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We study the differential conductance, spectral density, and magnetization for a quantum dot coupled to two
conducting leads as a function of bias voltage Vds, magnetic field B, and temperature T. The system is modeled
with the Anderson model solved using a spin-dependent interpolative perturbative approximation in the Cou-
lomb repulsion U that conserves the current. For large enough magnetic field, the differential conductance as
a function of bias voltage shows split peaks. This splitting is larger than the corresponding splitting in the
spectral density of states �d���, in agreement with experiment.
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I. INTRODUCTION

Electron transport through nanoscale quantum dots �QDs�
has been a subject of great interest in the last years. A QD
consists of a confined droplet of electrons and it has been
predicted that the system behaves as a single-electron tran-
sistor described by the Anderson model.1,2 Experiments with
one QD in the linear response regime3–6 displayed clearly the
Kondo physics in this almost ideal “one-impurity” system
and confirmed the predictions based on the Anderson
model.1,2,7 The unitary limit of ideal transmittance has been
reached.6 Calculations using the accurate Wilson’s numerical
renormalization group �NRG� have shown a good agreement
with these experiments.8 The effects of a magnetic field and
the possibility to use transport through a QD or a site
coupled to a QD as a spin filter have also been addressed
theoretically,9–12 including NRG results.10

In contrast to the linear response regime, the experimental
situation in which a finite bias voltage between drain and
source Vds is applied,13–18 i.e., the nonequilibrium case, is
much harder to treat theoretically. The most accurate tech-
niques used to study the impurity Anderson and Kondo mod-
els at equilibrium19 cannot be easily extended to the nonequi-
librium situation. The NRG has not been implemented out of
equilibrium. A formalism to generalize exact Bethe ansatz
results for the nonequilibrium case has been proposed
recently,20 but its application to the Kondo model requires
further elaboration. Some results based on integrability but
not exact have been presented.21 Also a Kondo model has
been solved exactly for particular parameters.22 The non-
crossing approximation �NCA�, which has been successfully
used to calculate thermodynamic properties of generalized
Anderson models above or near the Kondo temperature
TK,23–25 has also been used for nonequilibrium situa-
tions.26–28 Unfortunately, at low temperatures this method
fails to fulfill Fermi liquid relations in the equilibrium case,29

and the spectral density presents a spurious peak at the Fermi
level in the presence of a magnetic field B.27 A likely cause
of this peak is given by Moore and Wen, who study the
splitting of the Kondo resonance with B from the Bethe-
ansatz solution at equilibrium.30 Slave-boson mean-field ap-
proximations have been used successfully in the equilibrium
case,12,31–36 but they rely on the minimization of the free
energy, which is not at a minimum in the nonequilibrium

case. Nevertheless, these approximations have been used for
problems out of equilibrium.37,38 A relatively simple but ac-
curate approach based on perturbation theory is the local
moment approach,39–41 but its extension to the nonequilib-
rium case is not trivial because it uses Fermi liquid relations
valid at equilibrium. For the Kondo model, a perturbative
approach in the exchange constant has been used, which is
valid when either Vds or B are much larger than TK.42

Another approximation for the Anderson model is pertur-
bation theory in U / ����, where U is the Coulomb repulsion
and � is the resonant level width.43–46 It can be extended
naturally to the nonequilibrium case using the Keldysh
formalism.47–50 In the equilibrium case, the second order ap-
proximation has been used for several nanoscopic
systems.12,35,51–54 A shortcoming of this method is that it can-
not describe the exponential decrease of TK in the Kondo
regime as U is increased. One way to avoid this problem is to
use renormalized perturbation theory �RPT�.55,56 Another
method to extend the validity of the approximation to larger
values of U is to use an interpolative perturbative approach
�IPA�,57–60 which corrects the second-order result in order to
reproduce exactly the atomic limit U /�→ +�. The IPA has
been shown to describe well the conductance through a QD
for U�8�.52 The results agree with those obtained more
recently using the finite temperature density matrix renor-
malization group method.61 In addition, comparison of the
spin dependent IPA12,53 with exact diagonalization in finite
systems shows very good agreement for U=6.25�.53 Note
that in some experimental situations ��0.15 meV, U
�0.6 meV �U /�=4�,3,5 while in recent nonequilibrium ex-
periments 2��0.33 meV, U�1.2 meV �U /�=7.3�.16 The
extension of perturbation theory in U2 to the nonequilibrium
case has been considered by Hershfield, Davies, and
Wilkins.62 They found that for finite bias voltage Vds, the
current is conserved only in the symmetric Anderson model,
in which the on-site energy at the dot Ed=−U /2+ ��L

+�R� /2, where �L ��R� is the chemical potential at the left
�right� lead. Recent use of perturbation theory in U / ���� for
Vds�0 was limited to the symmetric case, for calculations of
the current noise,63 and other properties including terms of
third and fourth order in U,64–67 and in the particular in pres-
ence of magnetic field B,65,66 motivated by recent exper-
iments.14–16 However, even in the symmetric case, the spin
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current is not conserved by the approximation when Vds�0.
In the Kondo regime, an exact expression for the differential
conductance has been derived using RPT,66 but it is limited
to Vds small in comparison with TK.

