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The quantum emission in radiatively coupled semiconductor multiple-quantum-well structures is investi-
gated theoretically. It is shown that coupling effects can lead to a subradiant suppression of the emission
compared to the emission of a single quantum well �QW�. The suppression strength depends on the number
and spacing of the QWs as well as on the homogeneous broadening and leads to an enhancement of the
radiative lifetime of excitons in the structure. The strongest lifetime enhancement is found for Bragg-arranged
QWs with small homogeneous broadening. Additionally, the radiative coupling between the QWs provides an
exciton pumping mechanism such that excitons can directly be created into the state that has vanishing
center-of-mass momentum.
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I. INTRODUCTION/MOTIVATION

In the past decades, direct band-gap semiconductor
quantum-wells �QWs� have been objects of great interest in
solid state physics due to their reduced dimensionality and
the relatively easy fabrication. In comparison to bulk semi-
conductors, the QW optical properties are often different as
the carriers are confined in the direction perpendicular to the
QW plane.1,2 For example, QWs show the decay of elec-
tronic excitations while in bulk semiconductors polaritons
are formed.3,4 This decay is caused by Coulomb-mediated
radiative recombination of electrons and holes and leads to a
strong emission below the fundamental band gap at excitonic
resonances even when true exciton populations, i.e.,
Coulomb-bound electron-hole pairs, are not present.5 How-
ever, it is possible to distinguish between the emission from
excitons and other electronic excitations with the help of
photoluminescence �PL� spectra.6 If excitons are formed, the
recombination of carriers leads to a rapid decay of low-
momentum excitons on a 10-picosecond time scale in a
single QW.7–9 This property is clearly undesirable in many
situations, e.g., when Bose-Einstein condensation is pursued.
Therefore, it is interesting to search for situations where the
lifetime of the low-momentum excitons is enhanced and
their recombination is suppressed.

Compared to a single QW, a periodic and parallel align-
ment of two or more QWs can lead to new intriguing effects
such as superradiance,10–13 solitons,14–16 the splitting of
emission peaks,17,18 and modified Rabi intersubband
oscillations.19,20 The origin of these effects is the optical cou-
pling between the QWs which is caused by the virtual emis-
sion and reabsorption of photons within the multiple-
quantum-well �MQW� system. The coupling strength is
dependent on the spacing between the QWs and in general is
strongest for Bragg structures, i.e., for QW spacings equaling
one half of the wavelength of the 1s-exciton resonance.21 In
the present paper, we show that under appropriate conditions,
i.e., at low carrier densities, the coupling between the QWs
can lead to the overall suppression of emission in the MQW
system, which then results in an enhancement of the lifetime
of the electronic excitations.

In order to describe the radiative coupling in MQW sys-
tems, one has to distinguish between the driven excitonic

polarization and incoherent excitons. Optical excitation in-
duces an interband polarization which is coherent such that
all microscopic transitions carry the same phase. Due to scat-
tering processes, these quantities lose their phase information
on a typical time scale of a few picoseconds. Once a purely
incoherent situation is reached, it is characterized by a gen-
erally complicated many-body state of electrons, holes, exci-
tons, and other quasiparticles. In this limit, the expectation
value of the electric field vanishes, i.e., there is no classical
light, and all radiation is incoherent PL. The light emission
properties are then exclusively determined by the quantum
fluctuations. Therefore, a quantum description of the light
field is absolutely essential. A theory providing such a de-
scription has been derived in Ref. 22. In this paper, we ex-
tend this approach to describe both exciton populations and
radiative coupling effects in MQW systems. We evaluate the
MQW PL under several different experimentally relevant
conditions and discuss how subradiant suppression of PL and
exciton decay can be realized. We also show how coupled
QWs can be used to pump excitons via their radiative cou-
pling.

The paper is structured as follows. We introduce the un-
derlying theory and present the equations of motion describ-
ing the system, in Sec. II. With the help of these equations,
we investigate the suppression of PL in a system consisting
of N QWs and explain its microscopic origin in Sec. III. In
particular, we study the dependence of the emitted light in-
tensity on the number of QWs and their spacing. Addition-
ally, we explain how the emission strength is related to the
radiative recombination of incoherent quasiparticles and, es-
pecially, to the radiative lifetime of excitons. In Sec. IV, we
study the possibilities for directly tailoring the radiative ex-
citon lifetime, and show in Sec. V that the radiative coupling
provides a mechanism to directly excite true exciton popula-
tions.

II. MICROSCOPIC THEORY

Since we are interested in the quantum emission of a sys-
tem of radiatively coupled QWs, we assume entirely inco-
herent conditions. In this limit, no optical polarization is
present and the expectation value of the classical electric
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field is zero. This describes an excited semiconductor after
electrical pumping or after optical coherences have dephased
on a picosecond-time scale. In order to systematically treat
the MQW coupling effects, we start from the fully micro-
scopic carrier-photon system including light-matter and Cou-
lomb interaction as discussed, e.g., in Ref. 22.

This theory describes all carriers in the investigated sys-
tem via fermionic electron annihilation and creation opera-
tors am,�,k and am,�,k

† , where the momentum of the Bloch
electrons is given by �k and the band index by �. The addi-
tional index m denotes the label of the QW in which the
electron is annihilated or created. For sufficiently narrow
QWs, the carriers are strongly confined in the direction per-
pendicular to the QWs such that only the lowest confinement
level has to be considered. Hence, we restrict the analysis to
two-band situations with one valence and one conduction
band. Additionally, we concentrate on pure radiative cou-
pling effects and assume the QW spacing �s to be large
enough to prevent electronic coupling between the carriers in
different QWs. This is justified for the QW spacings that are
interesting for radiative coupling, i.e., �s is of the order of
the wavelength of light which is large compared to the de
Broglie wavelength defining the typical electronic coupling
distance.

