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In this paper we study the concurrence and the block-block entanglement in an S=1/2 spin ladder with
four-spin ring exchange by the exact diagonalization method of finite clusters of spins. The relation between
the global phase diagram and the ground-state entanglement is investigated. It is shown that block-block
entanglement of different block sizes and geometry manifests richer information about the system. We find that
the extremal point of the two-site block-block entanglement on the rung locates a transition point exactly due
to SU�4� symmetry at this point. The scaling behavior of the block-block entanglement is discussed. Our
results suggest that the block-block entanglement can be used as a convenient marker of the quantum phase
transition in some complex spin systems.
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I. INTRODUCTION

Entanglement, as one of the most intriguing feature of
quantum mechanics,1 has become a subject of intense inter-
est in recent years. Besides being recognized as a crucial
resource for quantum computing and quantum information
processing,2,3 it has also provided new perspectives in prob-
lems of various many-body systems. In particular, the en-
tanglement can well characterize the features of the quantum
phase transition �QPT�.4 Many works5–19 have been devoted
to understanding the relation between the QPT and entangle-
ment in different systems. It has been observed that quantum
phase transitions are signaled by critical behaviors of the
concurrence,20 a measure of entanglement for two-qubit sys-
tems, in a number of spin models.5–9 For example, it was
reported that the first derivative of the concurrence diverges
at the transition point in the one-dimensional �1D� transverse
field Ising model,5 while the concurrence shows cusplike be-
havior around the critical point in some 2D and 3D spin
models.7 In addition to the concurrence, the block-block
entanglement,21 which involves more system degrees of free-
dom, was introduced.12–14 Especially in fermionic systems in
which the concurrence is usually not applicable, the block-
block entanglement can also manifest interesting properties,
such as logarithmic divergence in the critical region, in a
certain class of models.13,14

However, most of the previous works on QPT and en-
tanglement were restricted to models with two-body interac-
tions; the models with three- or four-body interactions are
less investigated,22–24 and the connections between entangle-
ment and novel phases brought about by these multispin
interactions25 are still less well understood by people. In fact
a system with multibody interactions is important in both
quantum information theory and condensed matter physics.
It was pointed out that a small cluster of spins with three- or
four-body interactions such as the four-spin ring exchange
could be used for quantum computing.26,27 Moreover, four-
spin ring exchange exists in many physical systems and
plays an important role in understanding the magnetism in
several quantum systems such as solid 3He �Ref. 28� and
Wigner crystals.29 Therefore, it is of importance to study the
properties of the entanglement in those spin systems with
multibody interactions.

In this paper, we consider a two-legged S=1/2 ladder
with additional four-spin ring exchange. The system has a
very rich phase diagram25,30–33 with many exotic phases. We
investigate the concurrence and the block-block entangle-
ment in this system, and try to relate them to the global phase
diagram. The rest of the paper is organized in the following
way. In Sec. II, we introduce the model Hamiltonian and its
phase diagram. In Sec. III, we study the ground-state concur-
rence and discuss its relation to the phase diagram. In Sec.
IV, we show that the two-site block-block entanglement is
exactly either maximal or minimal at a QPT point. In Sec. V,
we show that the scaling behavior and some extremal point
in the block-block entanglement can be used as markers of
QPTs. In the final section, we summarize our results and
draw conclusions.

II. MODEL HAMILTONIAN AND PHASE DIAGRAM

The two-legged S=1/2 spin ladder with ring exchange �as
shown in Fig. 1� is described by the following Hamiltonian:

Ĥ = Jr�
i

Ŝ1,iŜ2,i + Jl�
i

�Ŝ1,iŜ1,i+1 + Ŝ2,iŜ2,i+1�

+ K�
i

�P̂i,i+1 + P̂i,i+1
−1 � , �1�

where i=1, . . . ,N /2, N is the total number of spins, Ŝ1,i �Ŝ2,i�
is the spin-1 /2 operator on the upper �lower� leg at the ith
position, Jl �Jr� is the bilinear exchange constant along the
legs �on the rung�, and K is the coupling constant of the

