Gibbs free energy
of the transformation denoted symbolically as v = b, respec-
tively. Ag;h is referred to as the mean Gibbs free energy
associated with both phases [Ag,, =g, —(g,+g,)/2] and
evaluated just at the adjacent regions of both sides of the
interfacial layer. The cap sign over the various generalized
Gibbs free energies indicates (i.e., g=[u,—Ts,;,—w]) that
this quantity is referred to the particle representation. The
unabridged form of the above kinetics equation has been
adapted by many authors empirically, including Liang and
Suo*® and Barvosa-Carter and Aziz,*® in their formulations.
While writing the second and third lines in Eq. (13), using
the properties of the sinh(-) function, it has been presumed
that the phase denoted by b is a stable phase below the trans-
formation temperature: namely, Ag,,<O0. T}, denotes the
transformation temperature (or some type of softening or
roughening temperature) at which the Gibbs free energy of
the reaction becomes identically equal to zero. This hypo-
thetical transformation proxy mimics the recrystallization of
amorphous Si (supercooled liquid state) into crystalline Si
below the quasitransition temperature. The last term between
the brackets, which appears in the linearized second line in
the above set of equations, corresponds to the generalized
transverse driving force per particle (condensation or recrys-
tallization) acting on the flat interface, and its positive value
F,,=-Ag,,/T=(g,—&,)/T>0 indicates that condensation
or recrystallization take place as a natural process. This term
is a special case of our generalized thermodynamic force
obtained for the curved interfaces by the irreversible thermo-
dynamic treatment of the global entropy production,* and the
cofactor of the driving force simply corresponds to the gen-
eralized mobility, M,,/k in our growth term in Eq. (1).
Hence, one may write immediately, by the principle of cor-
respondence, the following expression for the generalized
mobility by rearranging the stress-dependent terms properly
in the Gibbs free energies and using the fact that an activated
complex interacts with the stress field through the EDTI
term:

9{0 ~* %O *
— _e—Agvb/kT: —eQAsth/k exp) -

ER *
— _OeQAsth/k

kT

QAuy, —w" =\ @ g+ (W, +w,)/2] }
kT

kT (14
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where Ait,, =1, (i), +1")/2 is the thermal part of the acti-
vation energy referred to as the mean energy of the adjacent
bulk phases, separated by the interfacial layer, and the sub-
script th denotes the stress-independent parts of the charac-
teristic functions (thermal component) assuming that the en-

tropy is stress independent. Mgb(B;T) is the generalized
mobility in the absence of the external stress system, which
may be depend on the orientation of the interface (aniso-

tropy) due to the steric factor denoted by ¢?4#/*_ In writing
the above equations, one should recall that the elastic dipole
interaction energy associated with the activated complex
atom, as a temporal point defect at the saddle point configu-
ration in the interfacial layer, is given by ugp=—Q,\,
® g,. In general, the elastic dipole tensor at the saddle point
configuration )zx* is axisymmetric (but not necessarily univer-
sally true) and its eigenvalues may depend upon the orienta-
tion of the interfacial layer in crystalline solids similar to the
interfacial tension tensor as demonstrated recently by Ogur-
tani and Oren.’ From the definition of the macroscopic stress
and strain tensors in an elastic continuum and the adapted
reference system for the thermodynamic functions for the
activated complex, one has [w"=(w,+w,)/2]. Similarly, the
driving force for the flat interfacial reaction in terms of volu-
metric densities may be written as

Q Q
Fop=—=—[(gy-8,)]==—[Agy, +w,—w,].  (15)
T T
The corresponding interface displacement velocity v, due to
the phase transformation at the curved interfacial layer may
be written as in the real-time and -space domain,

—Mbv(,B o T)Q? [Agbv w,+w,+g.kl.  (16)

In the case of fluids or the amorphous solid phase where the
stress relaxation takes place rather easily (i.e., excluding the
hydrostatic stresses) one may assume that w, = 0. Therefore,
the positive-definite strain energy density of the bulk phase
w, =0 adjacent to the interfacial layer always enhances the
condensation process or stabilizes the stress-carrying solid
bulk phase. One may write the following expression for the
generalized volumetric Gibbs free energy density by splitting
the internal energy into three parts: namely, thermal energy,
strain energy, and elastic dipole tensor interaction energy,
assummg that the entropy is independent of the applied stress
system s —s,h or is a first-order approximation, the latent-
heat-tensor contribution being negligible, where the thermal
components of the thermodynamic characteristic functions
refer to their volumetric densities. Hence, one writes!3

g =u-Ts —g ®cg = u,h+uEDT,+§§ ®@qg |-Ts
—g ®¢ =[uy=Tsy]-2, 8¢ ~7J¢ ©g
=fu=2e®g -w', (17)

where one has the elastic strain energy density given by w”
—e ®0‘ /2 and the elastic dlpole tensor for the activated
complex state is denoted by )\ which is the intrinsic prop-
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Substrate

FIG. 4. Side view of a metallic single-crystal thin film, with a
preexistent sinusoidal wave on the surface just before the onset of
the application of the electric field. This configuration corresponds
to the fourfold degrees of rotation symmetry, n=4, and the tilt angle
¢=45° as far as the diffusion and the surface-specific Gibbs free
energy dyadics are concerned.

erty of the system at the saddle point configuration, which
may have tetragonal symmetry, similar to the interfacial ten-
sion tensor in the interfacial layer. f, and u,, are the thermal
parts of the Helmholtz and internal energy densities, respec-
tively. Similarly sfh represents thermal part of the entropy
density.

II1. UNIFIED LINEAR INSTABILITY ANALYSIS

In this section a concise treatment of the linear first-order
stability analysis of the governing equation (1) is presented,
where the traveling plane wave, propagating on the surface
of a thin single-crystal film (infinite extent), with complex
argument is employed as the initial data. The two last terms
in Eq. (1), which are discussed in detail by Ogurtani and
Oren>!? in the formulation of the local and global entropy
production associated with interfacial layer displacement,
can be used for the general phase transformation between
two condensed phases. Similarly, the growth displacement
velocity expression for a spherical second-phase particle in a
bulk matrix can be easily deduced as a special case of our
general formulation by introducing the concept of the critical
radius as r,=k"'=-v,/Ag,,, which reduces to the well-
known Hillert®® theory, which in its original derivation
makes use of the Lifshitz-Slyyozov-Wagner (LSW) theory of
interface-controlled particle coarsening in the absence of the
stress field.>"

A. Effect of electromigration on the instability of single-crystal
thin films

The morphology of an initially perfectly flat (001) surface
having a perturbation in the shape of a sinusoidal wave is
demonstrated in Fig. 4, where the positive direction of the
electric field is from the left (anode) to the right (cathode)

[010]. The scaled interconnect thickness is denoted as EO
=1, and the wave vector and the wavelength are given by

k=khy and N=N\/hy, respectively. These are all scaled with
respect to the arbitrary length chosen as €y,=h, for conve-
nience in this paper. Here A is the initial uniform thickness
of the metallic thin-film interconnect before it is exposed to
any surface disturbances.
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In this subsection the combined effects of capillary migra-
tion and electromigration on the instability on the anisotropic
solid surfaces are considered. One can easily show that the
normalized and scaled equation (1), in the Cartesian coordi-
nate system for a solid bulk matrix-fluid phase interface,
takes the following exact form using the conventional defi-
nition of the curvature of 2D curves. One should recall that
in Eq. (1), the positive direction of the surface displacement
velocity is chosen towards the bulk phase and the curvature
term is so defined that the surface bulge or crest has a nega-
tive sign k<0, where we have taken the realistic void phase
as a reference system in our original formulation:

_f(hx)ht =f(hA)ax|.D()f(hx)(9x[A§bv + X"3 + Eso-h - Y(TTU
+ YOL )+ My [AZy, + ¥ (h)hy,]
+ MyEf(h )i - Vo(Tr @) = MY i - Vo(Ty).
(18)

Here, one should make it clear that the growth parts of this
master equation, which are situated in the second line of the
above expression, are also rigorously valid for the interfacial
later between two condensed phases, but not the surface
drift-diffusion part that appears in the first line, in the physi-
cal context of the original formulation,® without putting some
extra constrain on the composite system, where EDTI param-
eter is redefined in the plain-strain condition as Z,=(1
+0) 25[Tr )
of traction.