The light field is quantized via bosonic annihilation and
creation operators Bq,q�

and Bq,q�

† for each light mode
�q ,q��. Due to the symmetry of the setup, it is useful to
divide the wave vector into an in-plane component q �mo-
mentum parallel to the QW plane� and a perpendicular com-
ponent q� �momentum in the direction perpendicular to the
QWs�. Here the three-dimensional photon wave vector
�q ,q�� includes information about the angle of incidence as
well as the frequency of the light �q with q= ��q2+q�

2 �.
As shown previously,22 the Coulomb interaction as well

as the light-matter interaction lead to an infinite hierarchy of
coupled equations of motion which can be truncated system-
atically with the help of the cluster-expansion
formalism.23–25 Here, we truncate the hierarchy at the
�6�-point level such that single-particle contributions and
two-particle correlations are fully taken into account. This
leads to the semiconductor luminescence equation �SLE�
which describes carriers, excitons, and photon correlations at
an equivalent level. Since the derivation of the SLE without
excitonic correlations for a single QW was already per-
formed in Refs. 22 and 26, we concentrate here on the ele-
ments critical for MQW PL.

The fundamental quantity for the computation of the PL is
the rate of the emitted photons. The photon number is given
by the diagonal part of the expectation value

�Bq,q�

† Bq�,q
��

� = ��Bq,q�

† Bq�,q
��

� + �Bq,q�

† ��Bq�,q
��

� �1�

which can be factorized into two parts. The second term on
the right-hand side corresponds to the classical intensity
��E�2� such that the “�” is related to the difference �E2�
− �E�2 and thus labels pure quantum correlations. The equa-
tion of motion for this quantity yields

i �
�

�t
��Bq,q�

† Bq�,q
��

� = ���q� − � �q���Bq,q�

† Bq�,q
��

�

+ i�
m,k

Fm,q�,q
��

�
�q,q�

k,m

+ i�
m,k

Fm,q,q�
��q�,q

��
k,m ��, �2�

where the photon energy is denoted by ��q. The quantized
light field is coupled to photon-assisted polarizations

�q,q�

k,m � ��Bq,q�

† am,v,k
† am,c,k+q� , �3�

which describe a transition amplitude of a correlated process
where a photon is emitted while an electron-hole pair recom-
bines. The strength of the light-matter coupling is defined by
Fm,q,q�

�dcvEqUm,q,q�
that contains the dipole matrix ele-

ment dcv between conduction and valence band, the vacuum

field amplitude Eq=���q

2�0
as well as the overlap integral

Um,q,q�
=	gm�z�uq,q�

�z�dz between the mode function
uq,q�

�z� and the confinement function gm�z� of QW m. Since
the confinement function is very narrow compared to the
optical wavelength, we can assume that gm�z� is
�-function-like. Therefore, only the mode function at the
QW position is relevant. The mode functions contain all in-
formation about the photonic environment. In realistic sys-
tems, this environment can be given by buffer layers sepa-
rating the QWs and substrate or air surrounding the sample.
Furthermore, the surfaces between air and substrate are often
cladded by antireflection coating layers. In our model, we
assume the QW environment to be optically inactive and we
treat it as a frequency-independent background refractive in-
dex n which enters the mode functions via transmission and
reflection coefficients.22

The dynamics of the photon-assisted polarization is given
by the semiconductor luminescence equation �SLE�

i �
�

�t
�q,q�

k,m = �	̃k,q
m − � �q��q,q�

k,m − �1 − fk+q
e,m

− fk
h,m��

k�

Vk−k��q,q�

k,m + iFm,q,q�

m

SE�k,q�

+ i
m
RC�k,q,q�� − �1 − fk+q

e,m

− fk
h,m���Bq,q�

† Bq�m
� + i �

�

�t
�q,q�

k,m �scatt, �4�

with the Coulomb-renormalized single-particle energies

	̃k,q
m = 	m,k+q

c − 	m,k
v − �

k�

Vk−k��fk�+q
e,m + fk�

h,m� , �5�

where Vk denotes the Coulomb matrix element in momentum
space. The electron and hole contributions enter via

fk
e,m = �am,c,k

† am,c,k� �6�
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fk
h,m = 1 − �am,v,k

† am,v,k� . �7�

In Eq. �4�, the Coulomb sum over � provides excitonic reso-
nances to the photon-assisted polarizations. The spontaneous
recombination processes are driven via


m
SE�k,q� = fk+q

e,m fk
h,m + �

l
cXm,m

q,k,l , �8�

where fefh describes the uncorrelated electron-hole plasma
contribution and the second term contains the two-particle

correlations cXm�,m
q,k�,k =��am,c,k

† am�,v,k�
† am�,c,k�+qam,v,k−q�. Equa-

tion �8� includes two-particle correlations with equal QW
indices m=m�. They can describe correlated plasma as well
as exciton populations in QW m. Due to the structure of the
spontaneous emission, also an uncorrelated electron-hole
plasma can fundamentally be the origin of excitonic
luminescence5,6,27,28 and therefore excitonic luminescence
does not need to be a signature of excitons in the system.
Two-particle correlations with different QW indices, m
�m�, determine the correlations of electron-hole pairs in dif-
ferent QWs and enter via the recombination correlation


m
RC�k,q,q�� = �

m�m�

Fm,q,q��
l

cXm�,m
q,k,l , �9�

which clearly couples different QWs. The MQW coupling is
further modified by a stimulated contribution term
��Bq,q�

† Bq�m
�, where the collective photon operator Bq,�m

=�q
��

iFm,q,q
��

Bq,q
��

includes all photons with in-plane mo-

mentum q in QW m. The term i�
�
�t�k,q,q�,m�scatt describes

Coulomb scattering and phonon-induced three-particle scat-
tering terms.

