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Indium phosphide nanowires grown along different crystallographic axes—namely, the �001�, �101�, and
�111� directions of zinc-blende structure—are investigated using a first-principles derived semi-empirical
pseudopotential theory, aimed at understanding the effects of wire orientation on band structure, polarization
ratio, and effective masses of semiconductor nanowires. Band energies over entire Brillouin zone are deter-
mined, and are found to exhibit different characteristics for three types of wires in terms of band dispersion and
the location of orbital energy. A pronounced dispersion hump is revealed to exist in the lowest conduction band
for the �001� and �111� wires, but not for the �101� wires. On the other hand, the �001� and �111� wires are
shown to have very different orbital energy for the top valence state at the zone boundary X point—being
−6.8 eV in the former and −6.2 eV in the latter. These differences provide specific and useful suggestion to
encourage experimental determination of the band structure in InP nanowires. As another key result, we study
the polarization ratio in wires of different orientations. Our calculations show that, given the same lateral size,
the �111� wires yield the highest polarization ratio as compared to wires along the other two directions, while
simultaneously possessing larger band-edge photoluminescence transition intensity. The �111� wires are thus
suggested to be better suitable for optical device applications. Interestingly, we also found that polarization
ratio displays a different size dependence than transition intensity does. More specifically, the polarization ratio
is predicted to increase with the decreasing size, which is opposite to the behavior as exhibited by the optical
transition intensity. The polarization ratios in the �101� and �111� wires of 11.7 Å diameter are shown to
approach the limit of 100%. In addition to polarization ratio, we further determine the electron and hole masses
for wires of different crystallographic axes. For the �101� and �111� wires, the hole masses are revealed to be
�0.25, which are markedly smaller than the values ��1.0� along the same direction in bulk. This result
demonstrates an interesting possibility of obtaining in nanowires a high hole mobility that is not available in
bulk. An explanation for the anomaly in the hole mass is suggested and is associated with the existence of an
electronic band transition.
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I. INTRODUCTIONS

Semiconductor wires with lateral size on the nanometer
scale are of obvious importance for the eventual develop-
ment of logic nanocircuits1–4 and semiconductor nanowire
lasers,5,6 as well as for the generation of photo induced cur-
rent in photodetector devices,7 which explains the need of
understanding their electronic and optical properties. With
respect to three dimensionally confined nanoparticles, nano-
wires �NW� are better suitable for the purpose of these ap-
plications, since �1� the existence of a large conductivity
upon doping along the longitudinal wire axis allows carriers
easy to transmit, and meanwhile, �2� quantum confinement
along the lateral directions offers property tunability as well
as efficiency enhancement. Nevertheless, theoretical studies
and understanding on nanowires are much less than those on
nanodots.8–19

One additional and possibly interesting degree of
freedom—which exists in wires but not prominently in nano-
particles, and may potentially be useful in modifying the
properties of wires—is the crystallographic orientation of the
wire axis. Different wires, with an equal diameter and yet
formed along different axes �for instance, along the �111� or
�101� directions of the zinc-blende structure�, may show dis-
tinctive traits on band-edge wave function symmetry, lumi-
nescence wavelength, and/or transition intensity. It may thus
be likely that only some wires along a certain orientation, but
not others, can lead to preferable properties.

Another special property in NWs concerns the polariza-
tion ratio associated with optical absorption or emission. Dif-
ferent from photoluminescence �or absorption� intensity, po-
larization ratio often offers considerably higher resolution
contrast and sensitivity,20,21 thereby being a more preferable
quantity for use in sensors and optical communication. Re-
cently, highly polarized luminescence, with a giant polariza-
tion ratio as high as �95%, was reported in single InP free-
standing nanowires.7 The observed strong polarity was
explained in terms of dielectric confinement, in which a
smaller dielectric susceptibility of the environment surround-
ing nanowires allows the electric field of excitation laser to
penetrate effectively into the wires only when the field is
polarized along the wire axis.

Here it is useful to point out that the dielectric confine-
ment model depends little on the explicit electronic structure
of wires, and is more an extrinsic mechanism than an intrin-
sic one. Another mechanism that is able to cause a strong
polarization of absorption involves the intrinsic electronic
states of each individual wire. More specifically, when the
dipole matrix elements between band-edge states show sig-
nificant dependence on the polarization direction of the ex-
citation electric field, the polarity of absorption occurs. This
mechanism was originally proposed and demonstrated in
Refs. 13–15 for embedded semiconductor quantum wires as
a result of confinement induced heavy-hole–light-hole mix-
ing, and was later examined in Refs. 16–18 for free-standing
wires. The second mechanism could reveal more insight in
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terms of understanding the microscopic electronic properties
in semiconductor nanowires. In previous studies of polariza-
tion ratio for free-standing nanowires,17,18 only the �111�
wires were investigated using tight-binding or k · p theory.
Our concern here centers on how a change in the crystallo-
graphic axis of wire may affect the optical polarization ratio.
The answer to this question may tell us whether it is possible
to improve the polarization ratio by engineering the orienta-
tion of nanowire. Since the energy separation between heavy
hole and light hole �thus their coupling� depends on the wire
orientation, the polarization ratio in wires of different crys-
tallographic axes may thus vary.