We should mentioned here that all those quantities appear-
ing in the present treatment are normalized and scaled quan-
tities. In order to simplify the notation we do not use an
overbar over the scaled space and time variables, and the
kinematics parameters such wave numbers k, phase veloci-
ties v, the surface profile function %, and the decay rate T’
[i.e., xe—X=x/hy, t—T=t/7, h—h(x,t)=h(x,1)/hy], where
h is a shorthand notation for the time- and space-dependent
and normalized disturbed surface profile having infinite ex-
tent [—o,+o0], and f(h,) is called the structure function,
which is given by

s» Which is more convenient for the surfaces free

flh) =1 +h2)™72, (19)

One may also recall the following transformations, which are
used in the derivation of the master equation (18):

0y =(1+1) " hyde o= (1+h)""0,. (20)

The quasielectrostatic potential ¢ satisfies the Laplace equa-
tion V2¢=0 in 2D space and the Neumann boundary condi-
tions at the inactive and active surfaces, respectively:

ey(hx5t) = h(x,0) . (h,x5). (21)

As justified in due time, in the linear stability analysis of the
governing equation, the initial data may be supplied by the
following expression for the interface profile, which shows a
traveling plane-wave perturbation having complex argu-
ments and superimposed on a constant velocity displacement
of a flat interface (i.e., evaporation and condensation):

@,(0,x51) =0,
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h=1+M,,Agy,t + eafexplik(x—vi)]+cc}, (22)

where a,, the amplitude of the traveling wave, is k<« 27/
=kh,, which is the normalized wave number, and 0<g=<1 is
the perturbation order operator. v is a complex number (i.e.,
phase velocity), which carries the most important informa-
tion concerning the dynamical behavior of the system. In a
certain treatment, one uses w=kv, which is called the fre-
quency index, which is very convenient to define the group
velocity: namely, v,=dw/dk. The real part of the complex
velocity, vg, corresponds to the phase velocity (dispersion),
and the imaginary part, v, deals with the dissipation or
growth rate I'=kvy,,. Similarly, the normalized quasielectro-
static potential at the active sidewall (or upper surface) may
be represented by the following expression, which was first
presented by Schimschak and Krug'® and later further elabo-
rated by Brush and Oren

cosh(ky)

“sinh(p) Pk -vOl+ec.,

o(x,y;t) =—x—iea,
(23)
and for the upper normalized active surface (y=1) one writes

o(x,1) =—x — iea, coth(k)explik(x — vi)] + c.c.

=-—x-iea, k explik(x —vi)] +c.c. (24)
In the above expression, we have introduced the follow-
ing very accurate approximation for the cofactor given by
coth(k)=(1+k)/k in the amplitude of the electrostatic field
induced by the surface undulations. This cofactor may be
called the film thickness enhancement (FTE) parameter,
which becomes very important in the dispersion relationship
associated with the propagation velocities of the EM-driven
surface disturbances, especially at the long-wave limit as de-
scribed by {k<1=\=2mwhy}. The relationship (23) also
shows clearly that the influence of the surface disturbance on
the electrostatic potential decay is almost exponential with
the distance from the initially flat surface position y=1.
However, the disturbance-affected zone is scaled down by
the critical wavelength given by \.,,=2mh, in real space.

It can be easily anticipated that for the first-order pertur-
bation represented by the e = 1 operator, the governing equa-
tion (1) takes the following concise form without making any
additional assumptions about the structure function, which
virtually reduces to unity:

h, = lim{- x[D(6, $)é,, + 3.D(6, $)°]9
6—0

- D(a’ ¢) 7(77/2 - 07 d))hxxxx - [D(a’ ¢)‘9xx + axD(a’ ¢)‘9§]
X[Ag_bu + Esa-h - YUTU] + va[Agbv + 7(77/2 - 6’ ¢)hxx]
= MyE i - Vo(Tr @) + MY i - V() (25)

In the above relationship the superscript over the partial
differential (PD) operator &f implies the extraction of the
constant term from the gradient of the operand function. This
operator is intentionally introduced and kept here in order to
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treat those problems where there is a (constant) strain field
gradient along the specimen longitudinal axis induced by the
steady-state heat flow and/or by the electromigration (Blesh
effect). In the case of homogenous fields, this term drops out
automatically. The elastic strain energy density of the solid
phase, like other intensive quantities, is evaluated just be-
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neath the surface layer. In addition, if one assumes that the
thermal part of the Gibbs free energy of the transformation
Agﬁv is homogeneous along the surface layer and the trans-

formation mobility Mgb is independent of the applied stress
and orientation of the surface, then one may write

ikv — MO, (AZ), + Wy) = ixk® coth(kho)[ 1 + A cos® mep] + xmk?A sin[2m¢p] + [1 + A cos®> m|[ y(m/2, $)k*] +{[1

+A cos? mpla,, + mA sin[2m Pl N E G, + 25, — Y, T,] = MO (AgY, +wh) + MO {Y(w/2, p)k* - S77}

+ ME i - Vo(Tr Gpyo) — MY it - Vo). (26)

In our future discussions the thermomigration terms ap-
pearing in the above expression will not be reproduced, ex-
cluding the discussion section, since we have no analytical
information concerning the temperature distribution associ-
ated with the heat generated by the Joule effect and/or the
possible phase transformation associated with the condensa-
tion or recrystallization processes taking place during dis-
placement of the interfacial layer. However, one may easily
speculate that for the undercooled system, the mean tempera-
ture at the trough region is kept higher than the crest region
by the heat which has evolved during the condensation. That
means there will be steady thermomigration of atomic spe-
cies from the trough region towards the crest opposing the
temperature gradient and invoking the interface roughness.

In Eq. (26), &7 represents the first-order contribution to
the ESED due to the formation of surface undulations on the
surfaces, otherwise flat and traction free. W) is the elastic
strain energy density for the flat surface. The above general
relationship in the absence of an external applied stress field
yields the following expressions, for the growth rate and the
phase velocity, by separating the real and imaginary parts of
the complex velocity such as v=vgp+ivy,, where the real part
corresponds to the propagation or phase velocity and the
imaginary part is related to the growth rate constant denoted
by I'. Then one may have the following connections by
equating the real and imaginary parts of both sides of the
above equation:

Vg = xk coth(k)[1 + A cos® md]. (27)
The above expression takes the following form after the

renormalization procedure in the real-time and -space do-
main:

D hye|Z,|pyJ
V(k) = Mk coth(kho)[1 + A cos® mep]
D hye|Z,lp,]
= %k[l +Acos>mg] (¥ khy=2)
D hye|Z,lp,]
= M(l +0.25(khg)?)
kTh,

X[1+Acos®>mp] (V khy<2). (28)

The last two very accurate approximations are added in order
to show the dispersion relationships for the short- and long-
wavelength sectors, respectively. The second line clearly re-
veals that the dispersion relationship is linear and does not
depend on the film thickness in the short-wavelength sector,
khy=2. On the other hand, the third line indicates that in the
long-wavelength sector the velocity dispersion relationship is
quadratic and the limiting value is inversely proportional to
the film thickness. Equation (28) shows that the disturbance
propagation velocity is always from the anode site to the
cathode site in the direction of the applied electric field.

The disturbance growth rate associated with electromigra-
tion and capillarity effects may be easily deduced from Eq.
(26), which results in

' = kvy, = — ymkA sin[2m )]
—{[1+A cos®> mpJk® + M2} y(w/2, p)k>.  (29)

In Fig. 5, the growth rate for a set of planes belonging to the
zone axis (110) having twofold rotational symmetry is pre-
sented in a 3D plot as a function of tilt angle and wave
number assuming that the electron wind intensity is given by
(x=0.75) and the diffusion anisotropy constant has a reason-
able value of A=5, where two different surface stiffness re-
gimes are illustrated. In the first case, the surface stiffness is
positive definite at any direction in the Wulff construction,
and in the second case the surface stiffness shows negative
values along certain well-defined orientations as described
previously. In order to illustrate the behavior of the growth
rate constant for the first case, two extreme values of surface
stiffness anisotropy parameter, B=0 and B=1, are employed,
respectively. It is clearly seen from these figures cited as (a)
and (b) that the instability region in the case of positive-
definite surface stiffness, which is described by the projec-
tion at the I'=0 plane, is singly connected to closed domains
that cover tilt angles in an open interval of 7/2<<¢p<mr and
some small-wave-number regions having a lower bound &
=0= (\ — ). The immediate effect of the surface stiffness
anisotropy on the growth rate may be easily observed if one
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FIG. 5. (Color online) The growth rate constants of sinusoidal
surface disturbances under capillary and EM forces are plotted with
respect to the tilt angle (0-27) and the wave number (0-7) for a
twofold symmetry zone axis (110) for the two different regimes
associated with the surface stiffness: the normal instability regime
where the surface stiffness is positive (B=0, isotropic; B=1.0, full
anisotropy) and the anomalous instability regime showing negative
values along some directions described by (B=1.1,2.0). The diffu-
sion anisotropy constant A=5, the applied EW intensity x=0.75.

compares Fig. 5(b) with Fig. 5(a), which corresponds to the
isotropic case. The surface stiffness anisotropy, according to
Fig. 5(b), pushes the instability domain towards high tilt
angles (¢— m/m) in the fundamental interval and drastically
extends the upper bound of the wave numbers into the short-
wavelength region. Hence, the most critical configuration, as
far as the onset of the instability regime is concerned, occurs
when the orientation of the principal axis of the surface stiff-
ness dyadic lies almost parallel but opposite in direction to
the applied electric field, which is assumed to be lying on the
surface of the thin-film interconnect.

The effects of the surface stiffness in the negative value
regime on the growth rate (instability) may be easily seen in
Figs. 5(c) and 5(d), where B=1.1 and B=2 are used for
demonstrations, respectively. Namely, the instability domain
starts to extend towards the forbidden tilt angle ranges for
the twofold rotational symmetry, which are denoted by
(0,7r/2) and its periodic extension given by (7,37/2). Nor-
mally these ranges correspond to the capillarity-dominating
regime, where one has the dissipative mode in operation un-
der applied EM forces, which smooths out any surface dis-
turbances regardless of its wavelength. The application of the
renormalization procedure to expression (29) similarly yields
the following relationship in real space, where I' may be
called the disturbance growth rate (DGR) constant and its
positive value represents instability of the surface morpho-
logical evolutions:

Dhok’
kT

+ Q8071 +A cos’(m) ] (/2. d:B)}
- Mgbﬂzg%’(ﬂ/z’ &:B)k>. (30)

O

T=-

{AezphJ »im sin(2me)
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FIG. 6. (Color online) The instability boundary surfaces for the
extremely anisotropic (B=1) and the isotropic (B=0) cases are plot-
ted in (a) and (b), respectively, in terms of the electron wind inten-
sity threshold level, wave vector, and tilt angle for the twofold
symmetry zone axis (110). A=5 and M,,=0. In these figures, there
are singularities at ¢=[7/2m,w/m], where the EW intensity (y
—o0) cannot be defined by formula (32).

