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The key to the construction of reliable and transferable semiempirical Hamiltonians for quantum
mechanics-based simulations of materials is to capture the effect of screening by electrons for different con-
densed phases of materials. In the present work, this objective is achieved through the development of a
scheme for constructing a self-consistent (SC) and environment-dependent (ED) multicenter Hamiltonian in
the framework of linear combination of atomic orbitals (LCAO) that involves careful modeling and optimiza-
tion of parameters for electron-electron correlations and multicenter interactions. As an illustration of our
method, we have used this scheme to construct the SCED/LCAO Hamiltonian for silicon. The robustness of
this Hamiltonian is demonstrated by scrutinizing the properties of both bulk silicon and other complex struc-
tures of silicon with reduced symmetries. In particular, we have studied the following: (i) the binding energy
versus relative atomic volume of different phases of bulk silicon, (ii) the stable structure of an intermediate-size
Siy; cluster, (iii) the reconstruction of Si(100) surface, and (iv) the energy landscape for a silicon monomer
adsorbed on the reconstructed Si(111)-7 X7 surface. The success of the SCED/LCAO Hamiltonian in the
above applications, where silicon exists in a variety of different coordinations, is a testament to the predictive

power of the scheme.
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I. INTRODUCTION

Materials simulations based on total energy calculations
and molecular dynamics (MD) using either the density func-
tional theory (DFT) or tight-binding (TB) methods play cen-
tral roles in the prediction of structural and system properties
of complex materials. Both these methods have their respec-
tive advantages and disadvantages. For example, while DFT-
based molecular dynamics (MD) schemes for the determina-
tion of structural properties of materials are expected to have
predictive power, their applications are still limited to sys-
tems of about a few hundreds of atoms. On the other hand,
TB-MD schemes are fast and applicable to larger systems.
However, the transferability of conventional TB Hamilto-
nians is limited because they include only two-center inter-
actions and they have no framework to allow the self-
consistent determination of the charge redistribution. Hence
they do not have the predictive power and can only be used,
in the strictest sense, to provide explanation for system-
specific experimental results.

In recent years, various schemes have been proposed to
improve the transferability of TB Hamiltonians by including
the self-consistency and/or the environment dependency.'™!!
Among these schemes some are more readily amenable to
MD simulation compared to others because of the ease with
which atomic forces can be evaluated. These methods fall
into two categories. While the emphasis of methods in one
category is placed on a phenomenological description of the
environment dependency,”? the framework of methods in the
other category takes into account the self-consistency as well
as the environment dependency.®!!

The approach of Esfarjani and Kawazoe in Ref. 8 and that
of Fraunheim et al. in Ref. 11 are very similar. For example,
the approach in Ref. 11 is based on the expansion of the
DFT-total energy in terms of the charge density fluctuations
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about some reference density. To the second order in the
density fluctuations,'? the total energy is approximated as the
sum of a band structure term and a short-range repulsive
term corresponding to the conventional two-center TB
Hamiltonian, plus a term representing the Coulomb interac-
tion between charge fluctuations. Within this framework, the
charge fluctuations can be self-consistently determined by
solving an eigenvalue equation with the two-center Hamil-
tonian modified by a term that depends on the charge redis-
tribution. While the Hamiltonian so defined does contain the
features of self-consistency in the charge redistribution and
the environment dependency for systems with charge fluc-
tuations, the environment-dependent feature disappears when
systems under consideration do not involve charge fluctua-
tions, e.g., periodic extended systems containing one atomic
species per unit cell. But the environment dependency is a
key feature in a realistic modeling of the screening effect of
the electrons in an aggregate of atoms, including extended
periodic systems. This deficiency in properly mimicking the
screening of the electrons can be critical in the development
of a truly transferable Hamiltonian. Furthermore, in the ap-
proach of Ref. 11, the construction of the Hamiltonian and
the determination of the total energy are, on the one hand,
dependent on an optimal basis set of confined atomic orbitals
obtained by solving a modified Schrédinger equation for a
free atom in the framework of a self-consistent local density
approximation with the correction of the generalized gradient
approximation (SC-LDA/GGA). In this way, the Hamil-
tonian and overlap matrix elements are determined as func-
tions of the distance between pairs of atoms and then tabu-
lated for extrapolation. On the other hand, the key terms in
the correction to the charge fluctuations in the Hamiltonian
and in the total energy expression are approximated using
exponentially decaying spherical charge densities. These two
approximations used in the scheme are therefore independent
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and unrelated. Hence, although the scheme proposed in Ref.
11 is parameter free, it may not be sufficiently flexible to
yield a Hamiltonian with a wide range of transferability (see
discussions in Sec. II).

In the present work, we present a scheme for constructing
reliable and transferable LCAO-based semiempirical Hamil-
tonians for quantum-mechanics based simulations of materi-
als. In this scheme, the effect of screening by electrons is
captured through a careful modeling of environment-
dependent (ED) multicenter terms and electron-electron cor-
relations that includes a self-consistent (SC) determination of
charge redistributions. A semiempirical route is chosen for
the construction of the system Hamiltonian not only because
a semiempirical Hamiltonian allows the simulation for large
systems but, more importantly, its framework has the flex-
ibility to allow the database to provide the necessary ingre-
dients for fitting parameters to capture the effect of electron
screening. The scheme developed for the construction of
self-consistent and environment-dependent LCAO Hamilto-
nians is general and can be applied to both elemental (metal
or semiconductors) and compound systems. In the following,
as a test case, we employ our scheme to construct the SCED-
LCAO Hamiltonian for silicon. The transferability and the
reliability of this Hamiltonian is demonstrated by applying it
to different situations, including different phases of the bulk
silicon, an intermediate-size silicon cluster (Si;;), and the
energetics of Si adatoms adsorbed on the Si(111)-7X7.
These examples will test the robustness of the SCED-LCAO
Hamiltonian for silicon in 0-, 2-, and 3-dimensional (D)
structures with different coordinations and symmetries. In a
forthcoming paper (a sequel to the present one), the SCED-
LCAO Hamiltonian will be used to study the relative stabil-
ity of 1D Si nanowire (NW) structures. Preliminary results
from this work have already been reported in Ref. 40, where
an excellent agreement between SCED-LCAO results and
DFT-based VASP calculations have been found for Si NWs
up to ~4 nm diameters.

