
Enhanced localization of Dyakonov-like surface waves in left-handed materials

L.-C. Crasovan,1 O. Takayama,1 D. Artigas,1,2 S. K. Johansen,1 D. Mihalache,1,3 and L. Torner1,2

1ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
2Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain

3Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele-Bucharest 077125,
Romania

�Received 15 May 2006; revised manuscript received 1 August 2006; published 24 October 2006�

We address the existence and properties of hybrid surface waves forming at interfaces between left-handed
materials and dielectric birefringent media. The existence conditions of such waves are found to be highly
relaxed in comparison to Dyakonov waves existing in right-handed media. We show that left-handed materials
cause the coexistence of several surface solutions, which feature an enhanced degree of localization. Remark-
ably, we find that the hybrid surface modes appear for large areas in the parameter space, a key property in
view of their experimental observation.
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I. INTRODUCTION

The study of surface waves has attracted an increasing
attention in the last decade mainly due to their applications
in sensing, trapping, or imaging based in near-field tech-
niques. The most known example of optical surface waves is
the surface plasmon polariton, a TM-polarized surface wave
forming at the interfaces between metals and dielectrics.1–4

The discovery of photonic crystals in the last decade made
possible the demonstration of optical surface waves in these
materials also.5 The possibility of engineering the effective
permittivity and permeability in metamaterials opens new
perspectives in both linear and nonlinear optics.6–24 Left-
handed �LH� metamaterials, i.e., materials with negative per-
mittivity and permeability as opposed to right-handed �RH�
materials with positive permittivities and permeabilities, fea-
ture highly unusual effects, e.g., negative refraction9–14 and
reversion of the Goos-Hänchen shifts.15 The negative refrac-
tion has already been experimentally confirmed by several
groups, in both photonic crystals and LH materials.13,16,17 In
order to meet the requirements for applications a great effort
has been made in the past few years to find and engineer LH
metamaterials at optical frequencies.19–24 The remarkable
guiding properties of the negative-refractive index media
have also been studied,25–30 showing that, depending on the
material parameters, either TE or TM surface waves can
form at interfaces between LH metamaterials and
dielectrics.25–28 In addition, requirements to excite the sur-
face wave are reduced, and under appropriate conditions, a
TE surface wave can theoretically be excited from an inci-
dent Gaussian beam.29 The existence of the TE-polarized
surface mode is due to the negative permeability of the LH
material whereas the TM-polarized mode exists due to a
negative permittivity �similarly to plasmons forming at
metallic-dielectric interfaces�. Understanding of the physics
of surface waves, in general, and surface waves in metama-
terials, in particular, is of topical importance.

A special type of surface wave was discovered by Dya-
konov in his pioneering work in 1988.31 Dyakonov found
that surface waves can form at interfaces between two di-
electrics provided that one medium is positive birefringent
and that the refractive index of the other isotropic medium
nm lies between the two indices of the birefringent medium

�nob ,neb�, i.e., nob�nm�neb. Dyakonov waves feature
unique properties: they are hybrid waves, i.e., they can not
be decoupled into either TE or TM modes, and they only
exist for a well-defined range of orientations of the optical
axis with respect to the propagation direction, hereafter re-
ferred to as the angular existence window. However, the an-
gular existence window is less than 1° for natural birefrin-
gent materials. This makes the experimental excitation a
challenge, and these surface waves have not yet been experi-
mentally observed. Several strategies have been suggested to
increase the angular existence domain, such as the use
of a film some nanometers thick in-between the two
dielectrics,32–35 the use of photonic metamaterials featuring
huge effective birefringences and tuning capabilities,36 or the
use of isotropic magnetic media.37 Dyakonov surface waves
also form in biaxial birefringent crystals.38