A third special property of semiconductor nanowires is
electron and/or hole effective mass, which determines carrier
mobility and performance speed of nanowire devices. As a
question of particular relevance, one may like to know
whether it is possible to obtain in nanowires an �electron or
hole� effective mass that is considerably smaller than in bulk,
assuming that carrier moves along the same crystallographic
direction in both systems. If this turns out to be feasible, it
may lead to faster nanodevice performance that is not avail-
able in bulk. Previous studies show that this is indeed pos-
sible in strained quantum wells, because heavy hole and light
hole couple differently with strain.22,23 However, there is no
strain in free-standing nanowires, and further, electronic
structure in wires is generally different from in quantum
wells. This explains why obtaining a small effective mass in
nanowires is particularly interesting. Another question rel-
evant to our present study is the relative carrier mass in
nanowires of different crystallographic axes. For most III-V
bulk materials, the effective mass of hole is known to be
much smaller along the �001� direction than along the �101�
or �111� directions.24 Does this trend and knowledge apply to
nanowires? In other words, can we reasonably assume that
the �001� wires remain to have a much smaller mass and are
thus better suitable for achieving fast device performance
than the wires along two other directions? Finally, to gain a
better understanding of effective mass in nanowires, one may
also wonder whether it is possible to seek a general rule that
governs the magnitude of effective mass in these nanostruc-
tures. This rule, if available, may be of some value in assist-
ing the analysis and design of carrier mobility in semicon-
ductor nanowires.

In this paper we intend to address the above questions that
could be useful towards a better and more comprehensive
understanding of semiconductor nanowires, by performing
pseudopotential studies of InP wires grown along different
crystallographic axes and of different sizes. Our results show
that varying crystallographic axis indeed is able to introduce
considerable difference to optical transition intensity, polar-
ization ratio, and carrier effective mass in nanowires, thereby
offering another possible route to engineer their properties in
addition to varying size and/or dimensionality. More specifi-
cally, we find that the �111� wires, as compared to wires
along other directions, are capable of yielding both stronger
band-edge optical intensity and higher polarization ratio as
the size of wire becomes smaller. Our study further reveals
that, for a given mobility direction, effective mass in nano-
wires can be markedly smaller than in bulks, which provides
a feasibility and useful theoretical support to encourage ex-

perimental design of seeking faster performance in nanowire
circuits. Though reduced mass is possible both in strained
quantum wells22,23 and in free-standing nanowires, we found
that they result from different origins. Moreover, we demon-
strate that the observed strong polarity in InP nanowires can
be explained by intrinsic electronic properties. Polarization
ratio in nanowires is further shown to depend on wire diam-
eter in an opposite fashion as compared to transition inten-
sity. Some of our results turn out to be rather unexpected, for
instance, the relative trend of effective mass in bulks cannot
be straightforwardly applied to the nanowires. We hope that
the current study can add some useful knowledge on semi-
conductor nanowires, in addition to those existing in litera-
ture.

II. THEORETICAL METHODS

To describe the band structure of semiconductor wires,
one would ideally prefer a direct first-principles density
functional theory �DFT�,25 which allows one to take into
account the charge redistribution occurring both inside and at
the surfaces of nanostructures. One may further prefer to
perform quasiparticle calculations26 so that the theoretical
results of optical excitation can be directly compared with
experimental measurements. On the other hand, the compu-
tation of direct first-principles approaches is generally very
time consuming, which limits the application only to dots or
wires of small size.8,9,11,27 Furthermore, for some materials
such as InAs or InSb, spin-orbit coupling needs to be con-
sidered.