The present paper is organized as follows. In Sec. II, our
scheme for the construction of the SCED-LCAO Hamil-
tonian is delineated, with special emphasis placed on the
parametric functions used to model the electron-electron cor-
relation and multicenter interactions, where the parameters
are obtained by fitting them to the structural and electronic
properties of the bulk and clusters using an optimization pro-
cedure. In Sec. III, the robustness and the predictive power
of the SCED-LCAO Hamiltonian is demonstrated for the
following cases: (i) Structural properties of Si;; cluster, (ii)
reconstruction of Si(100) surface, and (iii) stable sites of ad-
sorption for silicon monomer on Si(111)-7X7 surface.
These case studies have been chosen to demonstrate the
transferability, the reliability, the efficiency, and the predic-
tive power of the SCED-LCAO Hamiltonian for complex
Si-based structures with no or reduced symmetry. Section IV
contains concluding remarks, computational efficiency, and
future outlook of the SCED-LCAO scheme. Finally, the Ap-
pendix presents a brief outline of the optimization procedure
used to determine the parameters of the SCED-LCAO
Hamiltonian.
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II. METHODOLOGY
A. SCED-LCAO Hamiltonian

In the framework of a semiempirical LCAO-based ap-
proach, the Hamiltonian is defined in terms of parametrized

matrix elements H;, ;j5(R;;) in some finite set of basis func-
tions {¢,,(7)} not explicitly stated, where i denotes the «

orbital at the site i, and R;;=R;—R; gives the relative position
of the jth site with respect to the ith site. Within this context,
the eigenvector c,, defining the coefficient vector of the ex-
pansion of the eigenfunction ¢, in terms of {¢;,(r)}, satisfies
a general eigenvalue equation

HC)\ZE)\SC)\ (1)

with S;, ;5(R;;), the overlap matrix elements, being param-
etrized functions of R;; within the framework of the basis
functions {¢,,(r)}. Our strategy for developing a general
scheme to construct a reliable and transferable SCED-LCAO
Hamiltonian for materials with predictive power is given as
follows:

The Hamiltonian of an aggregate of many-atom may be
written as

h? >
H=-2 =V} + 2 v(f-R)+ 2
2m Li

! Ly daregry,

ZZe’
+ b
ij 47eoR;;
2)

, v(7;—R,) is the potential en-

. Ryj=|Ri~R;
ergy between an electron at 7, and the ion at R;, Z; the num-

where ry=|r— 7y

ber of valence electrons associated with the ion at site R;, and
the summation over [ and [’ runs over all the valence elec-
trons. Within the one particle approximation in the frame-
work of linear combination of atomic orbitals, the on-site
(diagonal) element of the Hamiltonian can be written as

Hia,ia = 8?0( + uirz;tm + u;rclrler + Vias (3)
where &) denotes the sum of the kinetic energy and the
energy of interaction with its own ionic core of an electron in
the orbital ia. The terms u} and u}"" are the energies of
interaction of the electron in orbital i« with other electrons
associated with the same site i and with other electrons in
orbital jB (j+# i), respectively. The term v,, represents the
interaction energy between the electron in orbital « at site i
and the ions at the other sites. In our scheme, the terms in
Eq. (3) are represented by

£y = Eia— ZiU,. (4)
wig ™ =N;U,, (%)
and
UM + v, = 2 [N V(R = Z VAR, (6)
ki

where €;, may be construed as the energy of the orbital « for
the isolated atom at i, Z; the number of positive charges
carried by the ion at i (also the number of valence electrons
associated with the isolated atom at i), N; the number of
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valence electrons associated with the atom at i when the
atom is in the aggregate, U;, a Hubbard-like term, the effec-
tive energy of electron-electron interaction for electrons as-
sociated with the atom at site i, N;Vy(R;;) the effective en-
ergy of interaction between an electron associated with an
atom at site { and electrons associated with an atom at k, and
ZV,(R;) the effective energy of interaction between an elec-
tron associated with an atom at 7 and an ion at site k. In our
approach, g;, may be chosen according to its estimated value
based on the orbital ia, or treated as a parameter of optimi-
zation. The quantity U; will be treated as a parameter of
optimization while Vy(R;) and V,(R;) will be treated as
parametrized functions to be optimized. An examination of
Egs. (3)—(6) clearly indicates that the presence of N;, the
charge distribution at site 7, in the Hamiltonian provides the
framework for a self-consistent determination of the charge
distribution.

Following the same reasoning, we can set up the off-
diagonal matrix element H, ;s (j # i) as

] ! !
Hiyjp= E{K(Rij)(g it € i) +[(Ni=Z) + (N; - Z))]U;

+ [2 (N V(R ) = ZVA(Ry)
ki

+ E (NkVN(Rjk) - ZkVZ(Rjk)):| }Sia,jﬁ(Rij)- (7)
k#j

Thus, in addition to the conventional two-center hopping-
like first term, Eq. (7) also includes both intra- and inter-
electron-electron interaction terms as well as environment-
dependent multicenter (three-center explicitly and four-
center implicitly) interactions. From Eq. (7), it can be seen
that the environment-dependent multicenter interactions are
critically dependent on Vy(Ry) and V4(Ry), in particular
their difference AVy(R;)=Vi(Ry) —VARy). Since V4(Ry) is
defined as the energy of effective interaction per ionic charge
between an ion at site £ and an electron associated with the
atom at site i/, we may model V,(R;) by the following pa-
rametrized function

E
VARy) = —*{1 = (1 + B,Ry)e 7}, ()
R
where
2
e
E,= . 9
0 41e ©)

As both Vy(Ry) and V,(R;) must approach Ey/R; for Ry
beyond a few nearest neighbor separations, AVy(R;;) is ex-
pected to be a short ranged function of R;. We chose to
model this short-ranged function by

[1+ e vin]

AVy = (AN"'BNRik)m

(10)

on account of the flexibility of the expression given in Eq.
(10). Since Vy(Ry)— U, as R;—0, Egs. (8) and (10) then
leads to
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Ay=U;=(az - By)E,. (11)

In its broadest sense, the first term in Eq. (7) corresponds
to the Wolfsberg-Helmholtz relation in the extended Hiickel
theory.'> We modeled the scaling function K as a function of
R;; to ensure a reliable description of the dependence of the
two-center term on R;; in the off-diagonal Hamiltonian ma-
trix element. We found that a representation of K(R;;) by

K(Ryj) = e*x"ii (12)

is quite flexible. The overlap matrix elements S;, ;5(R;;) are
expressed in terms of S;; ,, with 7 denoting, for example,
molecular orbitals sso, spa, ppo, and ppr in a sp® configu-

ration. Since they are short-ranged functions of R;;, we chose
to represent them by
[1+ 7]
Sij,Tz(AT+BTRij) (13)

[1+ e Ry’

Based on the orthogonality of the s and p orbitals at the same
site, we have

Age=Appe=Appz=1 and Ay ;=0. (14)

Equations (3)—(14) completely define the recipe for con-
structing semiempirical SCED-LCAO Hamiltonians for ma-
terials in terms of parameters and parametrized functions.
These parameters, including those characterizing the param-
etrized functions, are to be optimized with respect to a judi-
ciously chosen database for a particular material.