There is some controversy concerning the effect of Vds on
the Kondo peak in the spectral density for B=0. Calculations
based on the NCA26–28 and on the equation of motion
method68,69 predict a splitting of the peak. However, this
method has limitations in the Kondo regime, particularly in
the particle-hole symmetric case, for which the Green’s func-
tion is indepedent of temperature.70 Instead, second-order
perturbation theory in U predicts a fading of the peak with
increasing Vds without splitting. It has been suggested that
terms of order U3 and U4 might cause the peak to split.64,65

However, a recent study with an improvement of the higher
order corrections, which reproduces correctly the equilibrium
expressions, indicates that the spectral density retains the
qualitative features of the second-order result.67 Physically,
one might expect that if the dot is hybridized with left and
right leads at chemical potentials �L and �R with matrix
elements VL and VR, respectively, the effective distribution
function fluctuates between that corresponding to �L and �R
�at least if VL ,VR	 ��L−�R�� and no split Kondo peak at the
Fermi level is expected.67 However, as stated above, differ-
ent approximations lead to different results. The experimen-
tal situation is also controversial: a fading of the central peak
in the differential conductance with increasing bias voltage
was reported for a carbon nanotube quantum dot,17 while a
splitting of the Kondo resonance in the spectral density was
observed in a three-terminal quantum ring.18 Since the diam-
eter of the ring is of the order of 500 nm, it might be possible
that to model the system as one effective site connected to
conducting leads is not a good approximation and the space
dependence of the energy distribution function plays an es-
sential role.71

In this work, we generalize the spin dependent IPA, based
on perturbation theory in U up to second order, to the non-
equilibrium case. The problem of the conservation of the
current for each spin is solved by a simple trick. The parti-
tion of the Hamiltonian H=H0+H� into an unperturbed part
H0 and a perturbation H� is in principle arbitrary. In the past,
for example, H0 has been chosen so that the Friedel-Langreth
sum rule72 is satisfied at zero temperature.52,60 Here we also
use the spin dependent version of this rule12,55 to calculate
the spectral density at equilibrium. For finite bias voltage
Vds, we determine H0 asking that the current is conserved for
each spin projection. The formalism is applied to calculate
the differential conductance dI /dVds, spectral density, and
magnetization as a function of bias voltage and magnetic
field B for various temperatures. Our results are compared
with experiment and previous calculations. Recent
measurements14–16 of dI /dVds report results which seem to
disagree with accurate calculations73,74 of the spectral density
at equilibrium for B�0. However, Hewson et al. pointed out
that these experiments should not be interpreted in terms of
the equilibrium Green’s functions.66 In spite of shortcomings
of the self-consistent procedure at small temperatures, when
both Vds and B are small but different from zero, important
conclusions can be drawn from our results.

The paper is organized as follows. In Sec. II the model is
described, the nonequilibrium perturbation formalism is

briefly reviewed, useful expressions are derived, and the gen-
eralization of the IPA to the nonequilibrium situation is pre-
sented. Section III contains the results of the application of
the method to magnetotransport, spectral density, and mag-
netization. Section IV contains a summary and a brief dis-
cussion. Some details of the calculations were moved to the
Appendix.

II. MODEL AND APPROXIMATIONS

A. Hamiltonian

We consider a QD interacting with two conducting leads,
one at the left and one at the right, with chemical potentials
�L and �R, respectively, with �L−�R=eVds. As usual, the
QD is modeled by one effective site with one relevant orbital
with an important on-site Coulomb repulsion U and an on-
site energy Ed controlled by the gate voltage Vg. The Hamil-
tonian is that of an Anderson model, which is split into a
noninteracting part H0 and a perturbation H� as

H = H0 + H�,

H0 = �
k
�

�k
ck
�
† ck
� + �

�

�ef f
� nd� + �

k
�

�Vk
ck
�
† d� + H.c.� ,

H� = �Ed − �ef f
� ��

�

nd� − B�nd↑ − nd↓� + Und↑nd↓. �1�

Here 
=L ,R refers to the left and right leads. The operator
ck
�

† creates an electron in the state with wave vector k and
spin � at the lead 
. Similarly d�

† creates an electron with
spin � at the QD. The number operator nd�=d�

†d�, and B is
the effect of an applied magnetic field on the on-site energy
at the QD for each spin The first term of H0 describes the
leads and the third its hybridization with the QD. H� contains
the dot on-site energy, Zeeman splitting, and Coulomb repul-
sion, respectively. The two constants �ef f

� are arbitrary since
they cancel in H0+H�. However, in our perturbation treat-
ment, the results depend on them and they are determined
self-consistently as described in Sec. II E.

