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I. INTRODUCTION

One of the fundamental challenges of theoretical con-
densed matter physics is the accurate solution of quantum
impurity models. These, in general terms, consist of a Hamil-
tonian involving a finite number of states and a hybridization
process which allows particle exchange with one or more
“reservoirs” of particles. They are important both in their
own right and as a crucial ingredient in the dynamical mean
field1 �DMFT� method of approximating the properties of
interacting fermions on a lattice. Examples include the famil-
iar Kondo and Anderson Hamiltonians and their generaliza-
tion to multispin and multiorbital cases, as well as to the
“embedded plaquettes” used in the recently developed clus-
ter extensions of dynamical mean field theory.2–4

Quantum impurity models may be formulated as quantum
field theories in zero space and one time dimension, and the
reduced dimensionality suggests that numerical approaches
should be feasible. However, up to now general quantum
impurity models have to a large degree resisted numerical
attack. A special but conceptually crucial model, the one-
orbital Anderson impurity model, has been studied in detail
but the techniques �the Hirsch-Fye discrete Hubbard-
Stratonovich transformation5 and exact diagonalization6�
which work relatively well in this case have proven difficult
to extend to wider classes of models of physical interest.

One issue is that the Hirsch-Fye method cannot easily be
applied to models with interactions other than direct density-
density couplings. In particular, there is no good decoupling
for the exchange and “pair hopping” terms which are impor-
tant to the physics of partially filled d levels. A scheme pro-
posed by Sakai et al.9 has been used in some DMFT
studies,10,11 but the method has a severe sign problem which
prevents calculations at low temperatures. Another issue with
Hirsch-Fye and similar methods is time discretization, and in
particular the fine grid spacing required to capture the short
time behavior of the Green function. The computational bur-
den in Hirsch-Fye type methods grows as the cube of the
�large� grid size, which must be increased linearly with in-
teraction strength and inverse temperature. This severely re-
stricts the accessible parameter range.

The exact diagonalization method6 represents the continu-
ous density of states of the reservoir by a small number of
levels—but the number of levels required scales linearly

with the number of orbitals included while the computational
burden grows exponentially with the number of levels. This
limits the applicability of the method to models with a small
number of orbitals, although some results have been pre-
sented for three orbital models7 and four-site clusters.8

Recently, a new class of impurity solvers has been
developed12,13 based on the stochastic evaluation of a dia-
grammatic expansion of the partition function. Two compli-
mentary approaches are possible, based on a weak-coupling
expansion in powers of the coupling constants12 or an expan-
sion in powers of the impurity-bath mixing.13 These algo-
rithms, which require neither auxiliary fields nor a time dis-
cretization, have been shown to provide considerable im-
provements over the Hirsch-Fye method for the one-orbital
Anderson model. The weak coupling approach has also been
successfully applied to more complicated models,14 and an
interesting hybrid scheme involving a Hirsch-Fye decoupling
of density channel interactions and an expansion in exchange
interactions has very recently been applied to multiorbital
models.15,16

In Ref. 13 we have demonstrated the usefulness of the
hybridization expansion approach for the single site Hubbard
model. Its power relies on the fact that the order of pertur-
bation which is needed decreases as the interaction strength
increases. The algorithm was found to allow access to ex-
tremely low temperatures, even in the presence of strong
interactions. But the formulation given in Ref. 13 was spe-
cific to models �such as the Hubbard model� with only
density-density interactions. In this paper we present a ma-
trix formulation which generalizes the method to wide
classes of impurity models. To demonstrate the power of the
hybridization expansion approach we use it to calculate
physical properties of the dynamical mean field approxima-
tion to the Kondo lattice model �for which only very few
DMFT calculations have been attempted� and the multior-
bital Anderson model.

II. FORMALISM

A general impurity model contains fermions labeled by
quantum numbers a=1, . . . ,N �denoting, for example, site,
spin, and orbital indices�, interacting with each other,
coupled to local degrees of freedom T �representing, for ex-
ample, spin or phonon fields� and hybridized with “bath”
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fermions. The latter have a continuous density of states
which we parametrize by “momentum” p. It is convenient to
assemble the fermion fields and the bath fermions into
N-component spinors � and b, respectively. The general
Hamiltonian is then

H = Hloc + Hbath + Hhyb + Hhyb
† , �1�

with

Hloc = �†Q� · T + H.c. + HT + �
a,b,c,d

Uabcd�b
†�c

†�c�d, �2�

Hbath = �
p

�pbp
†bp, �3�

Hhyb = �
p

�Vpbp
†. �4�

We have assumed here that the fermion-fermion interaction
is of the conventional four-fermion type, but the extension to
more general forms is immediate. Similarly, we have as-
sumed a bilinear coupling �specified by some matrix Q� be-
tween the local fermions and the spin and lattice degrees of
freedom represented by T, but more general interactions are
easily included.