The total energy of the system consistent with the Hamil-
tonian described by Egs. (3)—(14) is given by

Etot = EBS - Edhc + Eion—i(m’ (15)

where Epg is the band-structure energy and is obtained by
solving the general eigenvalue equation [Eq. (1)], E . is the
correction to the double counting of the electron-electron
interactions between the valence electrons in the band-
structure energy calculation, and E,,,_;,, is the repulsive in-
teraction between ions. Based on Egs. (3)-(14), Eq. (15) can
be rewritten as

1 1
Ei=Eps+ 52 (ZI=N)Ui=5 2 NiNVn(Ra)
i i,k(i#k)

1
+= 2 ZZVe (16)
)
with
62 E()
C = = .
dmegRy Ry

(17)

It is illuminating to demonstrate how our approach relates
to the approach in Ref. 11. We may partition the SCED-
LCAO Hamiltonian H,, ;s into the two-center term H?a, B
and the environment-dependent term such that

HY

H iia T (N;=Z)U; + > [NVNR:) = Z VAR,

k#i

iaia —

(18)

and
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Hiyjp= H?a,jﬂ +

5|20+ =710

+ [E [N VMR = Z VAR ]
ki

+ 2 [NkVN(Rjk) - ZkVZ(Rjk)]] }Sia,jﬁ(Rij),

k#j
(19)
where
H?a,ia =&iq (20)
and
1 !
Hiyjp= SKR)(E (0t & i9SiajsRy). Q1)
Since
EBS: 2 Ecm ]B JjBiia (22)
ia,jB \
the substitution of Egs. (18)—(21) to Eq. (22) leads to
EBS=E?3S+E (Nt_Zz)Uz(E )\)2 2 CzaCJ,B ﬁza)
i a,\ a,jB.\
+ 2 2 [NVARy) = ZVAR;)]
ki i
(E (A)+ X c?acyﬂsjﬁ,ia), (23)
a,jB.\
where
o= E 2 cl)‘ac;‘BH?a B (24)

ia,jB \

is the band structure energy corresponding to the two-center
term. Recognizing that

N;= E (C,)-\D,)z + E
a,\

a,jBN(j#i)

NN
CiaCipSipia
we obtain

Eps=EYs+ >, (N;= Z)N,U;

+ X [NVMR = Z VAR N, (25)
(ki)

The substitution of Eq. (25) into Eq. (16) yields

Ey= 2<N Z>2U+5 > NNVuRy)
i k(k#1i)

2 ZZVARy). (26

~ X NZVARy) + = 5
ik(k#i)

i k(k#1i)

Since

Vz=Vy=AVy, (27)
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Ve=V,+ AVe=Vy—AVy+ AV, (28)

with
AVe=V(1 + BzR;)e ik, (29)
the substitution of Egs. (27) and (28) into Eq. (26) yields

Epp=ES+— E AN?U; + 5 (E )AN AN VA(R,)
i,k(k#i

1
+ D NZAVy+= 2 ZZJ(AVe—AVy).
i,k(k#1i) i,k(k#1i)

(30)

Equation (30) indicates that the total energy in our ap-
proach can be expressed as the sum of the two-center band
structure energy (first term), Coulomb-like energy associated
with the charge fluctuations (second and third terms), and the
short-ranged terms (fourth and fifth terms). It reduces to an
expression similar to that of Ref. 11 only if we impose the
condition Vy=V; or AVy=0, with E,,,= 2Ei,k(k¢i)Z,»ZkAVC.
Furthermore, Eq. (30) also shows that, even for systems with
no charge redistribution, the total energy expression is differ-
ent from that of Ref. 11 because of the presence of the term
AVy on account of Vy#V, [Egg=short-range energy
=%Ei,k(k#)Z,-Zk(AVC+AVN)]. In addition, for such systems,
the SCED-LCAO Hamiltonian [see Egs. (6) and (7)] still
contains environment-dependent terms while the Hamil-
tonian of Ref. 11 no longer has any. The presence of the
environment-dependent terms in the Hamiltonian for systems
with no on-site charge redistribution affects the distribution
of the electrons among the orbitals even though the total
charge associated with a given site is not changed. Therefore,
the effect of the environment dependency will be reflected in
the band structure energy through the solution to the general
eigenvalue equation [Eq. (1)] as well as the total energy. This
is probably the reason why the results for high-coordinated
crystalline phases based on the approach of Ref. 11 do not
agree well with the DFT results (see the discussion in Sec.
I B).

According to the strategy given above, the framework of
the proposed semiempirical SCED-LCAO Hamiltonian will
allow the self-consistent determination of the electron distri-
bution at site i. The inclusion of environment-dependent
multicenter interactions (three-center explicitly and four-
center interactions implicitly) will provide the proposed
Hamiltonian with the flexibility of treating the screening ef-
fect associated with electrons which is important for the
structure stability of narrow band solids such as d-band tran-
sition metals, while at the same time, handling the effect of
charge redistribution for systems with reduced symmetry on
equal footing. Furthermore, as described above, the Hamil-
tonian is set up in such a way that the physics underlying
each term in the Hamiltonian is transparent. Therefore, it will
be convenient to trace the underlying physics for properties
of a system under consideration when such a Hamiltonian is
used to investigate a many-atom aggregate and predict its
properties. The salient feature of our strategy is that, with the
incorporation of all the relevant terms discussed previously,
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TABLE 1. Parameters of the SCED-LCAO Hamiltonian for
silicon.

Symbols Values Symbols ~ Values  Symbols Values
U 8.05 eV ay 274 A7 a,, 218 A7
s —-1343 eV dy 191 A a,,, 235A7
g, -791 eV By, 088A7" o, 374A7
ag 0.25 At B,, -075A7" 4, 132 A
B, 1.54 A-! B,,, -079A°" 4, 135 A
Ay -126eV  B,,, -031A"' d,, 203A
By 016eVA! o, 304A" d4,. 228A

there is no intrinsic bias towards ionic, covalent, or metallic
bonding for the proposed Hamiltonian. Thus our strategy
represents an approach that provides the appropriate concep-
tual framework to allow the chemical trend in a given atomic
aggregate to determine the structural as well as electronic
properties of condensed matter systems. In our strategy, there
will be only about 20 fitting parameters in the construction of
the proposed Hamiltonian for single component systems with
a sp> basis. Our approach requires far less parameters com-
pared to phenomenological approaches®* (with ~50 to 100
parameters) where environment-dependent effects are em-
phasized. In addition, the roles played by these parameters
are well defined in terms of their physical significance. With
far fewer parameters needed for the description of the pro-
posed Hamiltonian, the optimization scheme for the determi-
nation of these parameters will be more robust. In our strat-
egy, these parameters will be fitted to properties of stable
configurations obtained from experiments and/or reliable
first principles calculations, as well as metastable configura-
tions determined by first principles calculations. Our ap-
proach differs from the DFT-based TB approach of Ref. 11 in
the following important aspects. (1) A uniform treatment of
the environment-dependent multicenter interactions for sys-
tems with or without the charge redistribution, resulting in a
transferable Hamiltonian for a wide range of phases for ma-
terials beyond the scope of the approach in Ref. 11 as well as
all other existing approaches. It should be noted that our
treating environment-dependent interactions for systems with
or without the charge redistribution on an equal footing high-
lights the important feature, the difference between Vy(R;;)
and V,(R;), that plays the crucial role in modeling the ef-
fects of electron screening in an atomic aggregate and that is
completely ignored in the approach of Ref. 11. (2) A
database-driven semiempirical approach. Our approach de-
pends critically on the database. If one can judiciously com-
pile a systematic and reliable database, our scheme has the
flexibility to allow the database to properly model the screen-
ing effect of the electrons in an atomic aggregate.