Alternative approaches take advantage of the fact that a
majority of experiments have been performed on nanostruc-
tures that are passivated by organic capping materials. �Also,
these passivated nanoparticles or wires are technologically
more useful by possessing properties of better quality.� The
passivation electrostatically and/or chemically saturates the
dangling bonds at the surface, and removes the defect states
away from the fundamental band edge via forming bonding
and antibonding states. In fully passivated dots or wires,
many measured properties are thus mainly “bulklike” in the
sense that they originate from the spatial interior of the struc-
tures and subject little to surface conditions. These bulklike
properties are attracting predominant attention since they are
intrinsic and can be effectively controlled by varying size.
Surface effects in semiconductor nanostructures, while inter-
esting, vary from sample to sample, however.

For fully passivated semiconductor nanostructures, alter-
native approaches to determine their electronic structure in-
clude charge patching method,10 LCAO tight-binding,28–30

pseudopotentials,31,32 or multiband k · p theory.12,16,33 Here
we determine the band structure and related properties of
nanowires using first-principles derived nonlocal screened
atomic pseudopotentials �SAP�.34 Unlike bare atomic
pseudopotentials,35 SAP takes into account the charge self-
consistency due to formation of chemical bonds �i.e., the
screening effects� in solids, and are derived and parameter-
ized from direct first-principles density functional calcula-
tions on bulk semiconductors of different crystal structures
and different cell volumes �thus being transferable�.34 Obvi-

DILEEP KARANTH AND HUAXIANG FU PHYSICAL REVIEW B 74, 155312 �2006�

155312-2



ously, these pseudopotentials thus derived inherit the prob-
lem of first-principles local density-functional approximation
�LDA� and underestimate the excitation gap. To correct the
LDA band gap, these atomic pseudopotentials are then ad-
justed to reproduce the experimental or quasiparticle excita-
tion gap; it was demonstrated that a small variation of the
screened atomic potential near the nuclear core is sufficient
to make the gap correction, while keeping wave functions
nearly unchanged.34 In addition to corrected band gap, the
SAPs also generate reliable electron and hole effective
masses that are close to experimental values. Compared to
tight-binding method or empirical pseudopotential, screened
pseudopotentials were shown to be able to reproduce accu-
rately the DFT single-particle wave functions,34 thus better
suitable for determining transition matrix and optical proper-
ties. Compared to k · p theory which is valid near the zone
center, the SAP method yields accurate bulk band dispersion
over the entire Brillouin zone. The details of deriving SAP
for InP as well as demonstration of the accuracy of the po-
tentials were given in Ref. 34.

Electronic structure �including orbital energies and wave-
functions of individual electron states� in quantum wires is
determined by directly solving the Schrödinger equation
�− 1

2�2+V�r���i�r�=Ei�i�r� for systems with thousands of
atoms, using a similar folded Hamiltonian technique as de-
scribed in Ref. 36, but with spin-orbit interaction included in
the Hamiltonian in the present study.37 Wave functions �i�r�
are expanded using plane waves as bases; the potential V�r�
is constructed as a superposition of the SAP pseudopotentials
of all atoms in the nanostructures. Surfaces of nanowires are
passivated by hydrogenlike atoms.34 Matrix elements of op-
tical transitions are calculated using realistic wave functions
obtained from the Schrödinger equation.

III. RESULTS AND DISCUSSIONS

It is practically difficult to study nanowires with all pos-
sible axis orientations. Here we consider three types of InP
wires with their axes grown respectively along the crystallo-
graphic �001�, �101�, and �111� directions of the zinc-blende
structure as an example, hoping that these studies can yield
some general conclusions that are also useful for other direc-
tions. These three directions are chosen since the growth of
wires is more likely to occur along the axis of high symme-
try. For each type of wires, we perform calculations for four
different lateral sizes, with diameter D equal to 11.7, 23.3,
35.0, and 46.6 Å.

Band structure of different wires. Figures 1–3 depict the
calculated band structure for differently oriented wires of
different sizes. For the �001� wires �Fig. 1�, we notice the
following conclusions. �1� Three wires of larger diameter
have a direct band gap at �, thereby suitable for lasering or
other optical applications. However, the smallest D=11.7 Å
�001� wire is shown to have an indirect band gap, in which
the lowest conduction band is rather flat with its minimum
located at non-�. �2� For InP wires in the size range of
23.3–46.6 Å, the valence bands are rather parabolic over the
Brillouin zone, but the conduction bands are found to exhibit
a pronounced hump. The hump is predicted to locate at