FIG. 1. Sketch of a spin ladder with ring exchange.
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four-spin cyclic exchange interaction P̂. P̂i,i+1 �P̂i,i+1
−1 � rotates

the four-spin in the ith plaquette clockwise �counterclock-
wise� as shown in Fig. 1, i.e.,

P̂�a b

d c
� = �d a

c b
� and P̂−1�a b

d c
� = �b c

a d
� ,

and they can be decomposed in terms of spin operators in-
volving bilinear and biquadratic terms,

P̂ + P̂−1 =
1

4
+ ŜaŜb + ŜbŜc + ŜcŜd + ŜdŜa + ŜaŜc + ŜbŜd

+ 4��ŜaŜb��ŜcŜd� + �ŜaŜd��ŜbŜc� − �ŜaŜc��ŜbŜd�� .

�2�

Following the convention in Ref. 25, we set Jl=Jr=cos � and
K=sin � in the following calculation.

Previous studies25 suggested a rich phase diagram in the
parameter space of � shown in Fig. 2. There are typically six
phases �regions�: the rung singlet phase, the staggered dimer
phase, the scalar chirality phase, the dominant vector chiral-
ity region, the dominant collinear spin region, and the ferro-
magnetic phase. Squares in Fig. 2 denote first-order phase
transitions, circles denote second-order phase transitions, and
the dashed line indicates a crossover boundary without a
phase transition.

Using the exact diagonalization method, we obtain the
ground-state concurrence and the block-block entanglement
in a spin ladder up to N=12�2 sites with periodical bound-
ary conditions. Although the staggered dimer and scalar
chirality phases are Z2 symmetry-breaking phases with
double degeneracy in the thermodynamic limit, the ground
state is unique for most values of � except for the ferromag-

netic phase in a finite-size system. We select the Sz=0 state
out of the �N+1�-fold degenerate S=N /2 ferromagnetic
states in the following calculation.

III. GROUND-STATE CONCURRENCE

The entanglement between the spins at site i and site j can
be measured by the concurrence.20 Let �ij be the reduced
density matrix, which is obtained by tracing out all degrees
of freedom of spins except those of sites i and j, and �̃ij be
the spin-flipped reduced density matrix of �ij, i.e., �̃= ��y

� �y��*��y � �y�, where �y is the Pauli matrix. The concur-
rence C is given by C=max��1−�2−�3−�4 ,0�, where ��i	
are the square roots of the eigenvalues of the matrix ��̃ in
descending order. C=0 means no entanglement, while C=1
corresponds to the maximum entanglement such as that in
Bell states.

In Fig. 2 we show the ground-state concurrence as a func-
tion of � for an N=12�2 system. In the ferromagnetic
phase, we can see that the concurrence on any two sites is the
same and equals 1 / �N−1�. It vanishes in the thermodynamic
limit �N→��. In the rung singlet phase, we can observe a
rather large concurrence ��
0.7�� between the two spins on
the same rung. This fact is consistent with the picture that the
ground state is approximated by the product state of spin
singlets on the rungs. Similarly, the concurrence of two ad-
jacent spins on the same leg is consistent with the physical
picture of staggered singlets on the leg in the staggered
dimer phase. We notice that the peak of concurrence on the
leg �
0.3� is much smaller than that in the rung singlet
phase �
0.7�. This is because the ground state in the stag-
gered dimer phase is twofold degenerate in the thermody-
namic limit. Then in a finite-size system with periodic
boundary conditions, the ground state is actually a superpo-
sition of these two states; thus the value of the concurrence
on the leg reduces to one-half of the original value. In fact, if
we impose boundary conditions in the same way as in Ref.
34, one of the two degenerate states will be projected out, a
staggered pattern of the leg concurrence appears, and the
value on the dimer leg is nearly 0.6, which is approaching
the 0.7 in the rung singlet phase. In both the scalar chirality
phase and dominant vector chirality phase, the concurrence
of any pair of spin vanishes. However, at the crossover re-
gion between the dominant vector chirality and dominant
collinear spin regions, an unexpected concurrence on the di-
agonal pair appears and its maximal point ��
0.85�� is
roughly the crossover point between the dominant vector
chirality and dominant collinear spin regions.