The relaxation time of the dynamical system may be ob-
tained from a simple connection such as 7=-1/I". The in-
stability is closely connected to the applied electric field and
the tilt angle. The range 7/2m < ¢p<<r/m corresponds to the
possible (normal) instability growth region even in the ab-
sence of the surface Gibbs free energy anisotropy. Similarly,
the surface tension and the ESED contributions are preferred

for stability unless the surface stiffness y(7/2, ¢) becomes a
negative value, which may cause a dramatic instability prob-
lem as will be discussed in this section in connection with
vicinal (singular) planes.

Similarly, by utilizing Eq. (29), one may study the bound-
ary surface in 3D space described by [x,k, @], which sepa-
rates the instability domain from the stability region, for a
given set of system parameters: namely, the anisotropy con-
stants [A, B], the fold number [m], and the generalized phase

transformation (growth) mobility denoted as M,,. Hence,
one may write the following expression to define the insta-
bility boundary surface in terms of the threshold or the in-
stability onset value of the EW intensity parameter x,,(k, @)
under a given set of system parameters as a function of wave
number and tilt angle, assuming that the surface diffusion
and the surface-specific Gibbs free energy dyadics have a
similar orientation (not necessarily true universally):

W /2, @;B)

- m{[l + A cos? m¢]k2 + va},

Xthr(k’ ¢) =

(€2))

a T

Vo#+y——.— (.
{ 2m m}
In Fig. 6, the threshold level of the EW intensity as a func-
tion of tilt angle and normalized wave number is presented
as a 3D plot for the set of planes having a twofold symmetry
zone axis (110) in fcc structure, where the surface diffusion
anisotropy constant is taken as A=5 and the surface stiffness
anisotropy constant is assumed to have two extreme values:
namely, B=0 (isotropic) and B=1 (upper bond for the sur-
face stiffness stability). In these figures instability domains,
which are bounded by either the combination of threshold
surface (x,¢) and (x,k=7/m) planes or the threshold sur-
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FIG. 7. (Color online) The instability boundary surfaces associ-
ated with various surface stiffness anisotropy constants below (¥
=0.03) and above (¥=0.08,0.20,0.30) the capillarity threshold
level is illustrated for a fourfold symmetry zone axis (100), respec-
tively. The anomalous instability, which occupies the forbidden tilt
angle interval, is clearly demonstrated in these figures, where A
=5, M,,=0, and a=0.70.

face and (y,¢) plane, respectively, can be easily distin-
guished from the stability region.

The growth rate constant relationship (29) in the absence
of an applied stress field shows very clearly that if the sur-
face stiffness that is described by the trigonometric function
satisfies an inequality given by B,,<2[|1-4m?-1]",
which may be represented quantitatively by {B,<1,B;
<1/7,B¢<1/17} for various fold numbers, then the capil-
lary force represented by the second term prefers absolute
stability, since the surface stiffness will be positive definite in
every direction. Similarly, if one uses the more realistic
curtate-cycloid representation of the surface stiffness given
by Eq. (11), the following inequality should be respected in
order to achieve an absolute stability concerning the capil-
lary term: W =(1+ a)[m*—(1+a)*]"!, which is also drawn
in Fig. 3 as dashed lines, where the topography of the Wulff
construction in 2D space is completely determined by two
parameters: namely, the Wulff surface roughness parameter
W and the surface topography index number «. The last pa-
rameter fixes the shape of the stiffness function (the basic
function for the Dirac § singularity) at the cusp regions.

In Fig. 7, the electron wind intensity instability threshold
level is plotted by utilizing Eq. (11) in connection with Eq.
(31), assuming that there is no growth contribution M,;,=0,
as a function of wave vector kC[0-87] and tilt angle
¢C[0-7m/2] for a fourfold rotational symmetry zone axis
(110). From these figures one clearly observes the formation
of an anomalous instability domain in the forbidden tilt angle
interval denoted by ¢C[0,7/4], which is normally con-
trolled by the dissipative capillarity forces, when the WSR
parameter exceeds the instability threshold level as illus-
trated graphically in Fig. 2. In fact, according to the 3D plots
presented above, for high values of the Wulff surface rough-
ness parameter such as W=0.3, the anomalous instability
regime is not only stretched over the forbidden tilt angle
sector, but also the normal instability domain shows ex-

PHYSICAL REVIEW B 74, 155422 (2006)

tremely large enhancement by covering almost the whole
region denoted by W C[7w/4—7/2].

The first appearance of this new instability is solely due to
the existence of negative spikes associated with the dimples
of the surface stiffness profile. But the later stage of the
anomalous instability, which shows stretching in the forbid-
den zone, is closely associated with the entrance of the sur-
face stiffness to the negative values if the cusp regions are
properly represented by the curtate-cycloid function in the
Waulff polar construction, as mentioned and illustrated previ-
ously. Under normal circumstances, this tilt angle interval
(the forbidden sector) for the fourfold symmetry zone axis
should be under the influence of the usually observed capil-
lary regime and should result in dissipative behavior in the
growth phenomenon. The peculiarity of this anomalous in-
stability domain comes from the fact that it does have an
upper bond at very high wave numbers that may approach to
infinity with the WST index number (a¢— 1), which is com-
pletely opposite to the usual electromigration-induced insta-
bility, where the instability is constrained only for small-
wave-number (long-wave-surface-ripples) region, which has
a well-defined upper bond. The same situation may be also
said for the EM-induced stability domain above the capillar-
ity threshold level, which does show an upper boundary that
is extended deep into the high-wave-number region, as is
hardly to be detected in Fig. 7. All these observations are the
result of an analytical treatment of the surface stiffness. This
anomalous instability regime shows itself even in the ab-
sence of an applied electric field, as may be seen from a
close inspection of Fig. 7, which is not the case for the EM-
induced instability boundary surface.

In the positive regions of the surface stiffness in the Wulff
construction, the contribution of anisotropy to the total
growth rate constant through capillarity would be a positive-
definite cofactor regardless of the magnitude of the tilt angle,
which means the capillarity still inhibits the enhancement of
the surface disturbances. However, a close examination of
Fig. 5 shows that even in a trigonometric representation of
the surface Gibbs free energy the anisotropy in the surface
stiffness still has an adverse effect on the stability compared
to the isotropic case, because it causes not only an appre-
ciable amount of short-wave entry into the instability do-
main, but also results a shift towards the upper boundary of
the tilt angle ¢=~[m/m] in the basic interval.

According to Fig. 2, the upper bonds for the critical WSR
parameters are given by W§'<0.65, V{"<0.14, and ¥¢"
=<0.06 for twofold, fourfold, and sixfold of symmetries, re-
spectively. Hence, in general, the anisotropy in the surface
Gibbs free energy has an adverse effect even in the absence
of external forces such as EM or EDTI on the surface distur-
bances, for very well-defined ranges of the tilt angles, which
is illustrated in Figs. 1 and 3. The situation gets worse at
higher degrees of folding as clearly presented in Fig. 2.

The contribution of the EM effect to the surface distur-
bance growth rate depends upon the tilt angle, whether it
inhibits instability or prefers enhancement of the surface dis-
turbances. Therefore to interpret the combine effects of cap-
illary and electromigration forces as functions of wave num-
ber and tilt angle by taking into account the complete
anisotropy is very complicated in nature, even when one has

155422-14



UNIFIED THEORY OF LINEAR INSTABILITY OF...

a very reliable analytical expression like that presented here.
These difficulties may partially be surmounted with the aid
of 3D graphical representations as introduced successfully in
the present work.

In the presence of the above findings, the surface distur-
bance may be presented by the following transparent form
rather than by Eq. (22):

h(x,0) = 1 + M2, (0, T)(AZ, + wi)t
+{a, exp(I'n)explik(x — vgr)] +c.c.},  (32)

where Mgb(a,T) is the temperature- (Arrhenius) and stress-
dependent normalized mobility. In the case of solid-phase
epitaxial growth of ion-beam-amorphized Si and Ge, where
the orientation of the crystal substrate can have a large influ-
ence on the growth rate in addition to the stress effect, it may
be shown rigorously that the stress- and orientation-

dependent transformation mobility denoted by M, (o, 8;T)
takes part in the above equation. The propagation velocity
given by expression (27) indicates that the surface distur-
bance moves along the applied electric field and its magni-
tude depends on the wave number linearly (dispersion) and
the width of the interconnect. Its dependence on the tilt angle
and the crystal symmetry described by the fold number n
=2m is also very critical and strong.