khump�0.22�
a , where a=5.83 Å is the lattice constant of bulk

InP, for the D=46.6 Å wire. The cusp point in band disper-
sion is of interest, since it generates singularity in density of
states and can be further used to study interstate coupling
due to band crossing. By use of wave function projection, the
electron states at the cusp point are found to have a similar
character as the lowest two conduction states in bulk InP at
the k point located near the midway between � and X. The
energy difference between the cusp point at khump and the
conduction band minimum �CBM� at � is calculated to be
0.7 eV in the D=46.6 Å wire. Based on this large energy
difference, we suggest that inverse photoemission experi-
ments may be able to detect the location of this hump and its
energy. �3� For two largest wires considered �D=35.0 and
46.6 Å�, the formation of well separated subbands in the
conduction states near � is evident, which could be utilized
for the purpose of making infrared detectors. The energy
difference between two lowest subbands at � is calculated to
be 0.28 eV in the D=46.6 Å wire. �4� The lowest conduction
state at the zone-boundary X point �k=0.5 in Fig. 1� is found
to show a sizable dependence on the wire diameter, varying
from −3.51 eV in the D=23.3 Å wire to −3.83 eV in the D
=46.6 Å wire. In fact, this 0.32 eV confinement shift for the
CBM at X turns out to be significant and comparable with
that for the CBM at � �0.39 eV� in the same size range.
While most studies focus on the confinement energy at zone
center, size effect on the electronic states at the zone bound-
ary is less documented and understood, however. The large
conduction-state confinement energy at X can be explained
by the band dispersion of bulk InP. In fact, the bulk disper-
sion of the lowest conduction band along the X-W direction
is steep for InP,34 which causes the large energy shift of the
X-like conduction state in nanowires. �5� In a notable con-
trast with the conduction state, examination of the highest
valence energy at X point in Fig. 1 reveals that it is located
near −6.8 eV for three large �001� wires, showing signifi-
cantly less size dependence.

Compared to the �001� wires, the low-energy conduction
bands of the �101� wires do not exhibit a hump, showing
instead a crossing of two bands that occurs at k�0.25 2�

�2a
for

the D=46.6 Å wire �see Fig. 2�. We attribute this difference
to the band folding effect which is different along the two
crystallographic directions. Furthermore, the highest valence
band at the zone boundary in the D=46.6 Å �101� wire is
determined to be at an energy of −6.2 eV, which is apprecia-
bly different from the counterpart �−6.8 eV� in the �001�
wire of the same size. For the �111� wires �see Fig. 3�, a
hump in the conduction band dispersion is found to exist, as
in the �001� wires. And the hump is located at k�0.3 2�

�3a
for

the D=46.6 Å wire. As with the �101� wires, but unlike the
�001� wires, the highest valence band at the zone-boundary X
point is predicted to have an orbital energy around −6.2 eV
for the D=46.6 Å �111� wire. The considerable difference in
the top valence-band orbital energy at the zone boundary for
differently oriented wires, as revealed by our calculations,
could be examined and confirmed in experiments by use of
photoemission spectroscopy.24

Size dependence of band-edge orbital energies. Energies
of the valence band maximum �VBM� and conduction band
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minimum �CBM� at � are shown in Fig. 4 for each consid-
ered wire. To make our calculation results also useful for
others, we analytically fit our single-particle energies to Ei

=Ebulk+ A

D� , and the resulting A and � parameters are given in
Table I. We find that the single-particle band gaps obtained in
this study generally agree well with the available results
from charge patching method10 and from direct first-
principles calculations.11 For instance, the band-gap shift for
the D=11.7 Å �111� wire with respect to bulk is determined
as 1.69 eV in this study, compared to 1.67 eV in Ref. 10.
This value is also close to 1.73 eV from direct DFT calcula-
tion for a D=13.2 Å �111� wire.11

By combining the results in Fig. 4 and in Table I, most
notable observations are as follows: �1� The VBM energies
of the �101� and �111� wires are very close, not just for small
wires but also for large wires �see Fig. 4�, though, in bulk
InP, the hole effective mass mh

*=2.45 along the �101� direc-
tion is considerably larger than the value of mh

*=1.03 along
the �111� direction �both masses are calculated from our
screened pseudopotentials and agree well with experiments�.

�2� Interestingly, the � scaling exponents of the VBMs are
found to be notably universal ���2.7 with ±5% fluctuation�
for wires of different crystallographic axes, though the A
parameters are different �see Table I�. Similarly, the � values
���1.2� of the wire CBMs show also little orientation de-
pendency. �3� To gain a understanding of how the � value
depends on dimensionality �instead of the orientation of wire
axis�, we have also performed calculations for InP spherical
dots using the same pseudopotentials and passivation, and
determine � to be �1.84 for the VBM and �0.93 for the
CBM. �The A parameter is given in Table I.� This thus dem-
onstrates that the � parameter varies significantly with the
dimensionality.