IV. TWO-SITE ENTANGLEMENT OF THE RUNG AND
THE SU(4) POINT

In this section and the following section, we study the
block-block entanglement of various blocks in this system.
The block-block entanglement is the von Neumann entropy
Ev of a block of spin in the system. Precisely, it is calculated
as

FIG. 2. �Color online� Ground-state concurrence of two spins on
a rung, leg, and diagonal bond as a function of � in an N=12�2
spin ladder with ring exchange. The dashed lines are the boundaries
of different phases. The squares on these lines denote a first-order
phase transition, the black circles denote a second-order transistion,
and the shaded circle indicates a transition between two adjacent
regions.
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Ev�A� = − tr��A log2 �A� , �3�

where A is a set of sites and �A is the corresponding reduced
density matrix. If the whole system is in a pure state, then

Ev�A� = Ev�B� = − tr��B log2 �B� , �4�

where B is the remainder of the system. Then Ev�A� or Ev�B�
describes how much the block A and the rest of the system
are entangled.

Compared to the concurrrence, the block-block entangle-
ment can apply to systems with much higher degrees of free-
dom; however, it is meaningful only when the concerned
state is a pure state. In our calculation of finite-size ladders, it
is found that the ground state is always nondegenerate in the
region −0.40����0.95�. Considering the SU�2� symme-
try of the Hamiltonian, the ground state’s total spin is also
zero in this region.

The term “two-site entanglement” of a rung means that
the von Neumann entropy is calculated from the reduced
density matrix of two spins on the same rung. In Fig. 3 we
show the first derivative of the entanglement as a function of
� for different system sizes. From the figure, we observe that
the first derivative of the entanglement on a rung reaches
zero exactly at �=arctan�1/2�
0.148� which is the QPT
point between the staggered dimer phase and the scalar
chirality phase. We find that this result is independent of
system size. Recently, it was pointed out that at this QPT
point the system restores SU�4� symmetry.31 Precisely speak-
ing, at �c=arctan�1/2�, the Hamiltonian commutes with the
following operator:31

T̂ = �
i

Ŝ1,i · Ŝ2,i. �5�

We will show that the expectation value of T̂ is maximal or
minimal exactly at �=�c due to the above symmetry.

As discussed above, we can assume that the ground state
�	0� is nondegenerate around �c, which implies that �	0� is

also an eigenstate of T̂ at �c; thus we have T̂�	0�=�t�	0� in

which �t is some real number. Then the first derivative of 
T̂�
with � at �c is

d

d�

	0�T̂�	0� = � d	0

d�
�T̂�	0

0

0
� + �0

0
	0

0

0
�T̂�d	0

d�
�

+�	0� dT̂

d�
�	0� �6�

=�t� d	0

d�
��0

0
	0� + �t

*�0

0
	0��d	0

d�
�

+ 0 = �t
d

d�

	0�	0� = 0. �7�

Therefore, the expectation value of T̂ reaches a local
maximum or minimum at �c. Since the ground state has
�kx ,ky�= �0,0�, the system is invariant under translation

along the leg, so 
Ŝ1,i · Ŝ2,i�= 
Ŝ1,j · Ŝ2,j� �for any two sites i and
j in the ladder� is either maximal or minimal at �c.