In order to get a closed set of equations, we need to com-
pute the dynamics of the excitonic correlations which fol-
lows from

i �
�

�t
cXm�,m

q,k�,k = 	m�,m
q,k�,kcXm�,m

q,k�,k + SXm�,m
q,k�,k − �1 − fk�+q

e,m�

− fk�
h,m�� �

l�k�

Vl−k�cXm�,m
q,l,k + �1 − fk

e,m

− fk−q
h,m ��

l�k
Vl−kcXm�,m

q,k�,l − �1 − fk�+q
e,m�

− fk�
h,m���

q��

iFm�,q�,q
��

��q,q
��

k,m �� − �1 − fk
e,m

− fk−q
h,m ��

q��

iFm,q�,q
��

�
�q,q

��
k�,m� + i �

�

�t
cXm�,m

q,k�,k �scatt.

�10�

Equation �10� yields the consistent form of exciton correla-
tions in the main-sum approximation.29 It contains the
Coulomb-renormalized electron-hole pair energy which is
explicitly given by

	m�,m
q,k�,k = 	̃k−q,q

m − 	̃k�,q
m� . �11�

If the cX correlation vanishes initially, it is driven by the
Coulomb-induced single-particle scattering source

SXm�,m
q,k�,k = �m,m�Vk�+q−k � 
fk�+q

e,m fk�
h,m�1 − fk

e,m��1 − fk−q
h,m �

− fk
e,mfk−q

h,m �1 − fk�+q
e,m ��1 − fk�

h,m�� . �12�

This source exists only for identical QW indices m=m� and
resembles the Coulomb scattering within one and the same
QW. Exciton pair-state resonances are introduced by the
Coulomb sums in the second and third line of Eq. �10�.29

Additionally, the spontaneous recombination of correlated
electron-hole pairs is described by the terms containing �
when m=m�. For m�m�, these terms correlate electron-hole
pairs in different QWs due to photon-mediated recombina-
tion and excitation of electron-hole pairs. Finally, the last

term i�
�
�t cXm�,m

q,k�,k �scatt includes the Coulomb and phonon scat-
tering contributions due to three-particle correlations.

The incoherent excitation state of the carriers enters the
quantum emission via fe,m, fh,m, and cX,m,m�. Thus, the fully
self-consistent solution of the MQW PL is obtained by solv-
ing the carrier dynamics together with Eqs. �2�, �4�, and �10�.
Consequently, we have to set up the equations of motion for
the carrier dynamics to close the set of equations. We obtain
the equations

i �
�

�t
fk

e,m = �
q,q�

i
Fm,q,q�
��q,q�

k,m �� + Fm,q,q�

� �q,q�

k,m �

+ i �
d

dt
fk

e,m�scatt �13�

i �
�

�t
fk

h,m = �
q,q�

i
Fm,q,q�
��q,q�

k,m �� + Fm,q,q�

� �q,q�

k,m �

− i �
d

dt
fk

h,m�scatt, �14�

where the collective sum over all photon-assisted polariza-
tion processes determines how strongly electrons and holes
recombine spontaneously at momentum k. The last term in
Eqs. �13� and �14� defines the Coulomb and phonon induced
scattering of carriers.

We notice now that Eqs. �2�, �4�, and �10� have a structure
where different in-plane momenta q can only be coupled via
scattering or by the fe and fh dynamics. Additionally in this
paper, we concentrate on situations where the carrier states
have already experienced significant equilibration. Then,
scattering terms can be considered not to produce a
q-dependent coupling because fe and fh are close to a quasi-
equilibrium. In this situation, the coupling between different
q in Eqs. �2�, �4�, and �10� can be ignored. Consequently, the
principal MQW coupling effects can be understood by con-
centrating on the emission in normal direction, i.e., q=0.
Under these conditions, �q,q�

depends on q mainly via the
angle between the QW and the light field, which leads to a
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geometrical factor.30 Thus, the slow carrier dynamics, Eqs.
�13� and �14�, is evaluated from �0,q�

by applying an appro-
priate geometrical factor.

In our computations, the steady-state luminescence is pro-
portional to the flux of the photon number

IPL�� = c�q��� =
�

�t
��B0,q�

† B0,q�
� . �15�

Furthermore, we may also study the number of excitons with
the center of mass momentum q=0 by introducing the trans-
formation

�N,�
m,m� = �

k,k�

�
L�k�
��

L�k����cXm�,m
0,k�,k , �16�

cXm�,m
0,k�,k = �

,�
�N,�

m,m�
�
R�k�����

R�k�� , �17�

where �N�,�
m,m defines the number of excitons in the state �

with center-of-mass momentum q=0 in the QW m. Index
combinations with unequal state indices �� describe cor-
related electron-hole plasma contributions and not exciton
populations. The transformation �16�, �17� is performed by
projecting cX or �N onto the left-handed and right-handed
excitonic eigenfunctions �

L�k� and �
R�k�, respectively.30

The eigenfunctions can be derived by solving the generalized
Wannier equation


�
L�k���	̃k − �

k�


�
L�k�����1 − fk�

e − fk�
h �Vk−k� = 
�

L�k���E

�18�

	̃k�
R�k� − �1 − fk

e − fk
h��

k�

Vk−k��
R�k�� = E�

R�k� .