Polarization ratio in nanowires. Let us first examine the
transition matrix T� Px+ Py + Pz at the zone-center � point,

where Pi= 	
�VBM	P̂i	�CBM�	2 �i=x, y, or z�, its dependence
on the wire diameter, as well as the effect of crystallographic
wire orientation on this quantity. In our study, the z axis is
defined to be along the longitudinal axis of the wire. Figure 5
shows the calculated magnitudes of transition matrix ele-

FIG. 1. Band structure of the �001� wires of different sizes. From left to right correspond to the wire of diameter D=11.7, 23.3, 35.0, and
46.6 Å, respectively. The zone boundary X point is located at k=0.5. The wave vector is in units of 2�

a , where a=5.83 Å is the lattice
constant of bulk InP.
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ments for differently oriented wires. Notably, one sees that,
for each type of wires, the magnitude of the VBM-to-CBM
transition matrix T deceases as the lateral diameter becomes
smaller. This decrease is in difference with the anticipation
that the increasing localization of electron and hole wave
functions in nanostructures may lead to larger magnitude of
transition matrix, as D decreases. Figure 5 further shows
that, for wires of large D, the T magnitude does not depend
in a significant sense on the orientation of the wire axis. In
fact, for the same given diameter D=46.6 Å, the T values of
the �001�, �101�, and �111� wires are comparable and all
close to 0.5. However, as the size decreases, the T magnitude
for the �001� wires is weakened most as compared to two
other types of wires, by declining to 0.35 in the D=23.3 Å
�001� wire �the smaller D=11.7 Å wire has an indirect band
gap�. In contrast, the deterioration of the transition magni-
tude is the least for the �111� wires, and as a result, the D
=23.3 Å �111� wire remains to have a large T value of 0.45.
Our theoretical calculations thus suggest that the �111� wires
may be more suitable for maintaining a sharp band-edge ab-
sorption �for instance, in the application of photodetection�,
particularly when smaller size is needed.

Polarization ratio, defined as P=
Pz−�Px+Py�

Pz+�Px+Py�
, and each com-

ponent Pi are also shown in Fig. 5, and turn out to be even
more interesting. First, for all wires studied �except for the
D=11.7 Å �001� wire of an indirect band gap�, Px and Py are
notably small, but Pz is not. This gives rise to markedly high
polarization ratios in InP nanowires. More specifically, the
optical polarization ratio for the D=11.7 Å �101� or �111�
wire approaches, in a rather remarkable sense, the maximum
limit of 100%. Second, and interestingly, for the �101� and
�111� wires, the polarization ratio is found to be enhanced as
the size decreases, in sharp contrast with the total transition
magnitude T which changes in an opposite fashion and be-
comes weaker with the decreasing size. This result thus dem-
onstrates a very distinctive size dependence between polar-
ization ratio and the magnitude of transition matrix in
semiconductor quantum wires. The higher polarization ratio
in smaller wires also suggests that it is better to utilize this
quantity �rather than the intensity� for the purpose of nano-
wire sensors. The increasing polarization ratio with decreas-
ing size is also true for the �001� wires, except for the indi-
rect D=11.7 Å wire. Furthermore, by contrasting the
transition magnitude and polarization ratio in wires of differ-

FIG. 2. Same as in Fig. 1, but for the �101� wires of different sizes. The wave vector is in units of 2�
�2a

.
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ent crystallographic axes, our calculations show another in-
teresting conclusion, that is, the �111� wires offer both stron-
ger optical intensity and higher polarization ratio for a given
wire diameter, which we hope to be a useful guide when one
engineers the crystallographic axis of nanowires for better
performance.

Our theoretical results thus confirm the orbital-induced
origin,13–18 rather than the dielectric confinement, for the
highly polarized photoluminescence that was observed in
semiconductor nanowires.7 While our pseudopotential calcu-
lations do consider the existence of vacuum environment,
this inclusion is however not related with the dielectric con-
finement. Note that the magnitude of electric field of the
excitation power and the dipole matrix are two independent
quantities in determining the absorption intensity24 �also po-
larization ratio�. The dielectric confinement manifests itself
by affecting the electric field that penetrates into the wire,
while the dipole matrix is determined by the electron wave
functions. The strong polarization ratio, shown in Fig. 5, is
computed using the dipole matrices and thus results from the
specification of electronic states that are intrinsic to nano-
wires. The theoretical polarization ratio of more than 90%, as

found in our calculations, is comparable with the experimen-
tal value of 95%.7

In real experiments, it is likely that intrinsic electron prop-
erties and dielectric confinement both contribute to the ob-
served high polarity of photoluminescence. Identifying cer-
tain observable characteristic difference to further distinguish
these two mechanisms may thus be useful. We would like to
point out that such a difference indeed exists, that is, the size
dependence of the polarization ratio. As the wire diameter
shrinks, the dielectric contrast between the wire and its en-
vironment decreases, since the confinement leads to an en-
larged band gap and thus a smaller dielectric constant for the
wire. As a result, the polarization ratio arising from the di-
electric confinement is to decrease when wire becomes
smaller. On the other hand, and as revealed by our calcula-
tion results in Fig. 5, the polarization ratio arising from the
intrinsic electronic states is to increase as the size becomes
smaller. Experimental measurements on the size dependence
of polarization ratio in nanowires may thus help to show
more insight on these two mechanisms.