B. Effect of the stress field on the instability of single-crystal
thin films

According to the general formula denoted by Eq. (4), the
elastic strain energy density contribution in the case of a
solid-fluid interfacial layer may be given by wy,
=0,0,,8,0a,,, for a linear elastic solid, which is evalu-
ated at the bulk phase just next to the surface layer. In writ-
ing Eq. (26), the following normalization procedure expres-
sion for the ESED has been considered by remembering the
fact that the surface is assumed to be traction free during the
solution of the elastic boundary value problem (this is defi-
nitely violated in the case of SPEG under hydrostatic pres-
sure; otherwise, one cannot measure the N33 =7-\-7 compo-
nent of EDT):

4
Wpie= (1= Uz)(%z) (ﬁ) =3,5,, (33)

where EhE(l—vz)(;ﬁZg) is the strain energy intensity pa-
rameter (SEIP). This pgrameter represents the loading level
under a uniaxial stress system, which is also used as a crite-
rion for crack initiation or instability considerations. oy,
=0,/ 0y is the normalized hoop stress at the bulk phase ad-
jacent to the surface layer. In Eq. (26), the gradient extraction
operator &f becomes very important in the first-order pertur-
bation theory if there exist constant stress field gradients in
addition to the oscillatory part of the field. This constant
stress field gradient immediately contributes to the distur-
bance propagation velocity (phase velocity), similar to the
electromigration far-field contribution represented by the
second term in Eq. (26). For the present case, where the
specimen is assumed to be loaded by an external uniaxial or
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biaxial stress system, the application of the extraction gradi-
ent operator returns zero and then no contribution to the
disturbance phase velocity can be observed in LISA theory.

The effect of the elastic strain energy density on the in-
stability may be calculated for a small perturbation rather
easily. The results of the elastic boundary value problem
solved by Asaro and Tiller?> and Srolovitz*® have unfortu-
nately serious problems in their solutions for o, and o,,.
But later, using a more elegant and correct way by Gao’®>°
using the method originally developed by the celebrated
Russian academician Muskhelishvili,®’ the hoop stress and
the strain energy density at the interface may be rewritten in
the following form using our adapted complex number rep-
resentation:

0y, = Tr g, = 0y(1 = 2eka{explik(x - vi)] + c.c.})
(34)

and
o-ﬁ = 0'(2)(1 — edka explik(x —vo)]} +c.c.). (35)

Similarly, the trace of the stress tensor, which is identically
equal to the hoop stress in the traction-free surface, is given
directly by Gao® in calculations, in addition to the deviatoric
part of the stress tensor, where the global reference system is
attached to the temporary position of the flat interface and
the y axis is normal to the interface and directed towards the
void phase (opposite to our adapted convention); then, one
may write

Tr o= oy(1 - 2ka e {explik(x —vi)]+c.c)).  (36)

Hence, the gradient of the trace of the stress tensor along the
surface normal, which is pointed towards the bulk region,
takes the following expression at the interface, y=0, in
scaled space;

A Vo(Tr @) 520 ==y (Tr @)=
= + 2lga,00kHexplik(x — vi)] +c.c.}.
(37)

The above expression clearly indicates that under uniaxial
tension, stress-assisted bulk diffusion prefers evaporation of
the flat surface, where o, and wozo%/ 2F are the uniaxial
stress applied along the x axis and the elastic strain energy
density at the flat interface, respectively. Note that according
to our adapted profile, the strain energy density at the crest is
lower than the trough. The surface or interfacial layer distur-
bance growth rate may be obtained from Eq. (26). Namely,
the contributions due to the in-plane applied uniaxial stress
system to the imaginary part of the propagation velocity may
be calculated from the relationships (35)—(37) and assuming
that the transformation mobility still does not depend on the
applied stress field. Hence, one may write

155422-15



TARIK OMER OGURTANI

' = kvy, = — {xYmk*A sin[2m )]
+[1+A cos”> mdp] (w2, p)k* + (B, +23)[1
+ A cos® mp[2k} — {MY) [43 + Hm/2, p)k]k
+ M,E,2k%, (38)

where Z,=(1 +v)%|Tr A and E,=(1 +v)€3°f:;|Tr )| repre-
sent the elastic dipole interaction intensity parameters
(EDIPs), respectively, in the interfacial layer and the bulk
phase, assuming that the monovacancies or some other point-
defect mechanisms (i.e., self-interstitial) are operating in
both regions. The first group of terms accounts for the mass
or particle transport in the surface layer, which is strictly
valid for the interface between the solid and fluid phases.
Here, the fluid phase also includes the amorphous solid state
showing a high shear strain relaxation rate or creeping mo-
tion at high temperatures. The last group of terms between
braces is associated with the phase transformation (the
growth), and it is valid not only for surface layers but also
for the interfacial layer between two condensed phases.

In this section, various contributions to the instability in
the growth rate constant I" and the phase velocity of surface
disturbance are presented in great detail with factual inter-
pretations supported by computer graphics based on pub-
lished experimental data and derived from our analytical for-
mulations elaborated in the previous sections. Especially, the
various contributions of the applied stress system to the mor-
phological evolution of free surfaces and interfaces are dem-
onstrated for a prototype example such as a copper single-
crystal solid thin-film interconnect line, and some references
are made for the recrystallization of ion-beam-amorphized
silicon, which will be also analyzed here in great detail since
SPEG has been well documented experimentally in the lit-
erature.

The relationship (38) clearly shows that the contributions
of the elastic strain energy density, represented by the 2,
intensity parameter, to the disturbance growth rate constant
I, due to the surface drift diffusion as well as for the phase
transformation terms, are always negative definite (dissipa-
tion or healing effect) regardless of the wave number and the
tilt angle. These findings due to the sign conflict in the gen-
eralized Gibbs free energy function'?® are just the opposite to
some authors’ conclusions that the strain energy density
alone, above certain wave numbers, results in decay of the
amplitude and otherwise causes surface roughness or insta-
bility. On the other hand, the situation with respect to EDIPs
represented by =, and =, is completely different and dis-
tinct. The sign of these parameters depends on the sign of the
applied stress system acting along the interfacial layer de-
noted by oy, whether it is uniaxial tension E >0 or compres-
sion E<0. Our LISA theory clearly shows that the EDT
interaction, which appears in the surface drift diffusion, al-
ways favors surface smoothing when the solid phase is sub-
jected to in-plane uniaxial tension, but in the case of uniaxial
compression just the opposite phenomenon occurs: namely,
the enhancement in the surface roughness takes place regard-
less of the wave number and the tilt angle. These findings are
also in excellent agreement with the experimental results re-
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ported in the literature.*’:%® The situation with respect to the

stress-assisted bulk diffusion is just the same, where the
uniaxial compression favors the surface instability by the
constantly supplying atomic flow to the crest regions and
simultaneously draining atomic species from the trough re-
gions with the same rate (conservative behavior having zero
mean interface displacement) and causes the surface modu-
lation to amplify rather than to decay. As far as the overall
interface drift-diffusion contribution to the surface instability
is concerned the sum over these two effects 3, and =, should
be taken into account for the case of the uniaxial compres-
sion system. Actually, the combination of these two closely
related or connected effects dictates the final contribution of
the stress field on the instability (growth mode), which may
be written as

Tr A
30'0

{(E,+23) + #(7/2, p)k} = % 1-v>+(1+0)E

(o8

+ (2, )k < 0. (39)

The above inequality may be easily handled, which results in
the following instability (open) domain having well-defined
upper and lower limits on the uniaxial stress system: namely,

0> 0y>~-(1-v)"E[Tr\}}/3 (instability bonds at k = 0.
(40)

The above relationship for silicon®® and copper® gives, re-
spectively, the following figures: 21 GPa (E=163 GPa, v
=0.23) and 15.65 GPa (E=119 GPa, v=0.34) for the lower
threshold level in absolute magnitude value of the strain-
energy-density-dominating regime, assuming that the trace
of the EDT is in the range of TrA=0.2-0.4.

In Fig. 8 in the absence of electromigration forces, the
stress-induced instability associated with the sidewall mor-
phological evolution is presented for a hypothetical copper
thin solid film (hy=10"° M) having a texture (111) X[211]
under uniaxial tension and compression, where instability
hypersurfaces are plotted using the computer graphic facili-
ties of MATCAD-13 in terms of the renormalized stress (&
=¢/E,), the wave number k, and the tilt angle ¢ in para-
metric 3D space using Eq. (34). Here, three extreme values
of the surface stiffness anisotropy constant, B=0.02, B
=1/17, and B=0.2, are selected, respectively, well below and
above the anomalous instability threshold level B,,=1/17 as-
sociated with the (111) zone axis having sixfold rotational

symmetry for the set of {101} singular planes oriented along
the $=30°,90°,150° directions. This system constitutes the
most critical system as far as the morphological instability
associated with the surface Gibbs free energy anisotropy is
concerned.