�19�

For vanishing carrier densities, the Wannier equation has a
one-to-one correspondence to the Schrödinger equation for
the relative motion problem of the atomic hydrogen.2 Due to
the phase-space filling factor, however, the eigenvalue prob-
lem becomes non-Hermitian for finite densities. The solu-
tions yield left- and right-handed eigenfunctions which obey
the generalized orthogonality and completeness relation

�
k


�
L�k�����

R�k� = �,�, �20�

�
k


�
L�k����

R�k�� = �k,k�. �21�

One can show that even for finite densities the eigenvalues as
well as the eigenfunctions remain real31 and are related by

�
L�k� =

�
R�k�

1 − fk
e − fk

h . �22�

Description of scattering and screening. In the following
investigations, we assume the carriers to be close to quasi-
equilibrium. Hence, we approximate their distributions by
Fermi functions with a given temperature and carrier density.

In this limit, we can simplify the scattering contributions in
Eqs. �4�, �10�, �13�, and �14�. The easiest possible approxi-
mation is to introduce a constant dephasing �. This nicely
works in the case of the photon-assisted polarization such
that we can approximate the scattering term in Eq. �4� by

i �
�

�t
�q,q�

k,m �scatt = − i��q,q�

k,m . �23�

The scattering term in the cX correlation cannot be treated in
that manner since a simple dephasing constant would lead to
an unphysical decay of the exciton populations. More spe-
cifically, in an exciton basis, we have to distinguish between

complex transition amplitudes �N,�
m,m� for �� or m�m�

and real-valued populations �N,
m,m. Since the latter do not

carry a phase, they are insensitive to dephasing. They can
only decay nonradiatively �not considered here� or via spon-
taneous emission included in Eq. �10�. Therefore, we intro-
duced a scattering term

i �
�

�t
cXm�,m

0,k�,k �scatt = − 2i�cXm�,m
0,k�,k + 2i��m,m��

�

�N�,�
m,m��

R�k�

�
��
R�k����, �24�

which assures that only the off-diagonal correlations are
dephased and the diagonal exciton populations stay unaf-
fected. The scattering contributions in the equations of mo-
tion �13� and �14� for the carriers can be neglected. Further-
more, Coulomb scattering leads to an effective plasma
screening such that the Coulomb matrix element is screened.
For this purpose, we use the single-plasmon pole
approximation.2

The following computations are performed for GaAs-type
MQW systems with a QW width of �L=8 nm. For this
width we obtain the 1s-exciton-binding energy EB
=10.2 meV. Additionally, we assume the QWs to be embed-
ded within a spatially homogeneous and optically inactive
substrate with constant background refractive index 3.63. We
use low carrier densities between 107−109 cm−2 and carrier
temperatures between 20 K and 77 K. The homogeneous
broadening is set to be �=0.42 meV. As a generic initial
condition, the quasiequilibrium QW is populated by different
mixtures of electron-hole plasma and exciton distributions.

III. SUBRADIANCE IN MQW SYSTEMS

As a first numerical investigation, we analyze how the
luminescence per QW is influenced by the number of QWs
in the system. More specifically, we compare the single and
16 QW PL by solving the corresponding steady-state lumi-
nescence IPL from Eqs. �2�, �4�, and �10� when only uncor-
related electron-hole plasma is present, i.e., when the exciton
populations are vanishingly small. For this situation, we may
neglect the carrier recombination dynamics because it hap-
pens on a nanosecond time scale which is slow compared to
the picosecond-time scale we are investigating here. We use
stationary Fermi-distributed carrier densities n=8
�108 cm−2 and a carrier temperature T=77 K. In order to
compare the single and 16 QW photoluminescence, we de-
fine a normalized luminescence per QW.
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Inorm��� � IPL���/N . �25�

Figure 1 shows Inorm��� for a single QW �shaded area� and
for MQW systems consisting of 16 QWs with a QW separa-
tion �s=� /4 �dashed line� and �s=� /2 �solid line�, respec-
tively. The PL per QW is plotted as a function of the energy
of the quantum emission. The energy is given relatively to
the unrenormalized band gap energy, which is denoted by
EG. We observe that the emission per QW is strongly re-
duced in MQW systems; this effect is referred to as “subra-
diance”.

As a general trend, subradiance is strongest for the Bragg
structures and any detuning of the spacing away from the
Bragg-condition leads to a weakening of this effect. The sub-
radiance has a minimum for the QW separation � /4 �anti-
Bragg spacing� if the number of QWs in the system is even.
For odd QW numbers, the minimum is also in the vicinity of
the � /4 separation but the exact value depends nontrivially
on the QW number. To have maximum subradiant effects, we
mostly concentrate on Bragg structures in the following. If
the carrier densities are increased, the QWs display gain and
the coupling effects produce superradiance as shown in Ref.
22. The overall behavior of the emission is clearly different
than the decay of the coherent polarization for which the
radiative coupling effects produce a superradiant behavior in
Bragg structures independent of the carrier density.12 The
difference is a consequence of the fact that the broadening of
the coherent spectrum corresponds to a faster �i.e., superra-
diant� decay of populations whereas the broadening of the
spectrum in Fig. 1 is related to the dephasing of � while the
area under the curve determines the total PL.