From a practical point view, Dyakonov waves might con-
stitute a lossless complement to plasmons in specific geom-
etries. However, in all the configuration mentioned above
Dyakonov waves are weakly localized,32,36 a property that
limits their interest for potential applications.39–41 Motivated
by the existence of surface waves in LH-RH interfaces and
the fact that the use of photonic crystals as LH material, in
principle, can result in a lossless structure,13 in this paper we
explore and demonstrate the existence of highly localized
Dyakonov-like hybrid surface waves forming at the inter-
faces between LH materials and RH birefringent media. The
high localization is similar to the one that plasmons or sur-
face waves feature at interfaces between isotropic LH and
RH media. In addition, we show that, in contrast to the Dya-
konov surface waves existing in RH media, for some mate-
rial parameters it is possible to have hybrid surfaces waves
without any restriction on the orientation angle of the bire-
fringent material. Finally, we show that for given conditions,
several surface waves can coexist.

The paper is organized as follows. In Sec. II, we put for-
ward the eigenvalue equation for the surface waves at inter-
faces between LH and uniaxial media and introduce the pa-
rameters of the problem. Section III presents the results on
the existence and properties of the hybrid surface waves,
together with a brief comparison with previous studies. In
Sec. IV we present the concluding remarks and discuss the
experimental implications of the present study.
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II. EIGENVALUE EQUATION FOR SURFACE WAVES AT
BIREFRINGENT-METAMATERIAL INTERFACES

We consider a planar interface separating two semi-
infinite media: an uniaxial RH medium and a LH metamate-
rial. We assume that the optical axis of the birefringent ma-
terial lies in the �x ,y�-interface plane, making an angle �
with the propagation direction x. The z axis is perpendic-
ular to the interface. Throughout the paper we assume
harmonic electromagnetic plane waves with the time depen-
dence of all the electric and magnetic field components
being exp�−i�t�. We let �ob ,�eb ,�m, and �b ,�m be the rela-
tive permittivities and permeabilities corresponding to the
ordinary/extraordinary waves in the uniaxial medium and to
the metamaterial, respectively. We will assume equal perme-
abilities for the ordinary and the extraordinary waves. The
corresponding refractive indices are nob,eb=��ob,eb

��b and
nm=��m

��m, respectively. With this definition one gets a
negative value for the metamaterial-refractive index if the
permittivity and permeability are simultaneously negative.
The wave equation for the electric field E= �Ex ,Ey ,Ez�T in a
uniaxial medium writes

�2E + k0
2�̂E = ��� · E� , �1�

where k0 is the vacuum wave number and �̂ the permittivity
tensor that, for the above-mentioned configuration, has only
five nonvanishing elements: �xx=nob

2 sin2 �+neb
2 cos2 �, �yy

=nob
2 cos2 �+neb

2 sin2 �, �xy =�yx= �neb
2 −nob

2 �sin � cos �, and
�zz=nob

2 . The electromagnetic fields are proportional to
exp�−ik0Nx�, where N is the effective refractive index of the
surface wave and is obtained as the eigenvalue solution of
the boundary condition problem. After expressing the elec-
tric and magnetic fields as linear combinations of TE and TM
modes in the metamaterial and as ordinary and extraordinary
modes in the birefringent medium, respectively, we impose
continuity of the tangential components of the electric and
magnetic fields �Ex ,Ey ,Hx ,Hy� at the interface and end up
with the eigenvalue equation for the surface modes.32 As-
suming evanescent waves in the z direction, the eigenvalue
equation reads

nob
2 AeBo sin2 � − �ob

2 AoBe cos2 � = 0, �2�

where we have defined:

Ao,e =
�ob,eb

�b
+

�m

�b
, Bo =

nm
2 �ob,eb

�m
+

nob
2 �m

�b
,

Be =
nm

2 �ob,eb

�m
+

nob
2 �m�eb

�b�ob
,

�m = �N2 − nm
2 �1/2, �ob = �N2 − nob

2 �1/2,

�eb =
neb

2

neb
2 ���

�N2 − neb
2 ����1/2,

neb��� =
nebnob

�nob
2 sin2 � + neb

2 cos2 ��1/2 . �3�

The above eigenvalue equation is general and holds for any
nonlossy surface wave forming at a two-media interface in-
dependently of the refractive index sign. For interfaces be-
tween LH and RH media the solutions will differ consider-
ably from those existing at interfaces between two RH
materials. In contrast, interfaces between two RH or two LH
materials result in the same eigenvalue equation, and there-
fore behave similar properties.