B. Nonequilibrium perturbation theory

We use the notation of Lifshitz and Pitaevskii.48 There are
four different Green’s functions. For the electrons at the dot,
they can be chosen as

Gd�
r �t,t�� = − i�t − t���d��t�d�

†�t�� + d�
†�t��d��t�� ,

Gd�
a �t,t�� = i�t� − t��d��t�d�

†�t�� + d�
†�t��d��t�� ,

Gd�
� �t,t�� = i�d�

†�t��d��t�� ,

Gd�
� �t,t�� = − i�d��t�d�

†�t��� . �2�

The first two are the retarded and advanced Green’s func-
tions, already present in the equilibrium case. Similar
Green’s functions can be constructed involving conduction
electrons. Since obviously Ga−Gr=G�−G�, only three
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Green’s functions are independent, and in the following we
use this relation to eliminate G�. Also, three independent
self-energy functions �r, �a, and �� can be defined, which
allow us to write a matrix Dyson’s equation48

G = g + g�G , �3�

where

G = � 0 Ga

Gr 2G� + Gr − Ga 	 , �4�

g has a similar expression in terms of the corresponding
Green’s functions for the unperturbed Hamiltonian H0, and

� = ��r − �a − 2�� �r

�a 0
	 . �5�

In general, the products in Eq. �3� have to be understood as
convolutions in time and space. However, in this work, in
which we consider the stationary case and perturbation
theory in U up to second order,67 these products become just
ordinary products involving the Fourier transforms in t− t� of
the Green’s functions for the d electrons Gd�

� ��� and the
corresponding self-energies ��

����. In addition, Gd�
a ���

= 
Gd�
r ����* and ��

a���= 
��
r ����*, where the asterisk denotes

complex conjugation. Therefore, our task reduces to find
suitable approximations for ��

r ��� and ��
����.

After doing the matrix product in Eq. �3�, from the entries
�1,2� and �2,1� one obtains


Gd�
r ����−1 = 
gd�

r ����−1 − ��
r ��� , �6�

and its complex conjugate. After some algebra and using
previous equations, the remaining equation 
from the entry
�2,2�� can be written in the form

Gd�
� ��� = �Gd�

r ����2� gd�
� ���

�gd�
r ����2

− ��
����	 . �7�

The noninteracting Green’s functions can be obtained eas-
ily from the equations of motion50 using H0:


gd�
r ����−1 = � − �ef f

� − �




E
��� − i�
���� ,

gd�
� ��� = 2i�gd�

r ����2�



�
���f�� − �
� , �8�

where f��� is the Fermi function and E
, �
 for leads 

=L ,R, are the real and imaginary parts of the sum

�
k

�Vk
�2

� − �k
 + i�
= E
��� − i�
��� , �9�

with � a positive infinitesimal.
We approximate the retarded self-energy as

��
r ��� = Ed

� − �ef f
� + U�nd�̄� + ��int

r2 ��� , �10�

where Ed
↑=Ed−B, Ed

↓=Ed+B, and �̄ means −�. The last term
is an interpolative expression based on the correction of or-
der U2, as described in Sec. II D. The remaining terms would
correspond to the first order correction in H� if �nd�̄� were

evaluated with H0. However, �nd�̄� is evaluated self-
consistently using

�nd�� =
− i

2�
� d�Gd�

� ��� , �11�

and this is equivalent to a partial summation of an infinite
series of diagrams.65

The correction for ��
���� of first order in H� vanishes. We

approximate ��
���� by an expression ��int

� ��� based on the
second order term ��

2����, also described in Sec. II D.
The diagrams for the corrections to the self-energy of sec-

ond order in U are drawn in Ref. 48. In terms of the inde-
pendent unperturbed Green’s functions the expressions are

�↑
r2��� = U2� d�1

2�
� d�2

2�

g↑

r��1�g↓
r��2�g↓

���1 + �2 − ��

+ g↑
r��1�g↓

���2�g↓
���1 + �2 − ��

+ g↑
���1�g↓

r��2�g↓
���1 + �2 − ��

+ g↑
���1�g↓

���2�g↓
a��1 + �2 − ��� , �12�

�↑
�2��� = − U2� d�1

2�
� d�2

2�

� g↑
���1�g↓

���2�g↓
���1 + �2 − �� , �13�

and the same interchanging spin up and down, with g�
����

=g�
����+2 Im g�

r ���. It can be shown that these expressions
are equivalent to those given by Hershfield et al.62 These
integrals which have the form of convolutions in frequency
can be calculated conveniently using fast Fourier transform
to the time representation.46,75 For the case of constant E
���
and �
���, it is more convenient to evaluate one of the in-
tegrals analytically, as shown in the Appendix.