In order to pinpoint the origin of the subradiance, we have
to identify the terms responsible for the QW coupling. In Eq.
�4�, the only terms which couple different QWs are the re-
combination correlation 
m

RC and the stimulated contribution

ST���Bq,q�

† Bq�m
�. We perform a switch-off analysis to in-

vestigate the relevance of these two terms for the subradi-
ance of a 16 QWs system. The results of this analysis are

depicted in Fig. 2, where we compare the results of a full
calculation for a single QW with that of a system of 16 QWs
with spacing � /2. Additionally, we show in Fig. 2�a� the 16
QW result where only 
ST is included and in Fig. 2�b� the
result where we kept only the 
m

RC term. The comparisons in
Fig. 2 indicate that the stimulated emission term leads to a
smaller but broadened resonance peak compared to the
single QW result. This effect is clearly analogous to the
broadening of a coherent spectrum under superradiant con-
ditions. However, the area under the peak, which determines
the total number of emitted photons, remains unchanged. If
we only include 
RC we do not observe a broadening of the
resonance but a depletion of the luminescence per QW, i.e.,
the area under the peak is strongly diminished compared to
the single QW emission. Therefore, we conclude that the
recombination correlations are dominantly responsible for
the subradiance effects.

Since subradiance is a QW-coupling phenomenon it is
interesting to see how the strength of the subradiance de-
pends on the number of QWs in the Bragg structure and how

RC effects the subradiance. Consequently, we compare the
luminescence per QW Inorm��� in the three cases including:
�i� the full SLE, �ii� the stimulated contribution only, and �iii�
only the recombination correlation. We perform this com-
parison for Bragg structures with 1 to 10 QWs and use the

FIG. 1. Steady-state spectra of the luminescence per QW for a
single QW �shaded area� and systems of 16 QWs with spacings � /2
�solid line� and � /4 �dashed line�. For these computations, we use
T=77 K carrier temperature and a Fermi-distributed carrier density
of 8�108 cm−2.

FIG. 2. Origin of subradiance: steady-state spectra for the lumi-
nescence per QW comparing the result of a full computation for a
single QW �shaded area� and a system of 16 QWs with spacing � /2
�dashed line� with the results of a system of 16 QWs with including
only the stimulated contribution 
solid line in subfigure �a�� and an
analogous system with including only the recombination correlation

solid line in subfigure �b��. The carrier temperature is T=77 K and
we use a Fermi-distributed carrier density of 8�108 cm−2.
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same parameters as in the computations before. The results
of this analysis are shown in Fig. 3 where the full calculation
�solid line� is compared with computations with only 
ST

�dashed line� and 
RC �dotted line�. We observe that the area
under the PL peak decreases with increasing QW number,
i.e., the effect of subradiance is enhanced.

IV. EXCITON LIFETIME IN MQW SYSTEMS

We investigate next the influence of the MQW structure
on the lifetime of bright excitons and analyze how the life-
time is related to the subradiance. Therefore, we introduce
the radiative decay constant already known to describe the
decay of excitonic polarization8

� =
dcv

2 ��1s�0��2

2�0n
q1s. �26�

Here, �0 is the vacuum dielectric constant, n is the back-
ground refractive index and q1s is the photon wave vector
corresponding to the exciton energy. The exciton wave func-
tion in real space evaluated at r=0 is given by �1s�0�. In
single QW systems, the radiative lifetime of coherent exci-
tons, i.e., the square of the polarizations in the classical limit,
and the radiative lifetime of bright excitons in the incoherent
limit are the same due to the identical structure of the semi-
conductor Bloch equation and the SLE. Hence, one finds the
radiative lifetime of bright excitons in a single QW to be
�1= � / �2��. The origin of the radiative decay is the recom-
bination of optically active exciton populations, which hap-
pens rapidly on a 10 ps time scale. This fast recombination
efficiently removes excitons at low momentum states. As a
result, the exciton distributions show strong nonequilibrium
characteristics25,30,28 around q=0.

As another general feature, one finds22 a strict conserva-
tion law

IPL =
�

�t
�
q�

��B0,q�

† B0,q�
� =

�

�t
�
k

fk
e,h, �27�

which implies that the number of recombined electron-hole
pairs equals the number of emitted photons. As the MQW
system reduces the total IPL due to subradiance, one simul-
taneously obtains an enhanced optical lifetime of excitations
in the system. Thus, it is interesting to study whether one can
apply the subradiance to tailor the radiative lifetime of qua-
siparticles in semiconductors. The aim here is to determine
how one can form an exciton-friendly environment with the
help of MQW systems such that the exciton lifetime be-
comes maximally enhanced.

We know from the investigations in the previous section
that the subradiance becomes stronger with larger number of
QWs. For that reason, we analyze the influence of the num-
ber of QWs on the radiative lifetime of excitons in a Bragg
structure by solving Eqs. �2�, �4�, �10�, �13�, and �14�. In
more detail, we initially insert a certain number of excitons
into each QW. The carrier density is set to 8�108 cm−2 and
the exciton density is 7.36�108 cm−2 �exciton fraction is
92%� such that nearly all carriers are present in the form of
excitons. The carrier temperature and the homogeneous
broadening remain unchanged compared to the previous
analysis. The results of this investigation are presented in
Fig. 4 where the exciton lifetime is plotted against the QW
number for MQW systems with 1 to 10 QWs. The solid line
shows the results obtained from the full numerical analysis
while the shaded area corresponds to the lifetimes computed
with the help of a simplified analytical model discussed in
the Appendix. For the analytical investigation, we use the
known exciton lifetime �1 in a single QW and the result for
the exciton lifetime of a 2 QW system calculated by the
simplified model. Then, we compute the difference between
the lifetimes in these two systems and assume a linear life-
time increase with increasing QW number.