As may be seen from Fig. 8(a) (B=0.02) and Fig. 8(b)
(B=1/17), for low values of the anisotropy constant there is
an absolute and well-defined instability subdomain embed-
ded completely in the uniaxial compression region in the
parametric space bounded by [k=0, ¢»=0] planes having an
elevation characterized by the universal marginal stress level
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FIG. 8. (Color online) The stress-induced instability upper (a),
(b), (c) and lower (d) bond hypersurfaces are plotted in terms of
wave numbers k:(0-277) = \:(0-hy) and tilt angles (0-180°) for a
EDT, Tr A=0.30, using a set of selected surface stiffness anisotropy
constants: namely, (B=0.02), (B=1/17), and (B=0.20), below and
above the anomalous instability threshold level (B,,=1/17), for a
top (111) surface having sixfold rotational symmetry, under applied
uniaxial tension and compression along the [211] direction, respec-
tively, where the elastostatic data (Ref. 70) for a copper thin solid
film having 1 uM thickness is used: Ey=1.19X10'' NM™2, v
=(.34, and g?;:“ 1.6 TM~2 (0.1 eV A™2). The lower figures show
the effects of the anomalous instability regime on the upper (c) and
lower (d) boundary hypersurfaces. The maximum in the surface
stiffness occurs at the tilt angles denoted by ¢=30°, 90°, and 150°
and the negative spikes at ¢=0°, 60°, and 120° for this selected
surface texture.
presented in Fig. 8(d) denoted by o=E=<-(l
—v)~!|Tr\)|/3, which yields for copper and silicon &=
—0.15 and -0.13, respectively. The above calculated lower
bound for the instability domain for copper indicates clearly
that the stability may still prevail under the uniaxial com-
pression because of the positive character of the strain en-
ergy density, and its negative contribution to the generalized
bulk Gibbs free energy,>'? but its magnitude is so high that it
can never be attained in practice for the vacancy-exchange
mechanism of diffusion as postulated above having |Tr )\X|
=(.3. This gap in the renormalized stress level depends only
on the elastic Poisson’s ratio of the bulk phase and the trace
of the EDT of the mobile atomic species. In the case of
copper, the lower limit (in absolute magnitude) for the
uniaxial compression above which stability may be observed
in some well-defined regions is in the range of |o]
=15.65 GPa (156 kbar).

As far as the effects of the anomalous instability associ-
ated with the surface stiffness are concerned (B=B,,), they
show themselves very clearly in Fig. 8(c) (B=0.20), where
there are some absolute instability regions intruding into the
uniaxial tension domain above the {k,@} zero reference
plane, which are stretching as wide strips all along directions
of the ¢=0°,60°,120° tilt angles, regardless of the magni-
tude of the wave number, where the surface stiffness takes
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FIG. 9. (Color online) The instability growth rate constant I is
plotted for three different renormalized stress levels given by |G
=107(1.19 MPa),|5|=10"%(11.90 MPa), and |6|=1072(1.19 GPa)
with respect to the wave number (k=0-27=\=0-h, and tilt angle
for the sidewall surface morphological evolution of a copper single-
crystal thin solid film having the (111) plane as a top surface with a
thickness of 1 uM, under uniaxial tension and compression, respec-
tively, using two selected surface stiffness anisotropy constants:
namely below (B=0.02) and above (B=0.1), the anomalous thresh-
old level given by B=1/17. The elastostatic data for copper (Ref.
70) is used: Ey=1.19X 10" NM2, v=0.34, ¢°=1.6 IM~2, and
TrAS00.3.

negative values and the capillary forces no longer play the
role of stabilizer. Similarly, the stability domain also pen-
etrates into the compression region with increasing depth
proportional to the wave number, along directions given by
the tilt angles ¢=30°,90°,150°, which correspond to the
maxima in the surface stiffness oriented along the direction
of the cusps in the Wullf construction for the adapted texture
mentioned previously. These are the important orientations,
where the formation of strong faceting takes place. The
present theory shows that they are extremely stable regard-
less of the sign of the applied stress system and the stability
increases with wave number linearly even under uniaxial
compression. Figure 8(d) (B=0.20) shows the lower-
instability sheet beyond which the stability comes into play
due to the positive influence of the elastic strain energy den-
sity, which contributes a negative term to the generalized
Gibbs free energy density in the bulk region just adjacent to
the interfacial layer,>*!3 as predicted previously. The strip
widths of these anomalous stability and instability zones in-
crease but never overlap with an increase in the instability
constant denoted by B=B,,. The situation might be even
worse if one considers the cusp formation represented by the
curtate-cycloid curve along the vicinal planes as treated ex-
tensively in this paper.

In Fig. 9, the sidewall surface disturbance growth rate
constants I" are presented as 3D computer graphics as a func-
tion of wave number (0-277) and tilt angle (0-180°) for three
different applied stress systems, uniaxial tension, and com-
pression, respectively, where the stress equilevel surface
sheets in the compression side denoted by Figs. 11(b) and
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11(d) rotate in the clockwise direction with an increase in the
applied stress level and towards the anticlockwise direction
in the case of uniaxial tension, Figs. 11(a) and 11(c). That
means any increase in the applied stress level, whether it is
tension or uniaxial compressive, always increases the abso-
lute value of the growth rate constant of the surface modu-
lations in the negative (roughness decay) or in the positive
(roughness growth) directions, respectively. Under uniaxial
compression the decay rate of the surface roughness in-
creases with the applied stress level. According to Figs. 9(b)
and 9(d), the system might show a stability region at the
critical tilt angles ¢=30°,90°,150° under very low applied
compressive stresses for low values of the wave numbers and
that region increases in extent drastically when the surface
stiffness enters into the anomalous instability regime. Similar
but just the opposite behavior may also be observed in Figs.
9(a) and 9(c) for low uniaxial tension loading, where the
system shows instability at the critical tilt angles ¢
=0°,60°,120° and low wave numbers due to the negative
surface stiffness spikes seen in Fig. 3, which are directly
related to the maxima in the surface-specific Gibbs free en-
ergies.

It seems that there is an unanswered great puzzle associ-
ated with a novel experiment which was recently performed
by Shreter et al.,”' who observed unusual relief resembling
quasicracks on a compressionally stressed surface of bent
silicon subjected to chemical etching in the range of
814—-200 MPa. But it is also strange that nothing took place
on the opposite side, which was exposed to uniaxial tension
at the same magnitude. This very revealing experiment is a
strong indication that there is something seriously missing in
the theory of Asaro, Tiller, and Grinfeld*>’?> (ATG) that can-
not account for this strange behavior even when one has a
reasonably high applied stress level. Of course this phenom-
enon has nothing to do with surface diffusion or evaporation
condensation but the chemical removal of atoms. Similarly,
in clean and free surfaces, according to the studies by
Shenoy et al.,”® the involvement of the adatom hopping mo-
tion might be possible and the rebounded [100]-oriented
single-height step is strongly stabilized by compressive strain
compared to most well-known step structures. The same
group also claims that the (100) orientation is unstable under
compressive stress from atomistic calculations on the self-
assembly of Si-Ge quantum dots.”* The last statement can be
understood since there are several stretched bonds in this
structure; one expects its energy to be lower in a compressive
applied stress field than the tension.

Probably the most important mechanisms behind the in-
terface stability are the stress- and orientation-dependent
growth mobility, where the saddle point configuration of the
mobile atomic species plays a profound role and the elastic
dipole interaction of its distortion field with applied stress
system takes a dominant position in the kinetics of the inter-
facial displacement reactions (i.e., for the recrystallization of
amorphous silicon, SPEG), where one has experimental data
on the interfacial layer of SPEG concerning EDT, which has
tetragonal symmetry represented by N =9 =0.14, Ny =
—0.56, and Tr )\;i=—0.28. Therefore, the most critical situa-
tion is encountered in the application of LISA theory to the
free surfaces, where one has not only complete uncertainty in
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FIG. 10. (Color online) The stress-induced instability upper (a),
(b), (c) and lower (d) bond hypersurfaces are plotted in terms of
wave numbers k:(0-27) = \:(0-h) and tilt angles (0-180°) for a
EDT, Tr A=0.30, using a set of selected surface stiffness anisotropy
constants: namely, (B=0.05), (B=1/7), and (B=0.50), below and
above the anomalous instability threshold level (B,=1/7), for a
fourfold rotational symmetry axis (1*00), under applied uniaxial
tension and compression, respectively, where the elastostatic
data (Ref. 75) for a silicon thin solid film having 1 uM thickness
are  used: Ey=1.6X10'""NM™2,  v=0233, and g°
=1.6 IM2(0.1eVA™2). The lower figures show the effects of the
anomalous instability regime on the upper and lower boundary
hypersurfaces.

the sign of the 2D trace [Tr A =(\;+\,)] of the EDT but also
no sound quantitative experimental or theoretical informa-
tion available in the literature on the individual in-plane ei-
genvalues associated with the mobile atomic species at the
surface layer related to the adatom movements.

In Fig. 10, in the absence of electromigration forces, the
stress-induced instability hypersurfaces of a silicon thin solid
film (hy=107° M) under uniaxial tension and compression
are plotted using the computer graphic facilities of MATCAD-
13 in terms of the renormalized stress (6= o/E,), the wave
number k, and the tilt angle ¢ in parametric 3D space using
Eq. (34), where three extreme values of the surface stiffness
anisotropy constant, B=0.05, B=1/7, and B=0.5, are se-
lected, respectively, well below, above, and at the anomalous
instability threshold level B,,=1/7 for the fourfold symmetry
zone axis (100). As may be seen from Fig. 10(a) (B=0.05)
and Fig. 10(b) (B=1/7) there is an absolute and well-defined
instability subdomain embedded completely in the uniaxial
compression region in the parametric space bounded by [k
=0, »=0] planes having an elevation characterized by the
universal marginal stress level presented in Fig. 10(d) de-
noted by = f<-(1-v)7!|Tr\}|/3=-0.13.