Although it is not convenient for the numerical evalua-
tion, it is interesting to express the above self-energy correc-
tions in terms of the unperturbed spectral density of states at
the dot �d�

0 ���=−Im gd�
r ��� /�. In terms of this density

gd�
r ��� =� d�

�d�
0 ���

� − � + i�
,

gd�
� ��� = 2i��d�

0 ��� f̃��� , �14�

where f̃��� is a weighted distribution function of the Fermi
functions at the two leads:

f̃��� =

�



�
���f�� − �
�

�



�
���
. �15�

Replacing Eqs. �14� in Eqs. �12� and �13� we obtain after
some algebra

�↑
r2��� = U2� d�1d�2d�3

�d↑
0 ��1��d↓

0 ��2��d↓
0 ��3�

� + �3 − �1 − �2 + i�

1 − f̃��1��

�
1 − f̃��2�� f̃��3� + f̃��1� f̃��2�
1 − f̃��3��� , �16�

NONEQUILIBRIUM MAGNETOTRANSPORT THROUGH A… PHYSICAL REVIEW B 74, 155125 �2006�

155125-3



�↑
�2��� = − 2i�U2� d�1d�2�d↑

0 ��1��d↓
0 ��2��d↓

0 ��1 + �2 − ��

� f̃��1� f̃��2�
1 − f̃��1 + �2 − ��� . �17�

At equilibrium �L=�R. Then f̃��� becomes the usual distri-
bution function and ��

r2��� coincides with the result of ordi-
nary perturbation theory. Equations �16� and �17� are used in
Sec. II D to construct the corresponding interpolating expres-
sions ��int

r2 ��� and ��int
� ���.

C. The current

Following Meir and Wingreen,76 the current with spin �
flowing between the left lead and the dot is

jL� =
2ie

h
� d��L���
2if�� − �L�Im Gd�

r ��� + Gd�
� ���� .

�18�

Similarly, the current with spin � flowing between the dot
and the right lead is

jR� = −
2ie

h
� d��R���
2if�� − �R�Im Gd�

r ��� + Gd�
� ���� .

�19�

Of course, since the current is conserved one should have

jL� = jR�, �20�

but perturbation theory does not satisfy this equality for ge-
neric values of the parameters.62 In this work we determine
�ef f

� imposing Eqs. �20�.

D. The interpolative perturbative approach (IPA)

Extending previous ideas,57–60 we want to replace the
second-order contributions to the self-energies ��

r2��� and
��

�2���, by other ones ��int
r2 ��� and ��int

� ���, which coincide
with the previous ones to order U2 for small U, but also
reproduce the high frequency and atomic limits. For the sake
of clarity in the exposition we choose �=↑. The final results
are also valid interchanging spin up and down.

We propose60

�↑int
r2 ��� =

A1�↑
r2���

1 − A2�↑
r2���

, �21�

where A1 is determined so that �↑int
r2 ��� reproduces the lead-

ing behavior at high frequencies, and afterwards A2 is deter-
mined to reproduce the exact result in the atomic limit
�
��� /U→0.

Up to order 1 /�, the exact self-energy is determined by
the first and second moments of the spectral density of d
states �d����, which can be evaluated independently of
�d���� using particular commutators.77 Proceeding as in the
equilibrium case,60 allowing dependence on spin,12,53 and us-
ing Eqs. �6� and �10�, one obtains that the correct leading
behavior of the retarded second-order self-energy is

�↑int
r2 ��� = �nd↓��1 − �nd↓��U2�−1 + O��−2� . �22�

For �→�, the integrals over �i in Eq. �16� decouple and
then

�↑
r2��� = �nd↓

0 ��1 − �nd↓
0 ��U2�−1 + O��−2� , �23�

where �nd�
0 �= �−i /2���d�gd�

� ��� is the expectation value of
nd� calculated using the noninteracting lesser Green’s func-
tion 
see Eq. �14��. From the above equations, one sees that
choosing

A1 = �nd↓��1 − �nd↓��/
�nd↓
0 ��1 − �nd↓

0 ��� , �24�

the moments of �d���� up to the second one are reproduced
exactly.