Next we show that there is one-to-one correspondence

between 
Ŝ1,i · Ŝ2,i� and the two-site entanglement on the rung
in the vicinity of �c. Let �ij be the reduced density matrix of
spins of sites i and j of the ground state. In the basis ��↓↓�,
�↓↑�, �↑↓�, �↑↑�	, �ij has the following form due to the U�1�
symmetry of the ground state in the concerned region
�0.1����0.2��:

�ij =�
u+ 0 0 0

0 w1 z* 0

0 z w2 0

0 0 0 u−
� . �8�

Moreover, in the vicinity of �=�c, the ground state is unique
and its total spin S=0, which implies that the ground state is
also invariant under any rotations. In particular, �ij is invari-
ant under rotation around the x axis:

FIG. 3. �Color online� First derivative of the
two-site entanglement on a rung as a function of
�. Lines of different system sizes cross at the
same point �arctan�1/2� ,0�.
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��i
x + � j

x,�ij� = 0. �9�

From Eq. �9� and the condition tr �=1, we have

u+ = u− =
1 + 2z

4
, w1 = w2 =

1 − 2z

4
, �10�

z = z*, 
Ŝ1,i · Ŝ2,i� = −
3z

2
. �11�

Then the block-block entanglement on the rung Er is

Er = − 3u+ log2 u+ − �w1 − z�log2�w1 − z� . �12�

From the above equations it is clear that this extremal behav-
ior of two-site entanglement on the rung is directly related to
the SU�4� symmetry. It has been dicussed before that sym-
metries related to the QPT enter into entanglement functions
for all system sizes, e.g., one-site entropy in the 1D Hubbard
model at half filling with SO�4� symmetry at the metal-
insulator transition.15

V. SCALING BEHAVIOR OF THE BLOCK-BLOCK
ENTANGLEMENT

In this section, we focus on the scaling behavior of the
block-block entanglement, namely, how the block-block en-
tanglement behaves as the block size changes. Unlike the
case of a one-dimensional chain, the ladder geometry has
provided us many choices of how to select the block’s shape
and how to increase the block size. As shown in Fig. 4, we
choose four different ways to increase the block size.

First, we notice that in the ferromagnetic phase, the value
of the block-block entanglement depends only on the size of
the block. It is independent of the block geometry. This is
because any two sites in this state are essentially equivalent
as we have already seen in Sec. III. In fact, an explicit ex-
pression of block-block entanglement as a function of block
size l can be obtained in the following calculation.

The ferromagnetic Stot
z =�iSi

z=0 state 	FM�Stot
z =0� could

be obtained by applying a lowering operator on 	FM�Stot
z

=N /2� N /2 times:

�13�

where Ŝi
− is the spin lowering operator at site i and N is the

total number of sites. In the basis ��↓↓�, �↓↑�, �↑↓�, �↑↑�	, all
the coefficients of 	FM�Stot

z =0� are the same:
��N /2�!�N /2�! /N!. The matrix element �l�p ,q� can be ob-
tained explicitly:

�l�p,q� =� �N − l

2
�!�N

2
�!�N

2
�!

�N − l

2
− pz�!�N − l

2
+ pz�!�N�!

if pz = qz,

0 if pz � qz.
�

�14�

In the above expression, �l is the reduced density matrix
of the block consisting of l spins �we assume l
N /2�, p and
q are the column and row indices of �l, and pz and qz are the
corresponding Stot

z numbers.
After diagonalizing this matrix, there are only l+1 non-

zero eigenvalues �pz
with pz=−l /2 ,−l /2+1, . . . , l /2. Then

the block-block entanglement can be obtained as

�pz
=

�l�!�N − l

2
�!�N

2
�!�N

2
�!

� l

2
− pz�!� l

2
+ pz�!�N − l

2
− pz�!�N − l

2
+ pz�!�N�!

,

Ev�l� = �
pz=−l/2

l/2

− �pz
log2 �pz

. �15�

When l and N are large, the summation in Eq. �15� can be
replaced by an integral, and the function �pz

can be approxi-
mated by a Gaussian distribution. Thus we can approximate
Ev�l� by the following expression:

Ev�l� 
 −
1

2
log2�1

l
+

1

N − l
� +

1

2
log2��e

2
� , �16�

which suggests that Ev�l� diverges logarithmically as the size
l increases.