We have also implemented a MD scheme based on the
SCED-LCAO Hamiltonian. In the MD simulations, the
forces acting on the atoms in the atomic aggregate must be
calculated at each MD step. The calculation of the band
structure contribution to atomic forces can be carried out by
the Hellmann-Feynman theory.'* With the presence of terms
involving N; and N, in the SCED-LCAQO Hamiltonian [see
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TABLE II. Comparisons of bond lengths (A) and binding ener-
gies (eV) for different geometries of Si clusters obtained using the
SCED-LCAO method and ab initio calculations (Ref. 17).

Cluster Symmetry Present work ab initio values
Si, Dy, 2226 A 2.288 A
—2.435 eV —2.499
Siy Cy, 2284 A 2357 A
2.168 A 2.158 A
3413 eV -3.575eV
Siy Dy, 2.141 A 2.167 A
—3.427 eV -3.404 eV
Siy Dy, 2275 A 2311 A
-4.101 eV —4.242 eV
Siy T, 2332 A 2474 A
-3.773 eV -3.659 eV
Siy D, ), 2.116 A 2.156 A
2.164 A 2.176 A
-3.289 eV -3.364 eV
Sis Dy, 2207 A 2306 A
3.141 A 3.064 A
-3.352 eV -3.340 eV
Sis Cyp 2209 A 2275 A
2358 A 2513 A
-4.327 eV -4.266 eV
Sis Dy, 2.082 A 2133 A
2.128 A 2.144 A
-3.545 eV -3.534 eV
Sis T, 2.127 A 2215 A
3475 A 3.617 A
-3.334 eV -3.383 eV
Sig Dy, 2248 A 2363 A
2.639 A 2734 A
—4.698 eV —4.664 eV
Sig Dy, 2261 A 2.285 A
2.948 A 3208 A
-3.896 eV -3.972 eV
Sig Dy, 2.057 A 2.098 A
2072 A 2.134 A
2.149 A 2.158 A
—3.446 eV -3.446 eV

Egs. (5)—(7)], terms such as V,N; where V, refers to the

gradient with respect to R, will appear in the electronic con-
tribution to the atomic forces. However, these terms are can-
celed exactly by terms arising from the gradients of the sec-
ond and the third terms in the total energy expression [Eq.
(16)]. Thus terms involving V,N; will not contribute to the
calculation of atomic forces. This fact greatly simplifies the
calculation of atomic forces needed in the MD simulations.
In other words, if one disregards the extra time due to the
self-consistency requirement, the calculation of atomic
forces based on the SCED-LCAO Hamiltonian is not any-
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FIG. 1. The binding energy vs relative atomic volume curves for
the diamond (cdia), the simple cubic (sc), the body centered cubic
(bce), and the face centered cubic (fcc) phases of silicon, obtained
using the present SCED-LCAO scheme (top-left panel). The corre-
sponding curves obtained using three existing traditional (two-
center and non-selfconsistent) nonorthogonal tight binding (NOTB)
Hamiltonians [top-central (Ref. 23), top-right (Ref. 24), and
bottom-left (Ref. 22) panels] and two more recently developed non-
selfconsistent but environment-dependent Hamiltonians bottom-
central (Ref. 9) and bottom-right (Ref. 7) panels] are also shown in
the figure. All the curves (solid) are compared with the result ob-
tained by a DFT-LDA calculation (Ref. 18) (dotted).

more difficult compared with conventional TB approaches.

Finally, when there is charge redistribution, the Ewald’s
method"” can be used to calculate the long-range Coulomb
interactions for extended systems. For finite systems, direct
summation of the Coulomb terms can be used.

B. Optimized parameters and results for bulk silicon

The parameters characterizing our SCED-LCAO Hamil-
tonian are determined by an efficient global optimization
procedure against an appropriately chosen database, by
adapting a local least-squares algorithm, the Marquardt-
Levenberg algorithm,'® to the global problem. A brief de-
scription of this procedure is described in Appendix A. For
single-component systems with sp? basis, there are about 20
parameters defining the SCED-LCAO Hamiltonian. The pa-
rameters characterizing the SCED-LCAO Hamiltonian for
silicon, obtained using the optimization procedure outlined
in Appendix A, are given in Table I. The properties used to
determine this set of parameters include: (i) the binding en-
ergies and bond lengths for Si, clusters with n=2 to 6
(shown in Table II),'” (ii) the binding energy vs atomic vol-
ume curves for the diamond, the simple cubic (sc), the body
centered cubic (bec), and the face centered cubic (fcc)
phases,'® respectively (shown in Fig. 1), and (iii) the band
structure energies at high symmetry points for the diamond
phase!3~2! (shown in Fig. 2 and Table III).

The results showing the binding energy vs relative atomic
volume curves for the diamond, the simple cubic (sc), the
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FIG. 2. (Color online) The band structure of bulk Si calculated
for the diamond phase using the SCED-LCAO approach and the
corresponding DFT band structure (stars) taken from Ref. 18 are
shown.

body centered cubic (bcc), and the face centered cubic (fcc)
phases of silicon, obtained by using the SCED-LCAO
Hamiltonian constructed for Si with our scheme, are pre-
sented in Fig. 1. Also shown in Fig. 1 are the corresponding
curves obtained using three existing traditional (two-center
and non-selfconsistent) nonorthogonal tight binding (NOTB)
Hamiltonians,”>>* and two more recently developed non-
selfconsistent but environment dependent Hamiltonians.”?
All the curves (solid) are compared with the results obtained
by DFT-LDA calculations'® (dotted). It can be seen that
while the results obtained by all the existing Hamiltonians
fail for the high-pressure phases, those obtained using
Hamiltonians with environment-dependent terms give much
better agreement for those phases. This is an indication of the
importance of the inclusion of the environment dependent
effects in the Hamiltonian, even for single-element extended
crystalline phases. However, the most striking message con-
veyed by Fig. 1 is how well our result compares with the
DFT-LDA results for all the extended crystalline phases, both
at low as well as high pressures. It indicates that our scheme

TABLE III. Band structure energies (in €V) at high symmetry
points of bulk Si obtained from the present work (optimized lattice
constant is 5.4464 A) are compared with the DFT calculation and
experimental results.

Present DFT
Band index work calculation Experiment
ry -11.77 -11.93* -12.4£0.6;" —12.5+0.6°
Xap -3.30 —2.88% -2.5+0.3;¢ =2.9¢
Ly, -10.10 -9.52¢ -9.3+0.4¢
L, -6.62 -7.00% —-6.4+0.4;> -6.8+0.2°
L3, -1.89 -1.20% -1.2+0.2¢

4Reference 18.
PReference 19.
“Reference 20.
dReference 21.
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TABLE IV. The equilibrium lattice constant, the cohesive energy per atom, the bulk modulus, and the
elastic constants of silicon in the diamond phase as obtained using the SCED-LCAO method (second col-
umn) are compared with the corresponding results as obtained by other semiempirical approaches (third
column), DFT-based methods (fourth column), and experiments (fifth column).

Properties SCED-LCAO Other TB DFT Expt.