In the atomic limit, it can be easily verified using equa-
tions of motion50 that the exact retarded Green’s function is

Gd↑
r,at��� =

1 − �nd↓�
� − Ed

↑ + i�
+

�nd↓�
� − Ed

↑ − U + i�
. �25�

From Eqs. �6� and �10�, this implies

�↑int
r2,at��� =

�nd↓��1 − �nd↓��U2

� − Ed
↑ − �1 − �nd↓��U + i�

. �26�

The usual contribution in U2 to the retarded self-energy can
be calculated easily in the atomic limit using Eq. �16� be-
cause the noninteracting spectral densities �d�

0 ��� become
delta functions. The result can be written in the form

�↑
r2,at��� =

�nd↓
0 ��1 − �nd↓

0 ��U2

� − �ef f
↑ + i�

. �27�

From Eqs. �21�, �24�, �26�, and �27�, the coefficient A2 is
determined. The final result is

�↑int
r2 ���

=
�nd↓��1 − �nd↓���↑

r2���
�nd↓

0 ��1 − �nd↓
0 �� + 
�ef f

↑ − Ed
↑ − �1 − �nd↓��U�
�↑

r2���/U2�
.

�28�

This result has the same form as in the spin dependent situ-
ation in equilibrium.12,53 However, the expectation values are
calculated with distribution functions out of equilibrium.

From the equations of motion in the atomic limit �see Sec.
III of Ref. 50�, one obtains that the lesser Green’s function
for Vk
=0 is the sum of two delta functions Gd↑

�,at���
= ia���−Ed

↑�+ ib���−Ed
↑−U�, where a and b are two real

unknown constants. Using Eq. �25�, we can write Gd↑
�,at���

=−2iy���Im Gd↑
r,at���, where the function y��� is unknown.

Electron-hole symmetry in the symmetric Anderson model
imposes that y�−��=1−y���. At equilibrium, �L=�R=�
and it can be shown from their definitions 
Eqs. �2��76 that
y���= f��−��. Out of equilibrium, y��� is ill-defined at
Vk
=0, since the dot is disconnected to the leads, while even
for small nonzero Vk
 the problem is not trivial. In the gen-

eral case, we assume that y���= f̃���, the average distribu-
tion function defined in Eq. �15�. This has the correct limit at
equilibrium or when the limit Vk
→0 is taken for one of the
leads first and then for the other. Using this choice, Eqs.
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�6�–�8� imply for the lesser self-energy in the atomic limit

�↑int
�,at��� = 2i f̃���Im �↑int

r2,at��� . �29�

On the other hand, using Eqs. �8�, �17�, and �27�, we can
write for the second order correction in the same limit

�↑
2�,at��� = 2i f̃���Im �↑

r2,at��� . �30�

From these equations, and taking into account that �↑int
r2 ���

coincides with �↑
r2��� for small U and with �↑

r2,at���, the
simplest interpolative expression for �↑

���� is

�↑int
� ��� =

Im �↑int
r2 ���

Im �↑
r2���

�↑
2���� , �31�

when Im �↑
r2����0, and zero otherwise. Note that if

Im �↑
r2���=0, also �↑

2����=0, as can be seen from Eqs. �16�
and �17�.

E. The self-consistency problem

Equation �28� replaced in Eq. �10� and the same inter-
changing ↑ and ↓ define the retarded self-energies. Similarly
Eq. �31� and the same for spin down are the lesser self-
energies used. The expressions for ��

r2��� and ��
2���� for

constant �
 are given in the Appendix. The self-energies
replaced in Eqs. �6�–�8� give the Green’s functions for the
interacting system that depend in general on four unknown
quantities: �ef f

� and �nd��. They are determined by the self-
consistent solution of Eqs. �11� and �20�. The resulting val-
ues of �ef f

� do not have any particular physical meaning.
In the present work, we present results for the symmetric

Anderson model, Ed=−U /2, �L=−�R=eVds /2, �L=�R inde-
pendent of energy, in the presence of a magnetic field B. In
this case, due to electron-hole symmetry �ef f

� =−�ef f
�̄ and jL�

= jR�̄. This reduces the problem to two self-consistent equa-
tions with two unknowns.

Unfortunately, for small temperature T, small nonzero Vds
and small nonzero B, there were instabilitities in the numeri-
cal algorithm used. Also in some regions no solution could
be found, while in other cases the solution jumped to another
value. Therefore our results should be regarded as comple-
mentary to those obtained using renormalized perturbation
theory �RPT�, which correspond to T=0 and small Vds.