Second, in Fig. 5�a�, in the largest region of the rung
singlet phase, the block-block entanglement converges to
some finite value quickly, while in Figs. 5�b�–5�d�, it is al-
most proportional to the block size. Since the ground state is
approximately the rung singlet product state, the block-block
entanglement is proportional to the number of bonds cross-
ing the boundary of the block as in Figs. 5�c� and 5�d�. In
Fig. 5�b�, the situation is different since the number of bonds
crossing the boundary of the block is finite the short-ranged

FIG. 4. Four choices for increasing the block
size: �a� is the single block, �b� is the stripe block,
�c� is the zigzag block, and �d� is the one-leg
block.
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correlations between the rungs play an important role in Fig.
5�b� and explain this proportionality. This result is in agree-
ment with previous work,35 i.e., the block entropy grows
with the number of links going across the block interface
area.

Next, in Figs. 5�b�–5�d�, we find that some local extreme
points of the block-block entanglement may be QPT points.
Previous studies25,31 suggested that the transition point be-
tween the rung singlet and staggered dimer is 0.06�–0.08�,
which is quite near the local maximum point 0.07� in Fig.
5�b� and the local minimum 0.05� in Figs. 5�c� and 5�d�.
The transition point between the staggered dimer and scalar
chirality phase is exactly 0.148� which is also near one
minimal point 0.14� in Fig. 5�b�. As for the crossover point
between the dominant vector chirality region and the domi-
nant collinear spin region, Figs. 5�b�–5�d� all suggest the
value 
0.85� which is coincident with the value obtained in
previous works.25

In general, the scaling behavior of the above four choices
of blocks can be categorized into two kinds, Fig. 5�a� and
Figs. 5�b�–5�d�. In Fig. 5�a�, the number of ladder bonds
across the boundary between two blocks is a finite value 4
independent of the block size, while in Figs. 5�b�–5�d�, the
number is proportional to the block size l. In the latter case,
the short-ranged correlation across the boundary bonds is the
main contribution to the block-block entanglement; thus the
block-block entanglement is always proportional to the size
of the block as we have seen in Fig. 4. In the former case, the
main contribution to the block-block entanglement comes
from the long-range correlation between the sites in the
block and the sites outside the blocks. It is expected that

around the QPT point, in the former case the scaling behav-
ior will change abruptly, e.g., from convergence to a finite
value to logarithmic divergence, while in the latter case,
there may exist an extremal point of the block-block en-
tanglement, which is an indication of a QPT.

VI. SUMMARY

In summary, we have studied the concurrence and the
block-block entanglement in the ground state of the S=1/2
spin ladder with ring exchange. In both the rung singlet and
staggered dimer phases, the behaviors of the ground-state
concurrence are consistent with the corresponding dominant
configurations. The extremal point of the two-site block-
block entanglement coincides with the QPT point due to the
SU�4� symmetry, and this symmetry is obviously indepen-
dent of the system size. We have also investigated the scaling
behavior of the block-block entanglement for different block
geometry and block sizes. We have identified three kinds of
typical scaling behavior in this model, namely, on increasing
the size of the block, the block-block entanglement �a� con-
verges to some finite value, �b� diverges logarithmically with
size, on �c� diverges proportionally with the size. However,
we can see that there is no signature of the QPT between the
scalar chirality phase and dominant vector chirality phase.
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FIG. 5. �Color online� Block-block entangle-
ment of different block sizes l as a function of �
in N=12�2 ladder. The geometry of the blocks
in �a�, �b�, �c�, and �d� is specified in Figs.
4�a�–4�d�.

QUANTUM ENTANGLEMENT IN THE S=1/2 SPIN… PHYSICAL REVIEW B 74, 155119 �2006�

155119-5



1 A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
�1935�.

2 C. Bennett and D. Divincenzo, Nature �London� 404, 247 �2000�.
3 M. Nielsen and I. Chuang, Quantum Computation and Quantum

Information �Cambridge University Press, Cambridge, U.K.,
2000�.

4 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, Cambridge, U.K., 2000�.