It should be pointed out that our transition rate and polar-
ization ratio are calculated without considering the electron-

FIG. 3. Same as in Fig. 1, but for the �111� wires of different sizes. The wave vector is in units of 2�
�3a

.
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hole Coulomb interaction. This approach is likely valid for
strong confinement region since electron states are well sepa-
rated in energy. Although the electron-hole binding also in-
creases as the confinement becomes stronger, this increase is
much smaller as compared to the increase in the single-
particle energy separation. As a consequence, the Coulomb
interaction �as a perturbation� does not mix significantly the
single-particle wave functions in the strong confinement re-
gion. Computing the transition rate by use of single-particle
wave functions is thus a reasonable approximation. We ex-
pect the effect of the wave function mixing due to the
electron-hole interaction to become increasingly important as
the wire size is large, where more sophisticated approach
such as solving the Bethe-Salpeter equation is needed.38

Electron and hole effective masses. One of critical quan-
tities that determine carrier mobility is effective mass. While
carrier mobility in bulk semiconductors is rather well mea-
sured, the mobility in nanowires remains interesting to be
investigated both experimentally and theoretically. Here we

study how the effective mass may vary in nanowires of dif-
ferent orientations and different sizes. It has been known that
one needs to be cautious in determining effective mass when
spin-orbit �SO� coupling is included in the calculation. We
have performed two types of calculations: one with SO in-
cluded, but with the average orbital energy over SO-split
states used to determine the effective mass; another with SO
coupling turned off. Two types of calculations yield similar
effective masses. Here we show in Fig. 6 the results obtained
from the calculations without spin-orbit coupling, for elec-
tron and for hole at the zone center. For electron �Fig. 6�a��,
the mass is found to increase with the decreased diameter,
demonstrating that the effective mass is size dependent. Note
that, while optical band gap in nanostructures has been am-
ply shown to depend considerably on size, the size depen-
dency of the effective mass is however less known and un-
derstood. This dependence suggests that one needs to be

FIG. 4. Energies of �a� the CBM and �b� the VBM at the zone
center as a function of wire diameter, for the �001� wires �squares�,
the �101� wires �circles�, and the �111� wires �triangles�. Symbols
are from direct calculations; lines are analytical fitting results. For
CBM, only the fitting curve for the �101� wires is given for the sake
of clarity.

TABLE I. The A and � parameters resulting from the analytic
fitting of the single-particle energies of our direct pseudopotential
calculations. The A and � values for spherical InP dots are also
given for comparison.

Systems CBM CBM VBM VBM

A � A �

001 wires 35.03 1.2924 −454.21 2.5802

101 wires 22.66 1.1671 −325.38 2.6743

111 wires 23.58 1.2040 −586.43 2.8748

dots 15.10 0.9296 −119.08 1.8443

FIG. 5. Transition matrix T, individual components Pi �i
=x ,y ,z�, and polarization ratio P for InP wires of different crystal-
lographic axes: �a� the �001� wires, �b� the �101� wires, �c� the �111�
wires. T is shown as filled diamonds and solid line, and polarization
ratio as filled squares and dotted line. All quantities are described
using the left vertical axis �of which the scale is in units of
1 /Bohr2�, except the polarization ratio which is described using the
right vertical axis.
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cautious when assuming effective mass to be constant in the-
oretical calculations of semiconductor nanostructures. Our
results �Fig. 6�a�� also show that, for a given size, the �001�
wires have slightly larger electron mass as compared to wires
along two other directions.

The perhaps most striking results on carrier masses in
semiconductor wires concern the hole masses as shown in
Fig. 6�b�. First, the three types of wires show a drastic dif-
ference in the manner of how their hole masses depend on
the wire diameter. For the �001� wires, the calculated hole
mass displays a significant dependence on the size, varying
by a factor of 4 from mh

*=1.6 in the D=11.7 Å wire to mh
*

=0.4 in the largest wire considered. On the other hand, the
hole masses of the �101� and �111� wires are found to be
nearly a constant, which persists down to a very small diam-
eter of 11.7 Å. This predicted size insensitivity of the hole
effective mass is particularly attractive in terms of obtaining
high carrier mobility in nanowire circuits when the size of
wire becomes smaller.