66 We
have tried an alternative approach, relaxing the condition of
conservation of current and fixing �ef f

� either at the value that
satisfies the Friedel-Langreth sum rule �see below� or �ef f

�

=0. In the former case, the solution of Eqs. �11� for �nd�� was
lost for very small Vds, while in the second, the peak in the
differential conductance dI /dVds was already split for very
small values of B �of the order of TK /30� in contradiction
with the results of RPT. Therefore these alternatives were
abandoned.

In general, we have started from the solution for large Vds
�with small reasonable ��ef f

� ��, which was easy to find, and
used it as an initial guess for lower Vds. The procedure was
repeated until reaching a small nonzero value of Vds or some
instability.

For Vds=0, the problem is ill-posed since the current is
conserved for any �ef f

� . Also the first derivative of jL�− jR�

with respect to Vds vanishes and the second is very small for
any �ef f

� . For Vds=T=0, we have calculated the spectral den-
sity replacing the condition jL�= jR� by the Friedel-Langreth
sum rule72 for nonzero magnetic field, which for constant
�=�R���+�L��� can be written in the form12,55

���d��0� =
�2

�2 + 
�ef f
� + ��

r �0��2 = sin2���nd��� . �32�

III. NUMERICAL RESULTS

In this section we take �R���=�L��� independent of en-
ergy and �=�R+�L=1 as the unit of energy. The origin of
energy ��=0� is set at ��L+�R� /2. We have chosen U=5 for
the numerical analysis because we want U large enough so
that the system is at the Kondo regime, but for U�6.5, the
magnetic susceptibility for Vds=T=0 decreases with increas-
ing U, indicating the failure of the IPA for a quantitative
analysis at small non-zero magnetic field. These parameters
lead to a Kondo temperature TK=0.45 as determined from
the width of the spectral density.

To represent the spectral density for Vds=T=0, we have
determined self-consistently the occupation numbers �nd��
and effective energies �ef f

� using the Friedel-Langreth sum
rule, while to calculate the conductivity at finite Vds we have
replaced this rule by the condition of conservation of current
as described above.

In Fig. 1 we represent the differential conductance
dI /dVds as a function of the applied voltage between drain
and source Vds for zero temperature, and compare it with the
total spectral density of states �d���=�d↑���+�d↓��� for
Vds=0 and �=eVds. The spectral density at B=0 shows a
central peak corresponding to the Kondo peak with a half
width at half maximum TK=0.45 and two shoulders at �
=Ed=−2.5 and �=Ed+U=2.5, which tend to separate with

FIG. 1. �a� Spectral density at the quantum dot as a function of
energy for Vds=0 and �b� differential conductance as a function of
applied voltage, for T=0, and different values of B. We remind the
reader that TK=0.45.
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increasing magnetic field. The central peak shows a splitting
which is tiny for B=0.2 �not shown� and increases with ap-
plied magnetic field. The splitting of the peak is larger than
the Zeeman splitting 2B by a factor �1.5 for B=0.3 and
increases to slightly below 2 ��1.8� for B=1.5. This behav-
ior agrees with previous studies of the spectral density under
an applied magnetic field for large enough U.10,26,30,40,56,65

The differential conductance dI /dVds was obtained by nu-
merical differentiation of the total current I= jL↑+ jL↓= jR↑
+ jR↓. For 0�B�0.5 and 0�Vds�1.5, we could not find a
self-consistent solution of the system of equations, and there-
fore we are not able to describe how the peak in the differ-
ential conductance splits with applied magnetic field at T
=0. As described below, the situation improves with applied
temperature. For B=0, the peak in dI /dVds is narrower than
that of the spectral density with a half width at half maxi-
mum of 0.383. In addition the shoulders are displaced from
the central peak. In general, the split peaks in dI /dVds are
displaced to higher �eVds� when compared with the same
peaks in �d���. Because of the lack of results for small non-
vanishing magnetic field and voltage, our calculations for T
=0 are not enough to establish if this tendency persists for
small splittings.

In Fig. 2, we show the evolution of the spectral density
with applied voltage. For B=0, the Kondo peak decreases
slowly without splitting. For Vds=3 �not shown�, �d��� is flat
near �=0. Further increase in Vds leads to only very small
changes in �d���. For large magnetic field, the changes in
�d��� with Vds are less dramatic. For large Vds the spectral
density for different applied magnetic fields looks similar,
but somewhat flatter and broader for larger B.