Lattice constant (A) 5.443 5.426:¢ 5.399;f 5.427;:¢ 54170 5.451;25.399F  5.420P

Cohesive energy 4.904 4711 5.19:8 4.970 4.67:2 4.70f 4.63¢
(eV/atom)

Bulk modulus (GPa) 96.6 108.3;° 104.8;f 153.5:¢ 115.1"  98;2 96.4;° 98f 99d
Cl11 (GPa) 166.3 179;¢ 145;F 218;2 185" 152¢ 1664
C12 (GPa) 61.7 73:¢ 84.5;f 1212 80.1h 60¢ 644
C44 (GPa) 93.7 95¢ 101¢ 80¢

4Reference 18.

The experimental zero-pressure lattice constants and atomic volumes at 0 K are obtained from J. Donohue,
The Structure of Elements (Wiley, New York, 1974), corrected for thermal expansion and atmospheric-

pressure compression.

°L. Brewer, Lawrence Berkeley Laboratory Report No. LBL-3720 (unpublished) (for the cohesive energy at
0 K); C. E. Moore, Atomic Energy Levels [National Bureau of Standards, Washington, D.C., 1949 (Circular

No. 467, Vol. 1)].

9H. J. McSkimin, J. Appl. Phys. 24, 988 (1953); H. J. McSkimin and P. Andreatch, Jr., ibid. 34, 651 (1963);
ibid. 35, 2161 (1964). The elastic moduli were measured at 77 K.

“Reference 7.

fReference 24.
gReference 23.
hReference 22.

has the capacity and the flexibility of capturing the environ-
ment-dependent screening effect under various local configu-
rations.

To further demonstrate the reliability of the SCED-LCAO
Hamiltonian for predicting system properties, we have cal-
culated the band structure of bulk Si in the diamond phase in
all directions. The result and its comparison with the avail-
able DFT-based calculation'® are shown in Fig. 2. It can be
seen that the agreement between these two sets of results is
excellent in terms of both the trend and the magnitude for the
valence band, although the agreement is not as good for the
conduction band. We have also calculated the elastic con-
stants of the diamond phase. Since the calculation of elastic
constants involves the second derivatives of the energy at its
minimum corresponding to the equilibrium configuration, the
result is extremely sensitive to the accuracy of the semi-
empirical Hamiltonian used in the calculation. Hence the cal-
culation of elastic constants provides a stringent test for the
reliability of the SCED-LCAO Hamiltonian. In Table IV, the
results of our calculations of bulk modulus and elastic con-
stants are shown, together with the corresponding results ob-
tained by other semiempirical Hamiltonians, DFT-based
methods, and experimental measurements. It can be seen that
our results agree very well with the experimental measure-
ments and DFT results. This agreement is far better than
those that were achieved by other existing semiempirical cal-
culations. In fact, our agreement with the experimental mea-
surements is as good as that achieved by DFT-based calcu-
lations. This comparison shows definitively the reliability of
the SCED-LCAO Hamiltonian constructed for Si. We have
also checked the self-consistency in the charge redistribution

by using the SCED-LCAO Hamiltonian to study the struc-
tural properties of Si, clusters with n ranging from 2 to 6.
The results on the binding energy and bond lengths for the
stable and metastable structures of these clusters all agree
excellently with the first principles results!” (see Table II).

III. APPLICATIONS

In this section, the robustness of the SCED-LCAO Hamil-
tonian is elucidated through several examples. We demon-
strate that the parameters of SCED-LCAO Hamiltonian ob-
tained by fitting them to the bulk silicon and small silicon
clusters (atoms up to 6) are capable of predicting the struc-
tural properties of intermediate size silicon clusters and com-
plex silicon surfaces. Specific examples studied include: (A)
structural properties of Siy; cluster, (B) reconstruction of the
Si(001) surface, and (C) the energy landscape of a Si mono-
mer adsorbed on the reconstructed Si(111)-(7 X 7) surface.

A. Structural properties of Si; cluster

We have used the MD scheme based on the SCED-LCAO
Hamiltonian to determine the stable structure of Si;;, an
intermediate-size cluster. We generated the initial configura-
tion of Siy; cluster from the truncated tetrahedral network.
We first heated and equilibrated this initial configuration at
500 K for about 2.4 ps. We then annealed it to 300 K for
about 0.7 ps, and finally cooled it down to 0 K for about
2 ps.

The atoms on the truncated “surface” of the initial tetra-
hedral configuration of the Si;; cluster have many dangling
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FIG. 3. (Color online) The pair-distribution function g(r) for the
relaxed Si;; cluster (inset) calculated from the SCED-LCAO
method (solid) is compared with the DFT-LDA calculation (Ref.
29) (dotted).

bonds. Therefore the initial configuration is very unstable.
Two factors that play key roles in determining a stable con-
figuration of a Si cluster are: (1) saturation of the dangling
bonds of the surface atoms; (2) the tendency to maintain the
coordination number for Si atoms closer to four. The inter-
play of these factors will lead to a distorted surface for a
stable Si cluster. This can be seen from the inset of Fig. 3
where the stabilized Si;; cluster obtained by our simulation
shows a compact network in a more oblate structure. The
strong surface distortion is a reflection of local bonding con-
figurations with the number of bonds associated with atoms
in the cluster, in particular the surface atoms, close to four.

-44.7 T T T

-44.72

-44.74

-44.76

Etotal/atom (eV)

-44.78
C4x2

-44.8 L L |

L L L L 1 1
0 20 40 60 80 100 120 140 160 180 200

MD step

FIG. 4. (Color online) Total energy calculations as a function of
MD steps (1 step=2.5 fs) in the SCED-LCAO MD simulation re-
veal the C4 X 2 reconstruction (right inset) as the most stable struc-
ture for the Si (100) surface with ideal P1 X 1 symmetry (left inset)
as the initial configuration.

PHYSICAL REVIEW B 74, 155408 (2006)

TABLE V. Characteristics of the buckled dimer row on the
Si(001) C4 X2 reconstructed surface: AE/dimer is the binding en-
ergy per dimer (in eV), b denotes the dimer bond length (in A), Az
the height of the bulked dimer (in A), and « the angle of the dimer
with respect to the surface (in degree).

Properties Present work DFT-LDA Experiment
AE/dimer 1.18 1.39%
b 247 2.29% 2.45+0.1°
Az 0.69 0.69*
a 16.19 17.5%

4Reference 30.
bReference 31.

This type of structure has also been found to be more stable
for other Si clusters of intermediate size by previous theoret-
ical studies.>>%8

We have also calculated the pair distribution function g(r)
for the equilibrated Si;; cluster (see the inset of Fig. 3). From
Fig. 3, it can be seen that g(r) exhibits a very sharp first peak
followed by a broader second peak, a typical feature of dis-
torted cluster structure. Also shown in Fig. 3 is the pair dis-
tribution function for the stable Si;; cluster obtained under
the same equilibration procedure but using the DFT-based
fire-ball MD scheme.? It can be seen that the agreement
between the result from the SCED-LCAO MD scheme and
that from the fire-ball MD scheme is excellent.