Second, our realistic calculations determine the hole
masses in the �101� and �111� wires to be �0.2, which are
remarkably smaller than the hole effective mass in bulk InP.
More specifically, the hole mass in bulk is calculated to be
2.45 along the �101� direction and 1.03 along the �111� di-
rection, obtained from the same screened pseudopotential as
used in wire calculations. Our results thus demonstrate an
important conclusion, namely, that the carrier masses in
semiconductor wires can be drastically reduced—and conse-
quently, the carrier mobility can be significantly enhanced—
when going from bulk to nanowires. To illustrate more quan-
titatively how the reduction of the hole mass mh

* in nanowires
may affect the carrier transport, we estimate the mobility �h
by recognizing that �h in semiconductor is proportional39 to

	mh
*	−5/2. The ten fold decrease in mh

*, when going from bulk
to the �101� wires, is able to increase the mobility by five
hundred times as holes move along the same �101� direction
in both cases. Our study thus implies that engineering crys-
tallographic orientation is indeed an efficient route that is
able to provide new material properties in semiconductor
nanowires.

The interstate coupling among bulk electron states, which
occurs when forming the wire states, is found to be respon-
sible for the small effective mass in the �101� and �111�
wires. To explain this, we begin by expanding the wire wave
function �q

wire of wave vector q as a linear combination of
bulk wave functions �nk

bulk of band n and wave vector k, i.e.,

�q
wire = �

nk
Cnk�nk

bulk, �1�

where Cnk is the expansion coefficient.37 Neglecting the sur-
face effects �which was shown to be a good approximation
for bulk like states in nanostructures37�, one can obtain the
relationship of orbital energies in nanowire and in bulk as
Eq

wire=�nk	Cnk	2Enk
bulk. Considering that the coefficients Cnk

do not vary, to the first-order perturbation, for two close q’s
that are used to determine the effective mass of wire �but the
bulk k points that contribute in forming the wire states are
changing with q accordingly�, one can determine the effec-
tive mass in wire to be �1/m*�wire=�nk

1
	2 	Cnk	2�k

2Enk
bulk. In

other words, the effective mass of wire depends on the cur-
vature of the bulk dispersion at those k points that contribute
when forming the wire state. Since determining Cnk is time
consuming, we only consider the �001� wire and the �111�
wire of D=35.0 Å as an example. For the �001� wire, this
approach yields a hole mass of 0.50, close to the direct cal-
culation result of 0.52 in Fig. 6�b�. For the D=35.0 Å �111�
wire, the above approach predicts a hole mass of 0.22, as
compared to the value of 0.13 in our direct calculation, and is
found to be indeed much smaller than the bulk effective mass
�1.03� along the �111� direction.

Equation �1� can be further used to explain why the mag-
nitude of transition matrix element declines as the wire be-
comes smaller �as observed in Fig. 5�. For this, let us first
point out the following two facts. �i� In the right side of Eq.
�1� there is a dominant contribution from some specific bulk
k points, as demonstrated previously.40 In fact, if we denote
those k points of dominant contribution as k0, then the mag-
nitude of k0 is related with the D diameter of wire by41

	k0	� 1
D . The transition matrix element in wire can thus be

approximated described by the VBM-to-CBM transition ma-
trix element at k0 in bulk. �ii� We numerically found that, for
bulk Bloch states, the magnitude of the transition matrix el-
ement between the highest valence state and the lowest con-
duction state is at its maximum at the zone center, and de-
clines as wave vector k0 moves away from �. When the wire
diameter decreases, the bulk k0 points in Eq. �1� that contrib-
ute predominantly in forming the band-edge states of the
wire shift away from the center of the bulk Brillouin zone.
This causes the transition matrix element in wire �which can
be approximately described by the counterpart at k0 in bulk�
to decline, which is consistent with the result in Fig. 5.

FIG. 6. �a� Electron and �b� hole effective masses as a function
of wire diameter for InP wires of different crystallographic axes.
For the D=11.7 Å wire along the �001� direction, the electron mass
is calculated to be �10 in magnitude because of the occurrence of
an indirect band gap, and is not shown in the figure.