In Fig. 3 we show the magnetization m= �nd↑�− �nd↓� as a
function of applied voltage between drain and source for
different values of the magnetic field and temperature. Be-
cause of our problems with the self-consistent solution for
T=0, the values of B�TK=0.45 taken at zero temperature

are large enough so that the Kondo effect is at least partially
destroyed. In this case, an increase in Vds leads to a decrease
in the magnetization which is expected as a consequence of
the flattening of the spectral density of states discussed
above. These curves for T=0 and comparatively large values
of B show an initial slow decrease with increasing applied
voltage, an inflection point for eVds�4B, and an asymptotic
approach to m=0 for large Vds. Instead for small B �see the
curve for B=0.2 and T=3�, the magnetization first increases
and then decreases with applied voltage. This can be inter-
preted in terms of a destruction of the Kondo singlet state for
Vds�2TK, which moves the system towards the local mo-
ment regime, followed by the same effects of flattening of
the spectral density present for higher B.

For temperatures T�TK /2, we have obtained some re-
sults in the problematic region for self-consistency �0�B
�TK and 0�Vds�2TK�. Some of them are shown in Fig. 4.
However, still the value of B at which the splitting of the
central peak takes place could not be identified precisely and
abrupt changes in the solution take place, for example, for
B=T=0.3 and B=T=0.2. In spite of this, these results and
those for T=0.5 shown below suggest a transition from one
maxima to two maxima in the differential conductance
dI /dVds as a function of applied voltage for Bc�0.3

FIG. 2. Spectral density as a function of energy for T=0, differ-
ent values of the applied voltage V=eVds, and �a� B=0, �b� B=1.
Note that TK=0.45.

FIG. 3. Magnetization as a function of the applied voltage for
T=0 �except dashed dot line for which T=2TK /3=0.3� and several
values of B.

FIG. 4. Spectral density a function of energy for Vds=0.1 and
�b� differential conductance as a function of applied voltage for T
=2TK /3=0.3, and different values of B.
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= �2/3�TK. This value is consistent with that obtained by
Hewson and co-workers66 Bc=0.584TK. Comparison of all
split maxima of dI /dVds with the corresponding ones of the
spectral density shows again that all the former lie at values
of �eVds� larger than the corresponding values of ��� for the
maxima of �d���. This provides a natural explanation of the
disagreement of the splitting of the peaks observed in experi-
ments of the differential conductance in the presence of a
magnetic field,14–16 when compared with accurate results of
the spectral density.73 The observed splitting for sufficiently
large field was found to be higher than the corresponding one
of the spectral density.

In Fig. 5, we show the evolution of �d��� with applied
voltage for T=0.3. For B=0.2 and small Vds, the spectral
density displays only one maximum at �=0, although its
components �d↑��� and �d↓��� have maxima at �=−�M and
�=�M, respectively, with �M �0, as shown in Fig. 5�a� for
eVds=0.1. We remind the reader that due to our choice of
parameters, �d↓���=�d↑�−��. As in the case of zero tempera-
ture �Fig. 2�, the changes driven by the applied voltage on
�d���� are smaller for higher magnetic fields.

In Fig. 6 we show dI /dVds as a function of Vds for T
=0.5, and the spectral density �d��� for eVds=0.1. As before
and to facilitate comparison, the abscissa of �d��� is chosen
in such a way that � in Fig. 6�a� is the same as eVds in Fig.
6�b�. The scales are the same as in Fig. 4. For this tempera-
ture, there were no instabilities in the algorithm for self-
consistent equations and we could follow the splitting of the
central Kondo peak. The transition from one maxima to two
in the differential conductance takes place slightly below B
=0.3. With increasing temperature, both the spectral density
and the differential conductance become flatter, and the
changes are more noticeable for small vales of the magnetic
field. Again, the structure of dI /dVds is broader than that of
�d��� and the maxima are more separated from �=0.

IV. SUMMARY AND DISCUSSION

We have generalized the spin-dependent interpolative per-
turbative approximation �IPA�, based on second-order pertur-

bation theory in the Coulomb repulsion U, to the nonequilib-
rium case. This permits one to extend the validity of the
results of nonequilibrium second order perturbation theory in
U / ���� to higher values of U. The effective unperturbed
energy at the dot has been determined self-consistently ask-
ing that the current for each spin is conserved. This allows us
to correct the shortcoming of ordinary perturbation theory in
U / ���� that the spin current is not conserved, except for the
symmetric Anderson model without an applied magnetic
field.

We have applied the method to study the effects of a
magnetic field B on the differential conductance dI /dVds,
starting from the symmetric Anderson model in which the
on-site energy Ed=−U /2, setting the origin of energies at the
average of the chemical potentials, and the resonant level
width for both leads are equal ��L=�R� and independent of
energy. The self-consistent procedure fails for temperatures
below the Kondo temperature TK, when 0�B�TK and 0
�Vds�2TK.