We will restrict ourselves in what follows to the case of
metamaterials having both negative permittivity and negative
permeability. In principle, for a metamaterial with magnetic
permeability described by a Lorentz-like model, this regime
can be reached at a frequency well beyond the magnetic
resonance frequency to avoid loses, but below the magnetic
plasma frequency to preserve the negative magnetic
permeability.7 The negative electric permittivity, described
by a Drude-like model, is reached when the metamaterial is
operated below the plasma frequency.19,26 If one fixes the
absolute values of the refractive indices the solutions of Eq.
�2� depend only on the permeability ratio r=�m /�b and on
the orientation angle �. Moreover, in the limit cases �=0°
and �=90° we see that Eq. �2� reduces to AeBo=0 and
AoBe=0, respectively, corresponding to decoupling of the hy-
brid modes into TE and TM modes.

III. SURFACE WAVE SOLUTIONS

We will now present the results obtained on the existence
and properties of the hybrid surface wave solutions. In order
to find the solutions for each set of parameters �nob,eb,m ,r ,��,
we have numerically solved Eq. �2�. For illustrative purposes
we have throughout the paper fixed the refractive indices of
the positive birefringent medium to nob=1.52, and neb
=1.725, corresponding to the values of an E7 liquid crystal at
632.8 nm. Qualitatively similar results were obtained for
other values of the refractive indices of the birefringent me-
dium. We note that hybrid surface waves were also found to
form at interfaces between LH materials and uniaxial media
with negative birefringence, i.e., neb�nob, as opposed to the
Dyakonov surface waves forming at interfaces between RH
isotropic and positive birefringent materials. A detailed in-
vestigation of this situation is beyond the scope of this paper
and will be reported elsewhere. First, we analyze the exis-
tence conditions of the surface waves. The results appear in
Figs. 1 and 2 as regions where solutions are allowed or for-
bidden. The separation curves correspond to the cutoff values
with N= �nm�, N=neb��� and N→�. Such cutoff conditions
also hold for the conventional Dyakonov surface waves
forming at interfaces between positive birefringent and iso-
tropic media and for ultranarrow sandwich structures that
host hybrid guided modes below the usual cutoff. From the
eigenvalue equation one can directly write down the equa-
tions these cutoff values have to fulfill. For the N= �nm� cutoff
one obtains

nob
2 �eb sin2 � − �ob

3 cos2 � = 0, �4�

whereas at N=neb��� one gets
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nob
2 �m�nm

2 �ob + rnob
2 �m�sin2 � − nm

2 �ob
3 �r�ob + �m�cos2 � = 0.

�5�

Finally, when N→� we can directly express r as

r = − 1, r = −
nm

2 neb���
nob

2 neb

. �6�

Solving Eqs. �4� and �5� for � �or r� by fixing r �or �� one
gets the border ��nm� �or r�nm��. Note that Eq. �4� does not
contain r, therefore only a ��nm� border can be found. To
guide the eye we have plotted these demarcation curves as
colored lines in all the panels of Figs. 1 and 2. Figure 1
corresponds to representations in the ��r � , �nm � �-parameter
plane for different orientations of the optical axis. In addi-
tion, we have included in Fig. 1�a� the equivalent results for
an interface between a LH and an isotropic medium, situa-
tion analyzed elswehere.25–28 This figure clearly shows the
existence of surface waves when at least one of the two
media is a LH metamaterial. This is clearly in contrast with
the case where both media are RH materials, where at least
one of the media must be berefringent in order to obtain
Dyakonov waves. When comparing Fig. 1�a� with figures
corresponding to the limit cases �=0° �Fig. 1�b�� and
�=90° �Fig. 1�f��, the demarcation curves split the parameter
plane into regions where only TE-polarized, only TM-
polarized, or both types of modes coexist, together with the