It is well known that the charge redistribution plays the
critical role in establishing chemical bonding in relaxation.
This is particularly true for surface atoms in a cluster of
intermediate size. The result of our test case therefore has
demonstrated the robustness of the self-consistent scheme in
the determination of the charge redistribution in the SCED-
LCAO Hamiltonian.

B. Reconstruction of the Si(001) surface

We have carried out a MD simulation of the reconstruc-
tion of Si(001) surface from scratch, using the SCED-LCAQO
Hamiltonian. We started with the ideal Si(001) with P1X 1
symmetry as the initial configuration. We chose a 4 X 4 slab
with a thickness of eight layers as the MD cell. In the simu-
lation, the atoms in the top four layers were allowed to fully
relax while the atoms in the bottom four layers were kept at
their bulk equilibrium positions. We turned on the simula-
tions by first moving the surface atoms in the alternate col-
umn towards the fixed surface atoms by <0.1 A (see the left
inset of Fig. 4).

We found that the surface reconstruction of the Si(001)
surface using SCED-LCAO takes about 0.5 ps (see Fig. 4).
The surface atoms begin to dimerize in ~0.05 ps after per-
forming the SCED-LCAO MD relaxation. These dimers be-
come buckled (tilted) after about another 0.075 ps. Finally
the surface reconstruction stabilizes to the stable configura-
tion with the C4 X2 symmetry (see the right inset of Fig. 4)
in another ~0.375 ps. To the best of our knowledge, this is
the first time that the C4 X2 reconstruction of the Si(001)
surface is obtained directly from the dynamical relaxation
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FIG. 5. Shown are sites (denoted as stars) in the irreducible
region (bounded by the dashed triangle) along which the adsorption
energies of a monomer on Si(111) 7 X7 reconstructed surface are
calculated. The sites along the first pathway (a) and the second
pathway (b) lie in the faulted half. The footnote shows the corre-
spondence between site numbers and symbols.

simulation of its ideal P1 X 1 surface configuration. It dem-
onstrates the predictive power of the SCED-LCAO Hamil-
tonian. We also found that the C4 X2 configuration can not
be obtained when the simulation is performed without the
self-consistent requirement of the charge, indicating that
charge redistribution is a key ingredient during the surface
reconstruction.

In Table V, the properties characterizing the buckled C4
X2 reconstruction of the Si(001) surface obtained by the
SCED-LCAO Hamiltonian-based MD simulation are com-
pared with the corresponding properties obtained by DFT
calculation®*3? and/or experimental measurements.’® It can
be seen that the agreement is very good.

C. Mapping the energy landscape of a Si monomer adsorbed
on the reconstructed Si(111)-(7 X 7) surface

Finally, we have applied the SCED-LCAO Hamiltonian to
map out the energy landscape for a Si monomer adsorbed on
the reconstructed Si(111) surface.’* This represents a most
stringent test for the reliability and efficiency of the applica-
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tion of the SCED-LCAO Hamiltonian because of the com-
plicated reconstruction of the Si(111) surface. In our study,
we used the SCED-LCAO-MD scheme to unravel the struc-
tural and the dynamical behavior of an adsorbed Si atom on
the Si(111)-(7X7) dimer-adatom-stacking-fault (DAS)-
reconstructed surface.® To have a complete understanding of
the behavior pattern of the Si adsorbate on the Si(111)-7
X7 surface, we first confirmed, using SCED-LCAO-MD,
that the SCED-LCAO Hamiltonian for Si can indeed lead to
the reconstructed 7 X7 DAS structure, including both the
faulted and the unfaulted halves. In this case, by necessity,
we have used a large supercell composed of 10 layers plus
the adatom layer (494 atoms in total), where the top eight
layers were relaxed and the bottom two layers were held at
their bulk equilibrium positions.

We determined the preferential adsorption sites for an ad-
sorbed Si atom by mapping out the total energy as a function
of its positions on the surface. In Figs. 5(a) and 5(b) the
adsorption energy along two pathways in the faulted half of
the unit cell is shown, respectively. These two pathways are
composed of irreducible sites in the faulted half. The site
symbols are described as follows: T'1 denotes an adsorption
site on top of the rest atom with one dangling bond, 72 a site
on top of layer-1 atom which is different from the rest atom,
T4 a fourfold site on top of an undimerized atom of layer-2,
H3 a hexagonal threefold site, B2 a twofold site between T4
and H3 or T2 and T4, D2 a site on top of a dimer atom, P a
site within the pentagonal ring and whose image site in the
unfaulted half lies above a layer-4 atom, O a site within an
octagonal ring and whose image site in the unfaulted half lies
above a layer-4 atom, CH a site within the corner hole region
and whose image site in the unfaulted half lies above a
layer-4 atom, CEA a site on top of a central adatom, COA a
site on top of a corner adatom, and COH the central position
of the corner hole, respectively. In addition, the auxiliary
notation CE denotes a site located in the central region of the
half unit cell, CEA a site located near the central adatom,
COA a site located near the corner adatom, and DR a site
located near the dimer row, respectively. As shown in Table
VI, the calculated adsorption energies for sites along the two
pathways in the faulted half exhibit many stable adsorption
sites (T4-CE, T2-CE, B2-CEA1, B2-CEA2, B2-COA, and
H3-COA along the path 1 and 72-CEA, T4-DR, T2-COAl,
T2-COA2, O, and CH along the path 2). It is interesting to
note that the stable adsorbate site is not on top of the rest
atom (7'1) or on top of the dimers (D2). The factor determin-
ing the stable adsorbate sites depends on the situation when,
in addition to saturating any dangling bond of the surface
atoms, the Si adsorbate atom can form more bonds with the
substrate atoms so that its coordination number is closer to
four. The adsorbed Si atom at site 71, although it saturates
one dangling bond of the rest atom, does not satisfy the
optimally coordinated criterion for silicon. Our calculation
also reveals several low-energy barriers in both pathways, in
particular, energy barriers of <0.3 eV between the sites
T2-CE and B2-CEAl, B2-CEA1 and B2-CEA2, or B2-
CEAZ2 and B2-COA, or two equivalent B2-COAs in pathway
1 and between the sites 72-COA1 and 72-COA2, or between
two equivalent 72-CEA sites in the pathway 2. These results
are consistent with the result of theoretical calculations using
the DFT-based VASP package.>
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TABLE VI. Calculated adsorption energies for a Si monomer
adsorbed in the irreducible region of Si(111)-(7 X 7) reconstructed
surface.