The procedure can in principle be applied to the general
case �without starting from the symmetric case�. Then, one
has to solve four self-consistent equations for the effective
occupations up and down, and the corrresponding effective
unperturbed levels. Similar problems were solved for the
equilibrium case in the presence of a magnetic field12 and to
calculate persistent currennts in a ring with an odd number N
of electrons.53 In the latter case, however, the procedure
failed for large N. In the present case, one might expect more
numerical difficulties after our experience with the simpler
case treated here.

In spite of the above-mentioned failure, our results indi-
cate that the critical magnetic field Bc for the splitting of the
Kondo resonance in dI /dVds as a function of Vds is near and
slightly below �2/3�TK. This is consistent with the results of
renormalized perturbation theory66 which give Bc=0.584TK.

In the region of split peaks, the splitting is larger than the
corresponding one of the spectral density of states �d��� as a
function of �. This provides a natural explanation of why
recent experiments of the differential conductance in the
presence of a large magnetic field give a splitting larger than

FIG. 5. Spectral density as a function of energy for T=2TK /3
=0.3, different values of the applied voltage V=eVds, and �a� B
=0.2, �b� B=0.4. The thin line corresponds to the contribution with
spin up �d↑��� for V=0.1.

FIG. 6. Same as Fig. 4 for T=0.5�TK=0.45.
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two times the Zeeman splitting, as expected for the spectral
density of states of states at equilibrium.14–16 Instead, previ-
ous results using slave bosons obtained a reduction of the
peak splitting.38

The effect of increasing bias voltage on the spectral den-
sity �d��� is just an overall flattening of the energy depen-
dence, without introducing new peaks. This is in agreement
with recent calculations in the symmetric case67 including
terms of third and fourth order in U.

For small applied magnetic field, so that the system is in
the Kondo regime, the magnetization as a function of the
applied bias voltage Vds first increases because due to the
destruction of the Kondo singlet state, the system enters in
the localized moment regime. For Vds	2TK, or B�TK, the
effect of flattening of the spectral density dominates and the
magnetization decreases with increasing Vds.
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APPENDIX: SELF-ENERGIES FOR CONSTANT ��

Usually for problems in QDs, the density of states of the
wide band of conduction electrons at the leads, as well as the
hybridization with the dot Vk
, can be taken as constant
within the narrow energy range of TK or other energy scales
in the problem.52 In this case E
 and �
 become independent
of energy and one of the integrals in Eqs. �12� and �13� can
be done analytically. E
 merely renormalizes Ed.

Decomposing gd�
� ��� as well as products of unperturbed

Green functions as sums of simple fractions with single poles
times Fermi functions, and decomposing products of Fermi
functions using

f�x�f�y� =
1

exp
�x + y�/T� − 1

f�− x� − f�y�� , �A1�

the first integral in frequency is decomposed into a sum of
terms of the form

I0 =� d�f���
1

� − a ± ib
, �A2�

with a and b real. This integral can be evaluated using the
digamma function:78

I0 −� d�f���
1

� ± i�
= ��1

2
+

b ± ia

2�T
	 − ��1

2
	 . �A3�

After a lengthy algebra, the corrections of order U2 to the
self energies become

�↑
r2��� = � U

2�
	2� d�
gd↑

r �� − ��I1�− �� + gd↑
� �� − ��I2���� ,

�↑
�2��� = − � U

2�
	2� d�gd↑

� �� − ��I1��� , �A4�

and the same interchanging spins up and down, with

I1��� =
2

�2 Re� 2i�

��� + 2i���


�A
 + B
̄�
�2

* �− �� − �1
�

+ �A
 + B
�
�2
��� − �1

* ��� ,

I2��� = − �



2i�


��� + 2i��

�1
 + �1


* − �2
��� − �2

* �− ��� ,

�A5�

where �=�L+�R, 
̄=R�L� if 
=L�R�, and �1
 and the func-
tions �2
���, A
���, and B
��� are

�1
 = ��1

2
+

� + i��ef f
↓ − �
�

2�T
	 ,

�2
��� = ��1

2
+

� + i��ef f
↓ − �
 − ��
2�T

	 ,

A
��� =
�


2

exp��/T� − 1
,

B
��� =
�L�R

exp
�� + �
 − �
̄�/T� − 1
. �A6�

In equilibrium, when �L=�R, the expression for �↑
r2��� can

be easily shown to coincide with that given by Horvatić and
Zlatić.44
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