The above calculated lower bound for the instability do-
main for silicon indicates clearly that the stability may still
prevail under the uniaxial compression because of the posi-
tive character of the strain energy density, and its negative
contribution to the generalized bulk Gibbs free energy, but its
magnitude is so high that it can never be attained in practice
for the vacancy-exchange mechanism of diffusion as postu-
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FIG. 11. (Color online) The instability growth rate constant I is
plotted for three different renormalized stress levels {|5
=1073(1.63 MPa), |5|=1073(163 MPa), and |G|=1072(1.63 GPa)}
with respect to the tilt angle ¢=0-180° and wave number k=0
-2m= N\=0-h for a silicon single-crystal thin solid film having the
(100) plane as a top surface with a thickness of 1 uM, under
uniaxial tension and uniaxial compression, respectively, using two
selected surface stiffness anisotropy constants below (B=0.05) and
above (B=0.25) the anomalous threshold level given by B=1/7.
The elastostatic data (Ref. 71) for silicon is used: Ey=1.6
X 10" NM2, v=0.233, ¢%=1.6 IM~2, and Tr \5'110.3.

lated above having |Tr\/|=0.3. This gap in the renormal-
ized stress level according to the above-cited inequality is
given by [-0.130=<5.=<0], and it depends only on the elas-
tic Poisson’s ratio of the bulk phase and the trace of the EDT
of the mobile atomic species. In the case of silicon, the lower
limit (in absolute magnitude) for the uniaxial compression
above which stability may be observed in some well-defined
regions is in the range of |o|=21 GPa (210 kbar). In Fig. 11,
the surface disturbance growth rate constants I" are presented
as 3D computer graphics as a function of wave number (0
-2r) and tilt angle (0-180°) for three different applied stress
systems, uniaxial tension, and compression, respectively,
where the stress equilevel surface sheets in the compression
side denoted by Figs. 11(b) and 11(d) rotate in the clockwise
direction with an increase in the applied stress level and to-
wards the anticlockwise direction in the case of uniaxial ten-
sion, Figs. 11(a) and 11(c). That means any increase in the
applied stress level, whether it is tension or compressive,
always increases the absolute value of the growth rate con-
stant of the surface modulations in the negative (roughness
decay) or in the positive (roughness growth) directions, re-
spectively. Under uniaxial compression the decay rate of the
surface roughness increases with the applied stress level. Ac-
cording to Figs. 11(b) and 11(d), the system might show a
stability region under low applied compression for wave
numbers and that region increases in extent drastically when
surface stiffness enters into the anomalous instability regime.
Similar but opposite behavior may also be observed in Figs.
11(a) and 11(c) for low uniaxial loading, where the system
shows instability at the critical tilt angles ($=45°,135°)
and for low wave numbers due to the negative surface stiff-
ness spikes seen in Fig. 3.
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IV. DISCUSSION

One should mention here that almost all of the arguments
made about the surface morphological instability in the
literature,!1-2246:90 regardless of their sophistication in the
calculation of the elastic strain energy density®® or the tem-
perature distribution due to the released of the latent heat of
transformation,’® strictly depend on the isotropic surface
Gibbs free energy by presuming that the effects of the
surface-specific Gibbs free energy anisotropy are negligible
because the reported values of the anisotropy constant are
very small.””7® On the other hand, the expression which dic-
tates the boundary surfaces between stability and instability
domains in the absence of electromigration, as presented by
Eq. (39), shows clearly that the critical wavelength depends
upon the orientation of the surface due to the surface stiff-
ness elaborated in this paper. As far as the overall stress-
gradient-induced interface drift-diffusion contribution to the
surface instability is concerned the sum over these two
effects—namely, X=ESED and =,=EDIP—should be
taken seriously into account, especially in the case of the
uniaxial compression system. Actually, the combination of
these two closely correlated or, better to say, organically con-
nected effects dictates the final contribution of the stress field
on the instability domain (growth mode), which may be eas-
ily handled by introducing a new normalization scheme in
terms of d=0,/E, in connection with the definitions of these
parameters given previously in Egs. (3)—(33): then, after the
conversion operation, one may write using Eq. (39) the fol-
lowing compact formula, which was also used in the produc-
tion of the computer graphics in this paper:

V
(1-&+(1+ v)&|Tr3—)‘"|

+XY7/2,$)k<0 (instability criteria), (41)

where a new dimensionless parameter in real space, N
:g?,/ Eyhy, is introduced, which may be called the capillary
stability enhancement factor (CSEF) for good reason. This
parameter, which clearly reveals the hyperbolic size depen-
dence of the stability criteria for those objects under the ap-
plied or residual stress system, may be very important for
nanoscale material systems. The high values of the CSEF
encourages stability below the threshold level B< B, of the
surface stiffness anomalous regime; otherwise, it may have
adverse effects along those directions, where the surface
stiffness becomes negative (the spikes in the Wullf construc-
tion). The equality sign gives the equation of the equilevel
stress surfaces of two sheets, which partially encloses the
instability domain in 3D parametric space, as extensively
illustrated in Fig. 10. Outside of this domain, the surface
disturbance decays. This expression clearly shows that there
is a marginal uniaxial compressive stress region where the
ESED dominates the overall behavior and results in surface
undulations to decay rather than grow, which also appears in
Fig. 10(d), and it is calculated as 20 GPA for a hypothetical
silicon interconnect line. This region numerically is strongly
correlated with the monovacancy relaxation or dilatation
fields, Tr\Y'=00"/Q% <0, at the surface layer as reported
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by Emrick and McArdle” and Finnis and Sachdev,®® where
Q¢ is the atomic volume in the unstrained matrix. Here, one
should make it clear, in order to avoid any misconception,
that the relaxed vacancy formation volume Q(‘;> 0 is a posi-
tive quantity but the dilatation given by (QV—0%)/Q%<0 is
negative. This is an unfortunately highly confused point in
the literature. The lower limit for the region, which is af-
fected by the compressive stress adversely, can be also evalu-
ated using the value given by Kirchheim®' as |Tr\%|
=0.2-0.4 and E*'=70 GPa for aluminum, which results in
Ores=—1.6 GPa (76 kbar), which is a very large compres-
sive stress level to be reached in ordinary applications in
order to inhibit the adverse effects due to EDTI by the con-
tribution of ESED. Therefore, in practice EDTI-driven inter-
facial drift diffusion dominates the stability considerations
on the surface disturbances. Similarly, one can estimate for
aluminum the ESED and EDTI values for the 200-MPa
nominal stress level observed in the passivated interconnect
lines as w2=0.28 J/em® (2.9E-5eV) and wugp=76 J/cm?
(7.8E-3 eV), respectively. These two figures show immedi-
ately that the elastic strain energy density compared to the
elastic dipole tensor interaction energy is almost negligible.
These energies are also too small compared to the mean ther-
mal energy fluctuations k7=0.026 eV even at room tempera-
ture. As a numerical example, the elastic dipole interaction
energy for aluminum at the stress level given by oy=1 GPa
is of the order of uzp;=0.039 eV, which is in the range of the
thermal energy cited above. As stated on many occasions,?
the elastostatic energies regardless of their nature it are too
small compared to the physicochemical and electronic ener-
gies, which are mostly of the order of a few eV. The rela-
tionship denoted by u/w=-2E Tr )=\00'51/ 3 also shows that
the elastic dipole interaction energy density dominates the
strain energy density below a threshold stress level, which is
about equal to 15 GPa for the present selected typical case.

As confirmed by the analysis of the experimental findings
reported by Aziz et al.*! and Lu et al.,** in silicon, the saddle
point configuration for the activated complex atom at the
interfacial layer definitely has tetrahedral symmetry. This
may be due to the fact that the interfacial tension tensor as
discussed recently by Ogurtani and Oren’ is axisymmetric
and the symmetry axis is oriented normal to the interface.
The other important fact is that the interfacial tension tensor
has positive and equal eigenvalues at the surface tangent
plane and a negative eigenvalue (compressive) along the te-
tragonal axis. Of course, these eigenvalues may vary along
the surface in the case of anisotropy. Lu et al.*® have mea-
sured the pressure dependence of the solid-phase epitaxial
growth rate Si into amorphous silicon produced by ion im-
plantation SPEG and found that the activation volume has a
negative sign and approximately Tr \, < 8Q0/Q=-28% of
the atomic volume. According to the activation complex
theory developed in this paper for the generalized mobility
associated with the phase transformation, the connection be-
tween the phenomenological activation volume and the EDT
may be given by the following expression, where the third
line in Eq. (13) is used in collaboration with Egs. (14) and
(17), which is, as stated above, valid for the recrystallization
reaction well below the equilibrium temperature:
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. &KIn v,) aln M,, IAgpy
AVl»»|def= kT =k +
i g |, dol; |, kTdol,
= QN + A (D) = Q) + QST (o7
(42)