Site number  Eygeorpiion (€V)  Eadsorption (€V) ~ Symbol of the

along path 1 (faulted) (unfaulted) site type
1 —-3.12048 —3.29868 T1
2 —4.15503 -4.00158 T4-CE
3 -3.55113 -3.35263 H3-CE
4 -3.91248 -3.90753 T2-CE
5 —-3.64064 -3.47482 B2-CE
6 -3.97138 —-4.06098 B2-CEA1
7 —3.70458 —3.49668 H3-CEA
8 -3.95703 -3.97188 B2-CEA2
9 —3.77883 —3.88883 T4-DR
10 —4.22929 —4.11543 B2-COA
11 -3.94705 -3.37095 H3-COA

Site number  Eygeorption (€V)  Edsorption (€V) ~ Symbol of the

along path 2 (faulted) (unfaulted) site type
1 —-3.04120 D2-CEA
2 -3.52638 -3.37293 P-CEA
3 -2.67844 -2.68537 CEA
4 -3.76398 -3.78279 T2-CEA
5 —3.77883 -3.77883 T4-DR
6 —4.08573 -4.03078 72-COAl
7 -2.97190 -3.01653 COA
8 -3.88773 —3.81348 T2-COA2
9 -3.85308 -3.44718 CH
10 -2.93238 COH
11 -3.33332 D2-COALl
12 -3.53133 —3.75408 P-COA
13 —3.20463 D2-COA2
14 -3.83320 -3.14028 (6]

Based on the energy landscape, the low barrier energies,
and the fact that the sites are located close to each other, one
can expect the adsorbed Si atom to be trapped in one of the
three types of basins of attraction in the faulted half de-
scribed as follows (see Fig. 6).

(1) Triangular-type basin: The energy landscape calcula-
tion reveals three triangular-type basins of attraction sur-
rounding the 71 sites on top of the rest atom, formed by sites
of B2, H3, and T4 type as shown in Fig. 6. In each of the
basins of attraction, the adsorption energy near the corner
adatoms (i.e., the B2-COA and H3-COA sites) is lower than
that near the central adatoms (i.e., the B2-CEA and H3-
CEA sites). This anisotropy in energy in the triangular type
of basin is consistent with the atom tracking image of an
adsorbed Si atom at low temperatures [see Fig. 4(a) of Ref.
37], where it is reported that the adsorbed atom spends most
of the time in the region defined by the positions R1, R2, R3
which are near the rest atoms and the corner adatoms COAI,
COAZ2, and COA3.
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FIG. 6. (Color online) Three basins of attractions (triangular-
type, hexagonal ring-type, and shoulder-type, respectively) for a
silicon monomer on the Si(111)-7 X7 reconstructed surface are
shown, with the triangle, the square, and the diamond indicating the
energies in increasing order. The sites denoted by 7'1, 72-CE, and
T2-CEA, which are bounded by the three basins of attraction, con-
firms the existence of the experimentally observed region of six
protrusions associated with the magic clusters (Ref. 39).

(2) Hexagonal ring-type basin: As shown in Fig. 6, a hex-
agonal ring-type basin of attraction is located at the center of
the half unit cell and is composed of the 72-CE and T4-CE
sites surrounding the H3-CE site with the 74-CE site having
the lowest energy. This type of the basin of attraction pro-
vides the explanation for the atom- tracking image of an ad-
sorbed Si atom at room temperature,>’ where it is reported
that the adsorbed atom spends most of the time inside the
central region defined by the three center adatoms (CEAI,
CEA2, and CEA3), but occasionally moves near the rest
atom positions (R1, R2, or R3) and corner adatom (COAL1 or
COA?2) positions, as shown in Fig. 2(a) of Ref. 37.

(3) Shoulder-type basin: The energy landscape calculated
along pathway-2 reveals shoulder-type basin of attraction in
the vicinity of the dimer row formed by the O, T2-CEA,
T4-DR, T2-COA1, T2-COAZ2, and CH sites, as shown in
Fig. 6. The T2-COA sites near the corner holes are lower in
energy. This may explain the formation of the Si tetramers
located on the top of the corner dimer at low temperature and
on the top of central dimer at room temperature.®’-3

The combination of the three types of basins of attraction
results in an attractive potential well that traps the adsorbed
Si atoms to form magic clusters. In particular, the region
bounded by 72-CE, T2-CE, T1, T2-CEA, T2-CEA, and T1
(as shown in Fig. 6) matches very well the schematic draw-
ing of the six protrusions depicting the magic cluster on the
faulted half of Si(111)-7 X7 surface as noted by Hwang et
al.® Furthermore, the low energy barriers allow the cluster to
move within the half unit cell.

We have also compared adsorption energies of corre-
sponding sites in the faulted half and the unfaulted half of the
unit cell. We found that the adsorption energy of most of the
sites in the faulted half is lower compared with the corre-
sponding site in the unfaulted half (see Table VI). Specifi-
cally, the sites with the two lowest energy, B2-COA and
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TABLE VII. Computational speeds and memory usages in the
relaxation of a Siy; cluster are compared for the SCED-LCAO and
VASP (I' point, E.,=150 eV, 25X 25X 25 super cell) methods.
The number of self-consistent loops for the initial MD step (1), an
intermediate step (30), and for full relaxation are also shown. This
calculation was done on a single 1.6-GHz AMD Athlon MP
Processor.

Number of
MD self-consistent
Method  steps  loops per MD Wall time Memory
VASP 1 25 ~3h9m ~300 MB
30 average 17 ~18 h
191-fully  average 9 ~189h22m33s
relaxed
SCED- 1 15 ~34 m ~63.4 MB
LCAO
30 average 17 ~34 m
600-fully  average 4 ~6h55m
relaxed

T4-CE, have lower energy in the faulted half than in the
unfaulted half. This appears to be one of the reasons why the
Si magic cluster prefers to form on the faulted half of the
unit cell of Si(111)-(7 X 7) surface as observed by Hwang et
al.®

IV. CONCLUDING REMARKS AND FUTURE OUTLOOK

The application of the SCED-LCAO Hamiltonian for sili-
con to the three test cases discussed above represents a con-
certed effort to test the versatility, the reliability, and the
efficiency of using the SCED-LCAO Hamiltonian to study
properties of complex systems with no or reduced symmetry.
The first case concerns a finite system with no symmetry.
The second and third cases deal with extended systems with
reduced symmetry. The properties of all these three low-
dimensional systems are, therefore, critically dependent on
charge redistribution and environment-dependent multicenter
interactions. The result of our test studies has clearly dem-
onstrated that (i) the SCED-LCAO Hamiltonian for silicon is
transferable and hence it has the predictive power; (ii) the
self-consistent scheme for the determination of the charge
redistribution is robust; (iii) the MD code based on the
SCED-LCAO Hamiltonian is efficient.

A comparison of computational speed and memory usage
of the SCED-LCAO with the DFT-based Vienna ab initio
simulation package (VASP) reveal that the SCED-LCAO is
about 30 times faster than the VASP calculation and it re-
quires about five times less memory for the relaxation of a
Siy; cluster (see Table VII). In addition, by implementing the
order-N scheme into the framework of the SCED-LCAO
Hamiltonian for total energy and force calculations, we
found that we can perform full geometry optimization of
systems of sizes about 20 000 atoms.** Thus reliable large-
scale quantum-mechanics based MD simulations are attain-
able using the O(N)/SCED-LCAO scheme. The size limita-
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tion in our scheme arises mainly from the bottleneck
associated with the Ewald summations.

In a forthcoming publication, the SCED-LCAO Hamil-
tonian will be used to study the relative stability of 1D Si
nanowires (NWs) of different orientations with diameters
ranging from a few to 15 nm. The study of larger diameter
SiNWs requires the implementation of the O(N) algorithm
into the SCED-LCAOQO approach and a parallelized version of
the SCED-LCAO/MD code.