DILEEP KARANTH AND HUAXIANG FU PHYSICAL REVIEW B 74, 155312 �2006�

155312-8



The unusual hole effective masses in the �101� and �111�
wires give rise to another interesting question, that is, how
effective masses in these wires approach the bulk values as
the wire diameter continues to increase. In fact, it seems in
Fig. 6�b� that the mh

* hole masses from direct calculations, for
the considered size range in our study, do not appear to ap-
proach their bulk counterparts. This is puzzling. We now
show that possible existence of an electronic phase transi-
tion, which occurs for wires of larger diameter, provides an
answer to this question. Let us look at the �111� wires. By
examining the valence band structure of the D=11.7 Å wire
in Fig. 3, we find that the first band and the second �or the
third� band have very different dispersions: the former is
steep with a small hole mass while the latter is flat with a
large mass. These two bands cross at k�0.35 2�

�3a
for the D

=11.7 Å wire. As the diameter of wire increases, the energy
separation between the first and second bands is significantly
reduced as a result of their different size dependence. Mean-
while, the crossing point between these two bands moves
closely to � �e.g., to k�0.1 2�

�3a
in the D=46.6 Å wire�. As

the size further increases, the second band is expected to
continue its upshift faster than the first band, and eventually
becomes the top valence band with its effective mass ap-
proaching the bulk value. Though our computing facility
does not allow us to perform direct calculations for very
large wires, our results of the smaller wires clearly show a
possible trend for the occurrence of the above transition. In
difference with the heavy hole/light hole level exchange in
quantum wells which is mainly caused by lattice mismatch
between well and barrier materials,19,22,23 the level exchange,
as revealed here in free-standing nanowires without strain,
results from size effects which produce different confinement
shifts for different bands.

IV. CONCLUSIONS

We have performed rather systematic pseudopotential cal-
culations on InP nanoscale quantum wires with different
crystallographic axis and with different size. We have studied
the band dispersion, scaling law of orbital energies, size de-
pendence of transition intensity, optical polarization ratio,
and electron/hole effective masses, as well as the influence of
crystallographic axis on these properties. The specific find-
ings that we have obtained from these studies are summa-
rized as follows.

�i� The lowest conduction bands of the �001� and �111�
wires, but not the �101� wires, are revealed to possess a
hump in their dispersions. These humps could be confirmed
by inverse photoemission measurements. Our results further
show the formation of clearly observable subbands in the

conduction states when the diameter of wire ranges from
30 –50 Å. �ii� For all three types of wires studied, the lowest
conduction states at zone-boundary X point are found to have
an appreciable size confinement effect. Meanwhile, the or-
bital energy of the top valence state at the X point is pre-
dicted to depend significantly on the crystallographic axis.
More specifically, for the same diameter D=46.6 Å, the
VBM at X is found to locate near −6.8 eV in the �001� wire,
but near −6.2 eV in the �101� and �111� wires. As a result,
the bandwidth of the highest valence band differs signifi-
cantly in differently oriented wires. �iii� The scaling � expo-
nent is found to be nearly universal, independent of the wire
orientation, despite the fact that the A coefficient and thus the
confinement energy vary with crystallographic axis. Quanti-
tatively, � is determined to be �2.7 for the VBM and �1.2
for the CBM at the zone center �. Furthermore, the � expo-
nent in InP wires is shown to be substantially different from
that in InP dots. In other words, our study explicitly demon-
strates that � is dimensionality dependent. �iv� We find that
the magnitude of the transition matrix element decreases as
the wire diameter becomes smaller. However, and interest-
ingly, polarization ratio in nanowires is found to behave in a
drastically different fashion—it increases with the decreas-
ing size. �v� As size becomes smaller, the magnitude of tran-
sition matrix deteriorates most for the �001� wires, and least
for the �111� wires. The �111� wires are thus more suitable
for optical applications when small size is needed. �vi� A
large polarization ratio of �90% is found to exist in the
�101� wires and in the �111� wires, depending on the wire
diameter. This finding provides another possible mechanism,
other than the dielectric confinement model, to explain the
highly polarized photoluminescence observed in experi-
ments. �vii� In contrast with what is commonly assumed in
the literature, the electron effective mass is found to depend
significantly on the wire diameter. �viii� For the �001� wires,
the calculated hole mass is found to be widely tunable from
1.6 to 0.4 by varying the wire size. However, the hole masses
in the �101� and �111� wires are found to depend little on the
size. �ix� Our calculations demonstrate that, for a given car-
rier mobility direction, it is possible for the hole mass to be
much smaller than that in bulk, and consequently, it is likely
to obtain in nanowires much higher mobility that is not avail-
able in bulk. This unusual small hole mass is found to result
from an interesting electronic band transition that occurs in
nanowires.
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