While writing the last expression, we have assumed that
there is complete stress relaxation in the reactant phase
(amorphous Si) denoted by v. AV;'}| der and (v,) are, respec-
tively, the apparent activation volume determined experi-
mentally and the absolute value of the mean interface dis-
placement velocity, which is represented by the growth term
in Egs. (1) and (16). The term denoted by A, (e;;) may be
called the transformation strain tensor for the recrystalliza-
tion process, the trace of which is closely related to the trans-
formation dilatation A,,,(Tr &;)=(Av/v),,,. Experimental de-
termination of the activation volume relies on the applied
remote in-plane stress system versus the interface displace-
ment. Because of this, the value obtained from the above
relationship represents not only the expectation or the mean
value of the elastic dipole tensor of the activated complex
state, but also some additional contribution due to transfor-
mation strain, which is actually a few orders of magnitude
smaller than the EDT. Therefore, one may write Tr AVZ.| def
=0 (Tr )xZ-):—OQSQU. The negative trace of the effective
EDT associated with the mobile species at the saddle point
configuration in the interfacial layer has far-reaching conse-
quences in the case of applied hydrostatic compression. Later
studies by Aziz et al.%® are concentrated on nonhydrostatic
stress effects on crystal growth kinetics in silicon system.
They observed that the solid-phase growth rate of crystalline
Si (001) from the amorphous Si on the tensile side is greater
than on the compressive side of elastically bent wafers. Ac-
cording to the most recent studies by Barvosa-Carter and
Aziz% one of the in-plane activation volumes is AV},
=0}, =(0.14+0.04)Q due to the o7y, uniaxial stress system.
This and previously reported findings in conjunction with the
symmetry elements of the Si (001) plane are enough to de-
termine the eigenvalues of the elastic dipole tensor, associ-
ated with the mobile activated complex atom at the saddle
point configuration: namely, A;=\,=0.14, A;=—0.56, which
amounts to Tr \"=-0.28 in the 3D elastic continuum. Using
the transverse eigenvalue, the EDTI energy in crystalline Si
may be calculated for an applied in-plane uniaxial compres-
sion stress given by o;;=-0.5 GPa (5 kbar), which amounts
to Uppy=—QN01,=7.28X 1072 eV. Similarly, the elastic
strain energy per particle ESED for the same applied stress
system is given by w=Q,07,/2E=7.96X 107 eV. These
two figures clearly show that the elastostatic energies regard-
less of their origin are very small compared to the activation
energies, which are in the range of few electron volts for Si
(2.68 eV) and Ge (2.17 eV). With the exception of very high
applied  hydrostatic ~ stresses such as  |Tro]/3
=5 GPa=u,;,;=0.028 eV, the EDTI energy of the acti-
vated complex, compared to the mean thermal energy of
kT=0.068 eV, is about one order of magnitude smaller at the
test temperature, which is about 7=793 K.
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Therefore one has to take a different strategy for the fac-
torization procedure of the generalized growth mobility.
Namely, the stress-dependent reaction mobility should be
factorized into a nominal part and a perturbation part after
the decomposition of the local stress state into the stress for
the flat interface g, and the stress induced by the interface
perturbations g;: namely, g=g,+g;. Hence, one may per-
form the following very accurate linearization procedure af-

ter the proper factorization:
0, ® g
kT

Q)\* ® ()%

= A_lgb(ﬁ,go;T){l + #} (43)

M,,(B,a;T) = MY, (B, g0; T)CXP{

Utilizing the above approximation for the normalized mobil-
ity, in the formulation of the growth term in Eq. (25), one can
obtained the following identity by employing the calculated
surface stress distribution given by Egs. (34)—(37) for the
in-plane uniaxial stress system. Hence

MUb(B’ g, T)[Ag_bv + ;’(77/2’ ¢)hxx] = Mgb(ﬁ’ Q’o;T)

Qa\] -
x { o LA+ ) 23k = Hml2, )

—[23k + Y72, p)K*] + [AgY, + W } . (44)

During the derivation of the above connection, one still stays
in the domain of the validity of the first-order perturbation
theory. The part of the first term combined with the third
term in the above expression should replaced by the similar
term in Eq. (32) in order to obtain the following more accu-
rate expression for the surface profile displacement dynamics
including the phase transition:

h(x, t) = I’lo + va(ﬁ, Q'O’T)(Ag(b)u + Wg)t
+{a, exp(I'n)explik(x — vgr) ] +c.c}  (45)

and
0

90117\1“1} (46)

va(ﬂ70-0;T) = Mgh(ﬂ,go;T)exp|: T

The beautiful part of relationship (45) is that the interface

mean displacement velocity given by va(ﬁ,go; T)(Aggv
+vT/2) depends only on the applied remote static nominal
stress system; therefore, it is time independent as long as
Ag,‘iv stays uniform in space (homogeneous temperature dis-
tribution at the interface) and constant in time (quasistatic or
steady-state phase transformation), which is the case for the
isothermal phase transitions of single-component systems,
where in the case of the applied hydrostatic stress system one
should consider the following replacement:
o) ,\];=Tr g Tr A/3 (see the Appendix). Similarly the com-
bination of the first and second terms in Eq. (44) replaces the
growth term due the phase transition in Eq. (38). All these
legal mathematical manipulations finally result in the follow-
ing relationship for the instability growth rate I" of the pre-

PHYSICAL REVIEW B 74, 155422 (2006)

existing surface disturbances and morphology evolutions un-
der electromigration and elastostatic forces (uniaxial in
plane) by taking full account of the orientation and stress
dependence of the generalized growth mobility denoted as

va(ﬁ’ Q'0§T)I

' = kv, = — xymk?A sin[2m ] - [(E, + 23) + W 7/2, )k]
X[1 +A cos> mpJk® — {M,E,4k> + MY, (B,00) (1 + E,)
X[23 + Y m/2, Pk}, (47)

where we have introduced another new parameter =
=o' \],/kT<1, which may be called the stress-induced
growth mobility enhancement (SIGME) factor. SIGME com-

bined with unity may be put into exponential format, which
gives back to the generalized growth mobility denoted as

M,,,(B,0,:T) similar to Eq. (46). In the case of SPEG, this
parameter is positive for the in-plane uniaxial tension and
negative for the compression, since the in-plane eigenvalues
of the EDIT are positive (\;;=\,,=0.14). The above for-
mula (47), in connection with the interface displacement
(growth) relationship given by Eq. (45), clearly indicates that
the SIGME parameter affects not only the kinetics of the
phase boundary mean displacement velocity during the phase
transformation—by retarding under the uniaxial compression
or enhancing in the case of uniaxial tension—but also has
influence on the stability of the morphological evolution of
surfaces. According to the last group of terms in Eq. (47), the
SIGME factor, depending upon the sign of the surface ten-
sion, may inhibit or enhance the stability, which is described
by the growth rate constant expression, explicitly. Namely,
below the threshold level of the anomalous surface stiffness
regime it enhances the stability in the case of uniaxial ten-
sion and retards it otherwise, since its cofactor is positive
regardless of the tilt angle and wave number. On the other
hand, in the anomalous surface stiffness instability regime, as
we discussed previously, everything depends upon the tilt
angle and wave number, rather strongly. Definitely the sta-
bility is drastically encouraged for the vicinal planes (100),
where there is a strong tendency for the occurrence of face-
ting observed in naturally grown crystals and inhibited for
the (11*0) direction due to the appearance of negative spikes
in the Wullf construction of the surface Gibbs free energy.
The direction of the morphological instability of an interface
is also connected with the direction of the stress-assisted in-
terfacial diffusion, which is given by V,(Q\;,0},), which
means that uniaxial tension according to the term =, in Eq.
(47) decreases the amplitude (stability) of the surface modu-
lation and the compression increases it (instability) as long as
N =0.

In order to give an additional experimental justification of
LISA theory, one can easily calculate the stress enhancement
factor for the applied pressure p=3.2 GPa at the test tem-
perature 550 °C, which is employed by Lu et al.,* for the
Si-SPEG specimen, where a factor of 5 enhancement in the
growth rate is observed over 1 atm pressure. Namely, one
obtains the following result: exp(-{), Tr \"p/kT) =4, where
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TrA=0.28=-50,/Q, (contraction), which is in excellent
agreement with the reported value of 5.

The anisotropy in the growth rate associated with the ori-
entation of the interface is embedded in the mobility that
contains the nominal stress effect in our previous discussion,
which may be easily factorized out using the extensive ex-
perimental studies by Csepregi et al.:*> namely,

1‘7121,(,3, Q’o) =[1+(ajp— l)|sin(a - ,3)|/Sin(ﬂ)]/\7lll,ll,l(go),
(48)

where a=54.74" is the angle between the (100) and (111)
planes and 3 is defined as the angle between the (100) direc-
tion and the surface normal of the substrate over which
SPEG has been tested. According to data supplied by the
above-mentioned reference, one has a;0,=19.7 and a;¢o=15
for Si and Ge, respectively, at the temperature of one-half the

melting point, where M ;;l(go) is the nominal stress-
dependent mobility for the (111) plane.