�N = �1 + �N − 1���12, �28�

where

FIG. 3. Strength of subradiance vs QW number: comparison of
the integrated luminescence per QW using the full SLE �solid line�
against the cases with including only ��Bq,q�

† Bq�m
� �dashed line� or


RC �dotted line� for different numbers of QWs. Carrier tempera-
ture and density was the same as in Fig. 2.

FIG. 4. Excitonic lifetime computed in different Bragg-
structured MQW systems. The solid line shows the full numerical
result. The shaded area is obtained from a linear extrapolation of the
exciton lifetime for 1 and 2 QWs.
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��12 = �1

��2 + 4�2 − �

� + 2� − ��2 + 4�2
. �29�

According to Eq. �28�, Fig. 4 shows that the lifetime of the
full numerical computation rises linearly with increasing QW
number. We find that the increase of the exciton lifetime is
roughly 0.834 ps per additional QW for the homogeneous �
used in the computations. Furthermore, the simplified model
reproduces the lifetimes of the full numerical model very
well, although the corresponding analytic calculation only
includes exciton contributions. The linear increase of the ex-
citon lifetime with increased QW number corresponds di-
rectly to the increase of the subradiance effect. From these
observations, we can conclude that the suppression of the
photon emission results in an enhancement of the radiative
lifetime of excitations in the system. For cases other than
� /2 spacing, one cannot anymore determine a single decay
constant or an exciton lifetime since the decay dynamics
consists of several modes with different decay constants.

In addition to the number and spacing of the QWs, the
simple formula �29� predicts that the chosen homogeneous
broadening of the photoluminescence affects the exciton life-
time. In realistic experiments one can alter � via the lattice
temperature and/or the background carrier density since �
depends on phonon and Coulomb scattering. Note, that the
dependence of the exciton lifetime on the homogeneous
broadening is introduced by the dephasing constant in the
equation of motion for the correlated electron-hole pairs in
Eq. �24�. Even though, the decay constant is used for off-
diagonal exciton correlations only, it influences the radiative
decay of diagonal exciton populations via 
RC. In the fol-
lowing, we analyze this influence for systems of 10 QWs
with Bragg-spacing by varying � for otherwise the same car-
rier and exciton densities as already used in Fig. 4. The car-
rier temperature is T=77 K and the radiative broadening is
�=0.025 meV. In Fig. 5, we show the exciton lifetimes in
units of the radiative exciton lifetime in a single QW com-
paring the results of the full numerical analysis �solid line�
and the radiative lifetimes gained by using Eqs. �28� and �29�

�shaded area�. We find that the lifetime increase becomes
stronger for small �, e.g., we obtain a lifetime of about
76.6 ps for a Bragg structure with 10 QWs and �=2�. For
large �, the QWs become uncoupled such that one recovers
the single QW exciton lifetime of about 13 ps. The simpli-
fied model predicts the full numerical results very well. For
small �, Eq. �29� slightly overestimates the radiative lifetime
increase. This deviation can be explained by additional
super-radiant and subradiant modes which occur in a 10 QW
system and alter the result slightly for small �. In a two-QW
system these modes are absent and thus not taken into ac-
count in the simplified analytical model.

We have already shown in Fig. 1 that the influence of the
subradiance is strongest for the Bragg condition. We next
investigate the robustness of this subradiance by detuning
away from the Bragg spacing. For this purpose, we use the
same parameters as in Fig. 4 and plot in Fig. 6 the exciton
lifetime for a 10 QW system as a function of spacing. As
suggested from the subradiance results, the exciton lifetime
is increased strongest in the vicinity of the QW spacing � /2.
However, we find the maximum lifetime increase at a QW
spacing that slightly differs from the exact value of � /2. This
deviation is a consequence of the emission from exciton
populations in states other than 1s, since these exciton states
do not satisfy the Bragg condition. As the spacing is detuned
further away from the Bragg condition, the lifetime de-
creases and reaches a local minimum at a value which de-
pends on the QW number.

In order to compare the sensitivity of the lifetime en-
hancement under detuning in different MQW structures, we
define �z to be the half-width of the lifetime Bragg reso-
nance, as indicated in Fig. 6. Additionally, we use a simpli-
fied model for the SLE introduced in the Appendix of Ref.
22 and extend it, such that exciton populations are taken into
account. This analysis allows us to deduce the half width of
the Bragg-resonance analytically from

sin�Nq1s�z�
sin�q1s�z�

=
N
�2

, �30�

where q1s is the photon momentum corresponding to the en-
ergy of the exciton resonance energy. The number of QWs is

FIG. 5. Exciton lifetime computed for different dephasing con-
stants in Bragg structures with 10 QWs. The solid line shows the
full numerical result. The shaded area is the result gained from the
analytical approximation presented in the Appendix.

FIG. 6. Exciton lifetime for different QW spacings in a system
of 10 QWs. The half width of the resonance around the Bragg
condition is denoted by �z.
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denoted by N. The first root of Eq. �30� defines �z. The result
obtained from this formula �solid line� is compared with the
full numerical computation �filled circles� for QW arrange-
ments with 2 to 20 QWs in Fig. 7. We observe that the
computed half widths excellently agree with those calculated
by the numerical analysis of the SLE. Additionally, we find
that the shape of the lifetime peak is broad for a small num-
ber of QWs and quickly gets sharper for higher numbers of
QWs.