5 A. Osterloh, L. Amico, G. Falci, and Rosario Fazio, Nature �Lon-
don� 416, 608 �2002�.

6 T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
�2002�.

7 S. J. Gu, H. Q. Lin, and Y. Q. Li, Phys. Rev. A 68, 042330
�2003�; S. J. Gu, G. S. Tian, and H. Q. Lin, ibid. 71, 052322
�2005�.

8 R. G. Unanyan, C. Ionescu, and M. Fleischhauer, Phys. Rev. A
72, 022326 �2005�.

9 J. Vidal, Phys. Rev. A 73, 062318 �2006�.
10 S. Yi and H. Pu, Phys. Rev. A 73, 023602 �2006�.
11 X. F. Qian, T. Shi, Y. Li, Z. Song, and C. P. Sun, Phys. Rev. A 72,

012333 �2005�.
12 S. J. Gu, G. S. Tian, and H. Q. Lin, New J. Phys. 8, 61 �2006�.
13 G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 �2003�.
14 V. E. Korepin, Phys. Rev. Lett. 92, 096402 �2004�.
15 S. J. Gu, S. S. Deng, Y. Q. Li, and H. Q. Lin, Phys. Rev. Lett. 93,

086402 �2004�; S. S. Deng, S. J. Gu, and H. Q. Lin, Phys. Rev.
B 74, 045103 �2006�.

16 D. Larsson and H. Johannesson, Phys. Rev. Lett. 95, 196406
�2005�.

17 Ö. Legeza and J. Sólyom, Phys. Rev. Lett. 96, 116401 �2006�.

18 A. Anfossi, P. Giorda, A. Montorsi, and F. Traversa, Phys. Rev.
Lett. 95, 056402 �2005�; A. Anfossi, C. Degli Esposti Boschi,
A. Montorsi, and F. Ortolani, Phys. Rev. B 73, 085113 �2006�.

19 L. Campos Venuti, C. Degli Esposti Boschi, M. Roncaglia, and A.
Scaramucci, Phys. Rev. A 73, 010303�R� �2006�.

20 W. K. Wootters, Phys. Rev. Lett. 80, 2245 �1998�.
21 K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys.

Rev. A 66, 042327 �2002�.
22 Indrani Bose and Amit Tribedi, Phys. Rev. A 72, 022314 �2005�.
23 J. Rissler, R. Noack, and S. White, Chem. Phys. 122, 024107

�2005�.
24 Ö. Legeza and J. Sólyom, Phys. Rev. B 68, 195116 �2003�.
25 A. Läuchli, G. Schmid, and M. Troyer, Phys. Rev. B 67,

100409�R� �2003�.
26 A. Mizel and D. A. Lidar, Phys. Rev. Lett. 92, 077903 �2004�.
27 V. W. Scarola, K. Park, and S. Das Sarma, Phys. Rev. Lett. 93,

120503 �2004�.
28 M. Roger, C. Bäerle, Yu. M. Bunkov, A. S. Chen, and H. Godfrin,

Phys. Rev. Lett. 80, 1308 �1998�.
29 T. Okamoto and S. Kawaji, Phys. Rev. B 57, 9097 �1998�.
30 M. Müller, T. Vekua, and H. J. Mikeska, Phys. Rev. B 66, 134423

�2002�.
31 T. Hikihara, T. Momoi, and Xiao Hu, Phys. Rev. Lett. 90, 087204

�2003�.
32 S. Brehmer, H. J. Mikeska, M. Müller, N. Nagaosa, and S.

Uchida, Phys. Rev. B 60, 329 �1999�.
33 Ö. Legeza, G. Fáth, and J. Sólyom, Phys. Rev. B 55, 291 �1997�.
34 T. Hakobyan, J. H. Hetherington, and M. Roger, Phys. Rev. B 63,

144433 �2001�.
35 Ö. Legeza, F. Gebhard, and J. Rissler, cond-mat/0512270.

SONG, GU, AND LIN PHYSICAL REVIEW B 74, 155119 �2006�

155119-6