Unfortunately, in this paper we have not treated thor-
oughly the effects of the mesoscopic-scale temperature non-
uniformity on the interface instability, which may be invoked
by the Joule effect due to current crowding and /or the local-
ized heat released in the case of exothermic reactions occur-
ring at the interfacial layers during the phase transformation
taking place in the undercooled state (regrowth of SPEG).
This is due to the lack of a simple, manageable, and reliable
analytic expression to be used for the simulation of realistic
laboratory test conditions, which are mostly done under
gross isothermal conditions. However, for the quasistatic
temperature distribution at the liquid-solid (i.e., crystalline-
amorphous silicon) interface, as a naive approach one may
utilize, similar to the Mullins-Sekerka’®%* theory, the so-
called capillary formula in connection with Eq. (47), which
is given by T,/T,,=(1+«J) using our adapted sign conven-
tion for the local curvature k where J=(g,/L,) and L,
= Ahy, =0 is the volumetric latent heat of solidification (i.e.,
recrystallization). This formula can be easily deduced from
the master equation (1) by taking the generalized force for
the growth term denoted by the expression [Ag,

+ ):/(9, ¢:m)K]= Ah,,—TAS,,+ ):/(9 ¢;m)k=0 as equal to
zero (reversibility) and then assuming that the entropy As,

and the enthalpy A}_zbv of transformation are independent of
temperature and local curvature. That also results in a simple

and familiar connection AS),= Ah,,/T,,. Of course this ap-
proach is strictly valid for reversible or equilibrium phase
transformations and reactions. After some rearrangements of

the terms and using the definition of Y appearing in Eqs. (1)
and (2), the following mathematically more sound expres-
sion may be easily deduced for the surface particle flux con-
tribution to the instability criteria due to the combined effects
of the capillarity and the thermomigration (Soret effect) in-
voked by the nonuniform temperature profile created by the
heat released at the interface during the reversible phase
transformation in normalized space—that is,
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0= Y To+ YO (h)he] = [1 = TAMTIH() 0, f 3 (h) s,
(49)

where ThM?=(s7T,,/Q,L,) is a dimensionless parameter,
which may be called the latent-heat-induced thermomigra-
tion (LHITM) intensity parameter. In the final stage of the
treatment, the above relationship enters exactly as a cofactor
[1-ThM?] for the orientation-dependent part of the surface
stiffness in the second line of Eq. (47). One may also see
immediately that the temperature is lower at the crest {«
<0} than the trough {«x=0} for exothermic transformations.
This means the direction of the atomic flow due to thermal
drift diffusion should be from the trough regions towards the
crests, which eventually amplifies the interface roughness.
The simple relationship (49) obtained in this paper tenta-
tively tells us that the thermomigration invoked by the exo-
thermic phase transformations occurring during the interface
displacement reduces the intensity of the capillary forces.
That means LHITM, below the anomalous surface stiffness
threshold level, enhances the instability by reducing the posi-
tive role of the capillarity and in the anomalous regime just
the opposite occurs, and it tries to encourage stability by
exactly the same reason. The endothermic reaction acts in
just the opposite direction and enhances the capillary forces.
Actually, in practice, for a meaningful stability analysis, one
has to solve numerically two coupled moving-boundary-
value problems (MBVP’s), respectively, associated with the
time-dependent heat generation and dissipation governed by
ad hoc thermokinetics laws and the boundary displacement
or the surface evolution events, which are controlled by the
law of irreversible thermodynamics as described, as a well-
posed MBVP in Eq. (1) supplemented by auxiliary well-
defined boundary conditions, even for the triple-junction
singularities.>**% A very recent work reported by Huang et
al.® on the composite SnPb flip-chip solder joints showed
that migration of the Sn-rich phase in the contact area is
caused by thermomigration in the lateral direction owing to
the existence of a localized hot spot at the current crowding
region. Finally, the partial melting at the Sn-rich region oc-
curs due to a large Joule heating at the end of the void
growth before an electrical opening takes place. This shows
the nanoscale technological importance of adding new terms
associated with the thermomigration-driven surface and bulk
drift diffusion into master equations (1) and (18) rather rig-
orously in order to establish a sound framework for future
computer experiments to reveal these detrimental effects
thoroughly, similar to electromigration-invoked reliability
considerations.*!6-17

V. CONCLUSIONS

The present unified theory of the irreversible thermody-
namics of interfaces and surfaces, having multicomponent
chemical species, gives a more elegant and generalized ap-
proach to LISA by transforming the governing equation into
a more manageable quasilinear partial differential equation
format including evaporation and condensation terms, while
keeping in mind that our primary objective is to collect and
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manipulate only the first-order perturbation contributions at
the final stage. This unique a priori approach results an ex-
treme simplification of the calculation machinery and also
gives great flexibility to deal with anisotropy in the diffusiv-
ity as well as in the specific Gibbs surface energy (i.e., sur-
face stiffness). Especially, the Dirac & distribution singularity
in the surface stiffness at the cusp regions of the Gibbs free
energy profile (singular or vicinal planes) in the Wulff con-
struction is treated in a unique way by utilizing the modified
curtate-cycloid function as a basis function. This rigorous
mathematical treatment in the present context allows us to
deal with this intricate problem analytically as well as nu-
merically with any degree of accuracy, above and below the
roughening temperature with a slight modification. The
anomalous instabilities associated with the capillary term in
certain ranges of the tilt angle are also elaborated and dem-
onstrated by computer graphics, which might help better un-
derstand the importance of cusps on the faceting and growth
kinetics of surface disturbances quantitatively.

This unified theory successfully brought together the vari-
ous effects on the morphological evolutions of surfaces and
interfaces due to the applied stress systems and electrostatic
forces, even thermomigration formally in a systematic fash-
ion, by combining the irreversible thermodynamics of sur-
faces and interfaces with the quasithermokinetics theory of
activation complexes in the formulation of the generalized
stress- and orientation-dependent growth mobility. In this
way, the anisotropy combined with stress influence, not only
in the thermodynamic functions, but also in the kinetic pa-
rameters such as the generalized mobilities, revealed them-
selves to such an extent that one can make quantitative pre-
dictions of the behavior of the composite system during the
evolution process. The effects of the anomalous instability
regime associated with the surface stiffness on the stressed-
induced morphological evolution are explored by 3D graph-
ics, which showed extremely interesting scenarios by minor
variations in the surface-specific Gibbs free energy (SSGFE)
anisotropy constant. The present work without hesitation
shows that it is a great misconception to underestimate the
profound role of the SSGFE anisotropy because of its ex-
tremely low variation range’>>* (B=0.1-0.5) compared to
the similar anisotropy associated with the surface drift-
diffusion coefficients, which may vary a few orders of mag-
nitude with the tilt angle (A=1-10°).

Even though the present theory relies on a first-order per-
turbation approach, still our very recent extensive simulation
studies (192 different configurations in the parametric space),
respectively, on the finite-Gaussian-shape edge-hillock and
edge-void perturbations on the otherwise flat sidewall sur-
faces of thin solid single-crystal films have proven that LISA
has great predictive power even in the nonlinear region of
instability under electromigration forces having strong diffu-
sional anisotropy, with few exceptions: namely, bifurcation
points, where the system goes from the stability domain to
instability regime or vice versa.’637

Finally, one may state without hesitation that the elastic
dipole tensor interaction EDTI that was originally advocated
by Kroner,3® and extensively employed by Ogurtani and
Seeger®® in a series of papers dealing with the theory of the
internal friction spectrum associated with the interaction be-
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tween dislocation kink chains and the atmosphere of mobile
paraelastic atomic defects in bcc metals has more profound
qualitative as well as quantitative effects on the morphologi-
cal evolutions of the surfaces and interfaces between two
condensed phases than the elastic strain energy density
ESED, as has been demonstrated in this paper.
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APPENDIX

The tetrahedral (axisymmetric) elastic dipole tensor may
be described by the format {)=\2=)\ 1L+ 764 Om]}> Where
g=3 denotes direction of the symmetry axis and 7=(\;
—X\;)/\,, which is closely related to the shape factor.®
N3, N =\, are the principal values of the tetragonal elastic
dipole tensor, along the symmetry axis denoted by ¢ and in
the interface tangent plane (transverse components), respec-
tively. J(,, is the Kronecker delta function, gl denotes the
direction of the tetragonal axis, which is parallel to the inter-
face normal 71 for the present case, and (-) indicates that the
Einstein summation rule for the repeated indices is not valid.
Then one can easily show that the EDTI energy may be
given by the expression uy,,=—Q\,(Tr g+ no,,) for the
general applied stress system, where o,,=g-g-¢, and it is
equal to zero for the traction-free surfaces. However, it is
finite for the composite system under a hydrostatic stress
field such as the isotropic pressure o,,=-p. The nonvanish-
ing shape factor 7 of EDT may have a very important con-
tribution to the EDTI energy, especially in the case of the
pure deviatoric stress system Tr g=0, where the stress tensor
component along the tetragonal axis denoted by o33 appears
as an only contribution to the interaction energy. The above
formula clearly shows that one cannot consider the applica-
tion of the pure hydrostatic stress (whether it is hydrostatic
pressure or triaxial tension) g=—pI on the composite system
(solid/fluid and solid/amorphous), without violating the
mostly used traction-free boundary condition, where the re-
alistic boundary condition may be specified as a shear-free
interface, which is given by oq,Eﬁ-g-fzo. The principal
eigenvalue of EDT, A;, can only be measurable if the
traction-free elastic constraint at the dividing interface is
lifted. Then the following expression results for the EDT
interaction: u,;,,=Qp(A;+2\;). Therefore, not only the
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hydrostatic but also the deviatoric part of the stress system
can interact with the axisymmetric (tetragonal) elastic dipole
tensor if it has a nonvanishing component o,,, along the sur-
face normal. In the case of the biaxial stress system acting in

PHYSICAL REVIEW B 74, 155422 (2006)

the surface tangent plane one can obtain the following ex-
pression for the EDTI energy: u,,,=—2Q\ ;. This shows
that the biaxial in-plane stress has twice the effect of uniaxial
stress as confirmed experimentally by Hong et al.”
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