V. EXCITON PUMPING

So far, we have demonstrated that the exciton lifetime is
strongly influenced by the radiative coupling between differ-
ent QWs. Since spontaneous emission has its maximum at
the exciton resonance, even without the presence of exciton
populations, one might ask if this emission may lead to ex-
citon generation in MQW systems. Hence, it is interesting to
investigate whether even plasma excitation conditions and
plasma luminescence may lead to the formation of excitons
directly via radiative coupling. To analyze this basic phe-
nomenon, we study a Bragg structure of two radiatively
coupled QWs. We assume that the first QW has an initial
carrier density of 3�1010 cm−2, while the other QW is un-
excited. Additionally, we assume that no exciton populations
are present in the beginning. The temperature is chosen to be
T=20 K and the carrier density in the first QW follows a
Fermi distribution. Due to the relatively high density in the
first QW, the homogeneous broadening is chosen to be
2.1 meV, according to an excitation-induced dephasing
computation.25 Since the second QW is empty, we use a
lower homogeneous broadening of 0.42 meV there. In Fig. 8,
the exciton occupation at q=0 for different spacings between
the two QWs is presented. The shaded area shows the case
where the two QWs are separated by only �s=� /2 which
corresponds to a 1.4 fs time delay in the light propagation
between the QWs. We have also tested other QW distances
consisting of integer multiples of � /2. The cases where the
spacing corresponds to roughly 0.315 �solid line�, 1 �dashed
line�, and 10 ps �dotted line� are also shown in Fig. 8. The

exciton distribution at q=0 in the second QW reaches values
of about 1.86�10−4 which corresponds to an exciton density
of about 7.5�104 cm−2. This is not a very high population,
but it demonstrates the principle possibility that pure plasma
excitations are able to pump excitons in radiatively coupled
QWs. The obtained maximum level of pumped excitons can
be enhanced considerably by increasing the carrier density in
the first QW.

Additionally, we obtain a slight increase in the amount of
created excitons for larger QW spacing. This increase stops
for QW separations leading to a larger than roughly 0.32 ps
delay time, which at the same time matches the dephasing
time ��= � /�= � / �2.1 meV� of the pumping QW. The radia-
tive coupling between QWs is limited by ��, since the QWs
become radiatively uncoupled once the QW separation ex-
ceeds the spacings corresponding to ��. The homogeneous
dephasing in the initially empty QW is much smaller than �
in the pumping QW and therefore its contribution to this
effect is only weak.

An interesting feature of the created excitons in the sec-
ond QW is that all excitons exclusively populate the state of
q=0. Detailed investigations30 show that the excitons in this
state show long-range order and reduced phonon and Cou-
lomb scattering. Hence, the excitons are generated in a
quantum-degenerate state, i.e., an exciton condensate.

In order to find out whether more plasma-excited QWs
may influence the amount of created excitons in a radiatively
coupled and initially empty QW, we compare the cases of 2,
3, 5, and 10 QWs with spacings � /2. The last QW in both
structures is initially empty while the other QWs are initially
populated by a Fermi-distributed carrier density of 3
�1010 cm−2, each. The result of this comparison is shown in
Fig. 9. The exciton occupation at q=0 in the second QW of
the 2-QW system is depicted by the shaded area. The solid
line shows the corresponding occupation in the third QW of
the 3-QW system. The cases of 5 and 10 QWs where the last

FIG. 7. Half width of the lifetime peak around the Bragg con-
dition for QW arrangements with 2 to 20 QWs. The solid line
shows the result gained from Eq. �30� while the filled circles show
the full numerical analysis.

FIG. 8. Excitation of excitons in two radiatively coupled QWs.
The first QW is assumed to be populated by a Fermi-distributed
carrier density of 3�1010 cm−2, while the second QW is initially
empty. In the beginning there are no excitons in neither of the two
QWs. The exciton occupation at q=0 in the second QW is depicted
as a function of time for the four different QW spacings with
1.4 fs�� /2 �shaded area�, 0.315 ps �solid line�, 1 ps �dashed line�,
and 10 ps �dotted line� propagation time between the QWs.
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QW is initially empty are presented by the dotted and the
dashed line, respectively. From Fig. 9, we observe that the
number of created excitons in the initially empty QW can be
strongly increased by using more plasma excited QWs as a
source. The amount of created excitons scales nearly linearly
with the QW number.

VI. CONCLUSION

Our investigations demonstrate that N QWs can show PL
and electron-hole recombination per QW that is reduced with
a subradiant dependency on the QW number N. The origin of
the subradiance is the recombination of carriers in one QW
while a new electron-hole pair is created in another QW at
the same time. The subradiance is strongest for the Bragg
condition and it increases with increasing number of QWs.
This is in sharp contrast to an excitation with classical light,
where a supperradiant decay of coherent polarization in
Bragg structures is always obtained.

We have found that the radiative lifetime of excitons is
directly related to the subradiance in MQW systems such
that we obtain a linear dependence of the exciton lifetime on
the QW number in Bragg structures. We introduced a simple
analytical model that is able to predict the radiative lifetime
in Bragg structures for different homogeneous dephasings.
For spacings other than � /2, such relations are not simple
because in these cases several super- and subradiant modes
are superimposed such that not only a simple monoexponen-
tial or biexponential decay can be observed.

Additionally we have found that a small detuning away
from the Bragg condition leads to smaller exciton lifetimes,
which is consistent with the subradiance results. We have
presented a formula that can be used to determine the half
width of the lifetime peaks at the Bragg condition, which
very nicely agrees with the results obtained from the full
numerical analysis. As a general trend, the lifetime peak be-
comes sharper for increasing QW number. Additionally, the
exciton lifetime is enhanced strongest if the homogeneous
dephasing is small. In the limit of very strong dephasing, the

QWs become effectively uncoupled and we recover the
single QW lifetime.