white regions at which there are no solutions. Note, that in
the case of the interface between a LH and an isotropic
medium TE- and TM-polarized modes cannot coexist.
On the contrary, at interfaces between LH and birefringent
materials they can coexist at both �=0° and �=90°. The
coexisting regions of the parameter plane are shown by the
dark-gray regions in Figs. 1�b�–1�f� and appear at
nob� �nm � � �nobneb�1/2 for �=0° and nob� �nm � �neb for
�=90°. These new regions where both TE and TM surface
waves coexist are consequently linked to the birefringent na-
ture of the medium. Coexistence of two surface modes con-
stitutes a rare, though not unique, situation in physics, e.g.,
coexistence has also been predicted in configurations using
gyrotropic-LH material interfaces.30 When changing the ori-
entations of the optical axis, the surface waves are no longer
purely TE or TM polarized, but hybrid modes. Moving away
from �=0° the cutoff curve corresponding to N=neb��� splits
into two lines �see the arrows in Fig. 1�b� and the demarca-
tion lines in Figs. 1�c�–1�f�� that move away from each other
giving birth to a region in the parameter plane where, for
moderate small orientation angles ���30° �, single solution
surface waves exist only if the absolute value of the relative
permeability �r� is slightly smaller than unity. As the angle
approaches �=90°, new regions where two different hybrid
solutions coexist appear at �r � 	1, while coexisting solutions
at �r � �1 progressively disappear. Overall, we observe that
the coexisting surface waves basically appear inside the
nob� �nm � �neb existence domain where Dyakonov waves in

FIG. 1. �Color online� Exis-
tence domains in the ��r� , �nm��
plane for �a� LH metamaterial-
isotropic interface and for LH
metamaterial-birefringent inter-
faces at �b� �=0°, �c� �=30°, �d�
�=60°, �e� �=75°, and �f� �=90°.
Thick demarcation lines stand for
N=neb��� and N→� �as specified
by the labels close to lines�, re-
spectively. White regions: no
solutions. Light gray and dark
gray regions correspond to single
mode and two-mode regions,
respectively.
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RH materials exist. Only small areas outside this existence
domain at �nm � �nob with �r � �1 break this rule �see Figs.
1�c�–1�e��. Figure 2 shows the existence domains in the
�� , �nm � � parameter plane for fixed values of the relative per-
meability r. In the most part of the existence domain one
surface wave solution exists �see the light-gray regions in all
the panels of Fig. 2�. As �r� increases, the cutoff line moves
towards higher values of �nm� and more surface waves start to
appear, forming isolated regions where two �dark-gray re-
gions� or rarely three �black regions in Fig. 2�e�� solutions
coexist. Note the large angular domains �tens of degrees� and
the range of �nm�, especially at �r � 	1, for which these coex-
isting surface waves appear. This implies that such waves
should be easily excited and observed in configurations with
metamaterials.

In order to illustrate the dependence of the eigenvalue on
the absolute value of the refractive index in the metamaterial,
N��nm � �, some modal diagrams are shown in Fig. 3 for two
representative values of the relative permeability. Figure 3�a�
displays modal regions where two and three modes coexist.
Typically, the branches terminate on either the N=neb���, the
N= �nm�, or the N→� cutoff curve. Moreover, in a region
where two or three solutions coexist, a new cutoff line ap-
pears at points where two of the solutions meet or merge.