The development of a recipe to construct semiempirical
Hamiltonians for elemental materials in the present work is
grounded in the ingredients of the many-body Hamiltonians
describing the many-atom aggregates.*! The determination of
the parameters characterizing the SCED-LCAO Hamilto-
nians is database driven. In this sense, the SCED-LCAO
Hamiltonian is only as good as the database used to optimize
the fitting parameters. Our case studies on silicon-based
structures indicate that, with the compilation of a judiciously
chosen database, the resulting SCED-LCAO Hamiltonian is
versatile, reliable, efficient, and possesses predictive power.
Thus, we are confident that reliable and transferable SCED-
LCAO Hamiltonians with predictive power can be developed
for real materials using our scheme. Furthermore, our
scheme is efficient so that simulations of complex systems
with large degrees of freedom can be conveniently carried
out.

Construction of SCED-LCAO Hamiltonians for other col-
umn IV elements (e.g., carbon and germanium), simple met-
als (e.g., aluminum), and transition metals (e.g., iron and
nickel) are currently in progress with very encouraging re-
sults. For example, the stable structure of bucky diamond
(C147) (Ref. 42) was predicted using our preliminary SCED-
LCAO Hamiltonian for C while it cannot be correctly pre-
dicted by other semiempirical approaches. The extension of
the present scheme to its spin-polarized version and to het-
erogeneous systems is also in progress.
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APPENDIX: AN OUTLINE OF THE OPTIMIZATION
SCHEME

The first step in the optimization procedure is to define a
residual or objective function R which depends on the pa-
rameters s; of the SCED-LCAO Hamiltonian, and for which
the minimum value of R is interpreted as the best value. We
use a least-squares sum of the differences between the cal-
culated properties P, and the reference values P,

k —_—

1 Pca c P];e ?
R(Si) = \/]72 <Plv<veightlk—z) .

(A1)
P k Pscale

This expression also includes the characteristic scale Py,
of each property, a weight factor P,,;,, which represents the
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relative importance of each property, and the total number of
properties Np. The use of the scale, weight, and number of
properties allows for the interpretation of the residual as the
average relative deviation of the calculated values from the
reference values.

The optimization problem is to find the global minimum,
which is the set s; which has the absolute smallest value of R.
Optimization algorithms, however, are fundamentally related
to the number and distribution of local minima. In the easiest
case, there would be only one local minimum, and only
about 10* evaluations of R would be needed to find the glo-
bal minimum. In the worst case, the local minima would be
distributed randomly, and only a brute force search could
find the global minimum. In this worst case scenario, the
number of function evaluations needed would be G?’S, where
G, is the number of points for each parameter, and N, is the
number of parameters. A reasonable value of G, is ~200,
and with ~20 semiempirical parameters it is evident that the
optimization problem would be intractable. This means that
the selection of the optimization algorithm, and also the se-
lection of the initial or starting values of the semiempirical
parameters, is particularly important.

For the initial inputs in parameter-fitting, we use results
adapted from the available literature. For example, first-
principles calculations of the overlap matrices such as Sy,
are available for Si.?> For the least squares problem with N,
on the order of 102, there are of the order of 10? terms in the
summation. If this summation is performed explicitly, a large
amount of information about the individual behavior of these
terms is lost. For example, if the summation is performed
explicitly, the only information available about the deriva-
tives is the gradient ;—f{ with N; elements, but if the summa-

tion is not performed explicitly then the entire Jacobian ’ZTI:_L
with NN, elements is available. So even though the problerﬁ
is to find the minimum value of R, efficient least-squares
algorithms do not perform the summation explicitly, but
rather store and analyze each of the 107 terms in the summa-
tion. This is the approach used by the Marquardt-Levenberg
algorithm,'® which is a widely used and highly efficient al-
gorithm for finding the local minimum of a least-squares
problem. When compared with any algorithm which ana-
lyzes only the value of R, least-squares algorithms are typi-
cally one or two orders of magnitude more efficient at find-
ing the local minimum, with the efficiency increasing for
larger values of Np.

Now, the least-squares problem and the Marquardt-
Levenberg algorithm are well understood.'® Also, the global
optimization problem for a scalar function is well under-
stood.'® However, we have here a global least-squares prob-
lem. There are two general approaches to the global least-
squares problem. The first is to treat the least-squares prob-
lem as a scalar optimization problem, analyzing only the
value of R and not the values of the individual least-squares
terms. The reasoning here is that the benefit of using pre-
existing and well-understood algorithms, such as a simulated
annealing algorithms, will outweigh the cost of not analyzing
the individual terms in the summation. The second approach
is to adapt a local least-squares algorithm to the global prob-
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lem. Here one can exploit the superior efficiency of the least-
squares algorithm.

Our experience indicates that the second approach of
treating the problem as a least-squares problem is consider-
ably more efficient. This is probably related to the fact that
we are now using up to 200 properties for the least-squares
summation, which is considerably more than have been pre-
viously used. We have developed an efficient global optimi-
zation algorithm by adapting a local least-squares algorithm,
the Marquardt-Levenberg algorithm,'® to the global problem.
It involves feeding successive sets of parameters {s;} to the
Marquardt-Levenberg algorithm, which finds the local mini-
mum for each set of parameters. Each successive set is cho-
sen with a random distribution from the best set found from
all the previous local optimizations. The random distribution
is dependent on a scalar “distance” s defined by

1 i o 2
_ - E Snext ~ Sbest
s = N ; ,
s Sscale

where s, is the characteristic scale of each parameter. A
value s is assigned using a random exponential distribution.
The next set of parameters s,,,, to be fed to the Marquardt-
Levenberg algorithm can then be constructed from the best
parameters s,,,; and the random distance s.

The explicit algorithm for s’ is given by

(A2)

S I0(ro 1)

i
snext - Sbest + X X r_j ,+lsscale’
2 o7 -141
k
N

where r,;, a random number with a uniform distribution over
the interval [a,b], and s, a unitless number which repre-
sents the expected range over which the local minima are
distributed. A typical value of s, is 0.5, which means that
the new parameters will differ from the old parameters by
about 50%. Loosely speaking, the random exponential distri-
bution means that the new set of parameters is more likely to
be close to the best set of parameters.

Perhaps the most important feature of this random dis-
tance algorithm is that successive sets are chosen with regard
to the values of the parameters s and without regard to the
residual value R. This is in contrast with techniques which
interpret the residual R as a type of energy barrier. The
highly nonlinear behavior of the residual even in regions
where the parameters are reasonable suggests that simulated-
annealing-type techniques are not appropriate for these types
of optimization problems because the residual barriers are
too large. If one does wish to adapt this algorithm to prob-
lems where a simulated-annealing-type interpretation is more
appropriate, s, can be allowed to “hop” to a local minimum
which is not necessarily the best local minimum, with a hop-
ping probability that depends on the difference between two
appropriate R values. Indeed, we have used this simulated-
annealing-type adaptation at times, and although it certainly
adds flair to the algorithm, it does not seem to be useful for
our particular problem.

(A3)
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