In MQW systems where one QW is initially unexcited,
the radiative coupling between the different QWs provides a
mechanism for direct exciton pumping. The creation of the
excitons in the initially unexcited QW is such that all exci-
tons are created to the state with vanishing center of mass
momentum. Earlier investigations30 have shown that the ex-
citons in this state have then long-range order and form an
exciton condensate. The amount of the created exciton popu-
lation becomes stronger the more QWs act as a source and
the higher the plasma excitation is in the source QWs.
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APPENDIX: ANALYTIC MODEL FOR RADIATIVE
LIFETIME IN A 2-QWS SYSTEM

In the following analysis, we investigate the photolumi-
nescence of two QWs via an analytical model. We therefore
concentrate on a situation where the photoluminescence is
dominated by excitons, i.e., when the uncorrelated plasma
source fefh in Eq. �8� can be neglected such that the sponta-
neous emission reads 
m

SE�k ,q�=�lFm,q,q�
cXm,m

q,k,l . As a first
step we can transform Eq. �4� into the exciton picture using
the transformation �16� and additionally the relation

�q,q�

k,m = �


�̃q,q�

m, ��k� . �A1�

We concentrate on 1s-exciton contributions only and drop
the superscript =1s for notational simplicity. We obtain the
result

i �
�

�t
�̃q,q�

m �t� = �	̃1 − � �q − i���̃q,q�

m �t�

− �
q��

Fm,q,q
��

1s
��Bq,q�

† Bq,q
��

��t�

+ �
n

iFn,q,q�

1s Nm,n
q �t� , �A2�

where 	̃1 is the 1s eigenenergy and Fm,q,q�

1s

�dcvEqUm,q,q�
�1s

� �r=0� with �1s�r=0� being the 1s-exciton
wave function in real space at r=0. We switch on the optical
coupling at time t=0 and assume the excitonic correlations
�10� to be constant for negative times. For positive times, the
correlations are determined by the radiative coupling be-
tween the QWs. In order to eliminate the dependence of Eq.
�A2� on the ��B†B�, we formally solve Eq. �2� assuming the
absence of any external source and insert the result in Eq.
�A2�. After an additional Fourier transform, we obtain

FIG. 9. Exciton occupation at q=0 of an initially unexcited QW
in Bragg-structures with 2 �shaded area�, 3 �solid line�, 5 �dotted
line�, and 10 �dashed line� QWs. The other QWs are initially popu-
lated by a Fermi-distributed carrier density of 3�1010 cm−2.
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��
 − 	1 + � �q + i
� + ����̃q,q�

m �
�

= − i� �
n�m

�̃q,q�

m �
�ei��q+
��n,m

+ �
n

iFn,q,q�

1s Nm,n
q �t = 0���
�

+ �
n

iFn,q,q�

1s Nm,n
q �
� , �A3�

with the radiative lifetime � defined by Eq. �26�. The retar-
dation time is defined by �n,m= �zn−zm � /c where zn and zm are
the positions of the 2 QWs in real space and c is the speed of
light. Analogously, we transform Eq. �10� into


�
 + i2��1 − �m,n��Nm,n
q �
� = − �

q
iFm,q,q�

1s 
�̃q,q�

n ���
�

− �
q

i
Fn,q,q�

1s ���̃q,q�

m �
� .

�A4�

We solve Eq. �A3� and insert the result into Eq. �A4�. For
that purpose, we assume that initially the exciton populations
in the first QW N1,1 and the second QW N2,2 are identical
and that there are no initial electron-hole correlations N1,2
and N2,1 between the two QWs, such that

N1,1
q �t = 0� = N2,2

q �t = 0� = Nq,

N1,2
q �t = 0� = N2,1

q �t = 0� = 0.

If we choose the QW spacing to be �s=� /2, the populations
in both QWs as well as both correlations remain identical
for all times such that we end up with a set of two equations.

Taking into account that only exciton populations or
electron-hole correlations with vanishing center-of-mass mo-
mentum contribute to the coupling of the QWs, we find the
relation

� �
E − 2i�

− 2i� �
O
�N11�
�

N12�
�
 = �− 2���
�Nq=0

− 4���
�Nq=0
 , �A5�

with �
E= �
+2i� and �
O= �
+2i�+2�. Diagonaliz-
ing the matrix and retransforming the results for the exciton
populations into time domain yields one super-radiant and
one subradiant solution. The time evolution of the excitons in
both QWs is then proportional to

N�t� � ��t�
A · e−��+t�/� + B · e−��−t�/�� , �A6�

where A and B are �- and �-dependent prefactors. The decay
constants are defined by

�± = � + 2� ± ��2 + 4�2. �A7�

Thus, the plus sign denotes the superradiant mode while the
minus sign denotes the subradiant mode. The radiative life-
times corresponding to these two modes are given by

�2�±� = � /�±. �A8�

Comparing this result to the exciton lifetime obtained in a
single QW, we find the lifetime difference

��12�±� = �2�±� − �1 = �1
���2 + 4�2 − �

� + 2� ± ��2 + 4�2
. �A9�

The full analysis with the help of Eqs. �2�, �4�, �10�, �13�, and
�14� shows that for early times the superradiant mode domi-
nates the decay of the exciton population but after some pi-
coseconds the subradiant mode overtakes and determines the
decay.
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