When plotting N��nm � �, these points appear as turning points
where the upper branch of the curves turn into the lower
parts. Turning points are a consequence of the intrinsic hy-
brid nature of the surface wave that form at ��0°. However,
at �=90° these characteristic points dissapear, resulting in
the two TE and TM solutions crossing each other �see Fig.
3�b��. We have also followed the evolution of the eigenval-
ues of the surface waves along a constant �nm� in Fig. 2, thus
plotting N���. These dependencies are shown in Figs. 3�c�
and 3�d� for two values of the LH metamaterial refractive
index at relative permeability of r=−1.1 and r=−1.2. They
complement Figs. 3�a� and 3�b� showing in more detail the
existence range for each coexisting solution in terms of the
orientation angle.

The three solutions labeled A, B and C, shown in Fig. 3�a�
and 3�c� coexist for r=−1.1 and nm=−1.63. These solutions
feature significantly different effective refractive indices,
field distributions, and degrees of localization at the inter-
face. We show their corresponding profiles in Figs.
3�e�–3�g�. Among them, solution C features the strongest
localization, i.e., it is confined within half of the wavelength.
This solution corresponds to a branch that ends on the cutoff
line N→�. Solution A, being close to the N= �nm� cutoff, is
the most delocalized, spreading over an interval of ten wave-

FIG. 2. �Color online� Existence domains in
the �� , �nm�� plane for several values of the rela-
tive permeability. �a� �r�=0.8, �b� �r�=0.9, �c�
�r�=1.1, and �d� �r�=1.2. �e� Zoom of panel �c�.
Thick lines stand for N=neb���, N= �nm�, and
N→�, respectively. Gray color scale has the
same meaning as in Fig. 1. Black regions corre-
spond to three-mode solutions.
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lengths. Finally, solution B, which is farther away from the
cutoff, has a degree of localization on the order of the wave-
length. To give a measure of the hybrid nature of the solu-
tions, we plot in Fig. 4 the dependence of the ratio between
the transverse �y� and longitudinal component of the electric
field at the interface in terms of the orientation angle
for different material parameters. Large values of the ratio

= �Ey�z=0� /Ex�z=0�� indicate a TE-dominant wave,
whereas small values �
�1� indicate a TM dominance. We
can see the different TE- or TM-dominant nature of the three
and two coexisting solutions in Figs. 4�a� and 4�b�, respec-

tively. This shows that all regimes, i.e., TE-dominant, TM-
dominant, or hybrid balanced waves, can be met by tuning
the material parameters and the orientation angle of the op-
tical axis.

One of the properties mentioned above, the high degree of
localization at the surface, is an important feature that makes
these surface waves potentially interesting for future appli-
cations. Strong localization appears at both isotropic-LH and
birefringent-LH interfaces, a feature that has not been prop-
erly appreciated to date. Conceptually, this strong localiza-
tion is similar to the one found with surface plasmons.41

FIG. 3. Mode eigenvalue ver-
sus metamaterial refractive index
��a� and �b�� or orientation angle
��c� and �d��. In �a� and �c�
�r�=1.1, whereas in �b� and �d�
�r�=1.2. Labels close to lines indi-
cate orientation angle in degrees.
Horizontal lines in panels �c� and
�d�: N= �nm� cutoffs. �e�–�g� Field
components of the coexisting so-
lutions labeled A–C in panel �a�.
Note the smaller scale in panel �g�
due to the strong confinement of
the field.

FIG. 4. Ratio ��Ey�z=0� /Ex�z=0��� versus ori-
entation angle � for representative values of
metamaterial refractive index. �a� corresponds to
�nm�=1.63 and �r�=1.1; �b� to �nm�=1.65, and �r�
=1.1. Labels A–E correspond to points A–E in 3
�a�–�d�.
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Moreover, it was recently shown that a LH medium slab can
enforce the localization and confinement of the energy at
interfaces.42 In general, any solution corresponding to
N� �neb,m� in Figs. 1 and 2 will correspond to surface waves
confined well below the wavelength limit, since in these situ-
ations, the field decay constants increase approximately lin-
early with N. In order to illustrate this strong localization we
show in Fig. 5�a� the degree of localization, defined as the
surface wave width at 1 /e from the maximum amplitude,
corresponding to Fig. 3�a�. Here we can see that the width
decreases for solutions in the N� �neb,m� branch. An example
of a highly localized surface wave, less than one-tenth of the
wavelength, corresponding to point L in Fig. 3�a�, is shown
in Fig. 5�b�. Note the TM-dominant character of this solu-
tion. When N� �neb,m�, the surface waves become more and
more TM dominant, showing its plasmonlike nature.

As the surface waves are exponentially decaying away
from the interface with no real component of the wave num-
ber along the z direction, energy propagates only in the �x ,y�
plane. It has been shown that at interfaces between isotropic
LH and RH media, the time-averaged Poynting vector of the
surface waves, defined as S= 1

2Re�EH*�, flips its orienta-
tion across the interface.25–28 As our geometry involves a
birefringent medium, one would expect to have a nonzero

walk-off angle between the direction of the propagation of
the energy and the wave vector �assumed to be along the x
axis in our case� and, additionally, sign jumps of the Poyn-
ting vector components across the interface due to the pres-
ence of the negative refractive index metamaterial. We have
calculated the averaged Poynting vector components and the
angle formed by the Poynting vector with the x axis for two
typical coexisting surface waves, and indeed we find that a
walk-off angle exists in both neighboring media. Moreover,
in the metamaterial the walk-off angle is constant at all dis-
tances to the interface, whereas in the birefringent medium
the Poynting vector rotates in a different fashion for the two
considered solutions when moving away from the interface.
The difference in the Poynting vector rotation is due to the
different decay constants and amplitudes featured by the
transverse field components �see Fig. 6� in the two consid-
ered solutions. Finally, another characteristic of these hybrid
surface waves is that the Poynting vector in the close vicinity
of the interface between the two media is not completely
antiparallel as it is for the LH-isotropic interface, i.e., a small
deviation of a few degrees is noted. Note that, as we are
dealing here with surface waves, for these solutions there is
no energy flow perpendicular/accross the interface, thus, the
z component of the time-averaged Poynting vectors is zero.

FIG. 5. �a� Degree of localization � versus
�nm�. Parameters correspond to 3�a�. In �b� the
field components corresponding to the highly lo-
calized solution labeled L in 3�a� are shown.

FIG. 6. �a� Walk-off angle of the time-averaged Poynting vector �the angle the Poynting vector forms with the x-axis� across the interface
for the surface waves corresponding to points D and E in Figs. 3 and 4. Inset shows the time-averaged Poynting vectors for solution D in
the two neighboring media in close proximity of the interface. The guiding lines in the inset stand for the optical axis �OA�, the x axis, and
the direction of the time-averaged Poynting vector in the birefringent media close to the interface, respectively. The transverse components
of the time-averaged Poynting vectors versus z for solution D and E are shown in �b� and �c�, respectively.
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IV. CONCLUSIONS

To summarize, we have studied the existence of surface
waves at the interface between LH metamaterials and bire-
fringent media. We have found that, apart from the solutions
appearing at interfaces between LH and isotropic materials, a
new family of different coexisting solutions exist. Such new
solutions are linked to the birefringent nature of the dielectric
media and result in hybrid surface waves.

We found that different hybrid surface waves solutions
can coexist in groups of two or three for the same governing
parameters. Most of these coexisting solutions appear for LH
refractive indices that fulfill the condition required to obtain
Dyakonov waves nob� �nm � �neb. However, their angular
existence window is significantly larger than the correspond-
ing window for Dyakonov waves forming at the interface

between birefringent and RH media making thus their ex-
perimental observation more accessible. We have shown that
the Poynting vectors in the two neighboring media are not
completely antiparallel and rotate in the birefringent medium
as a function of the distance to the interface. Importantly, we
have shown that, under certain conditions, the surface waves
at LH interfaces exhibit an enhanced degree of localization,
i.e., featuring a localization degree similar to that of plas-
mons.
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