The “bath” fermions are assumed to be orthogonal and to
have free fermion correlations while V is an N�N hybrid-
ization matrix, which has to be determined in a self-
consistent manner. In the impurity models known to us it is
possible to find a representation in which Hbath and V are
simultaneously diagonal, that is

Hhyb + Hbath = �
a,p

�aVp
abp

a† + �
a,p

�pbp
a†bp

a = �
a

Hhyb
a + �

a

Hbath
a ,

�5�

and we make this assumption throughout the rest of this
paper.

The impurity model partition function Z may then be ex-
pressed as

Z = ZbathTr��T�e
−�0

�d�Hloc���+Hbath���+�a�Hhyb
a ���+Hhyb

a† �����b, �6�

with Zbath=Trbe−�Hbath and �¯�b=Trb�¯� /Zbath.
We expand Eq. �6� in the hybridizations �aVp

abp
a† and

bp
aVp

a��a
†. Each term in the expansion must have the same

number of �a and �a
† operators, so

Z = ZbathTr�	T�e
−�0

�d�Hloc���+Hbath���

a

�
ka

Zka�
b

, �7�

Zka
= �

p1,. . .,pka

�
p1�,. . .,pka

�

Vp1

a Vp1�
a�
¯ Vpka

a Vpka
�

a��
0

�

d�1

��
�1

�

d�2 ¯ �
�ka−1

�

d�ka�
0

�

d�1��
�1�

�

d�2� ¯ �
�ka−1�

�

d�ka
�

� �a��1�bp1

a†��1�bp1�
a ��1���a

†��1���a��2�bp2

a†��2�bp2�
a ��2��

��a
†��2�� ¯ �a��ka

�bpka

a† ��ka
�bpka

�
a ��ka

� ��a
†��ka

� � , �8�

where we have used the 1/ka! in time ordering the �’s and
�†’s. We now take the expectation value over the bath
states. The unprimed and primed p indices must always oc-
cur in pairs pi= pj� p and tracing over the bath states thus

yields a factor �Vp
a�2e−�p��j�−�i� / �e−��p +1� if � j���i and

�Vp
a�2e−�p��j�−�i+�� / �e−��p +1� if � j�	�i. By defining the hybrid-

ization function Fa��� as

Fa��� = ��
p

�Vp
a�2e−�p��−��/�e−��p + 1� , � � 0,

�
p

− �Vp
a�2e−�p�−��/�e−��p + 1� , � 	 0,� �9�

the expectation value of the b-operators can be expressed as
the determinant of a matrix Ma

−1 with elements

Ma
−1�i, j� = Fa��i − � j�� . �10�

Note that

F�− i
n� =� d�e−i
n�F��� =� d
�
p

�Vp�2
��
 − �p�
i
n − 


,

�11�

so that the hybridization functions F are the same as those
defined in Ref. 13 and are related to the conventionally de-
fined “Weiss function”1 G0

−1 by F�−i
n�= i
n+�−G0
−1�i
n�.

The partition function finally becomes

Z = ZbathTr��T�e
−�0

�d�Hloc���

a

�
ka

Z̃ka�sT�
, �12�

Z̃ka
= �

0

�

d�1�
�1

�

d�2 ¯ �
�ka−1

�

d�ka�
0

�

d�1�

��
�1�

�

d�2� ¯ �
�ka−1�

�

d�ka
� det�Ma

−1�sa

� �a��1��a
†��1���a��2��a

†��2�� ¯ �a��ka
��a

†��ka
� � ,

�13�

with sa a sign determined by the signature of the permutation
which permutes the a-flavored field operators from their
time-ordered sequence �smallest � shifted to the right� into
the alternating order �a��1��a

†��1���a��2��a
†��2��. . ., and sT�

compensating for an eventual sign change produced by the
time ordering of all the operators. The sign factor sa arises
from the �-antiperiodic definition of Fa �Eq. �9�� and is the

generalization of the signs denoted �
�1

s
�k

e

in Ref. 13. The sign
sT�

is merely a consequence of the notation in Eq. �12�,
where we grouped together all of the operators correspond-
ing to a given flavor a. If all the � operators, irrespective of
flavor, are placed in the order in which they occur, there is no
additional sign.

III. MONTE CARLO PROCEDURE

Equations �12� and �13� show that the partition function
may be expressed as a sum over configurations consisting of
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2n=2�aka operators �Oi��i��0�1	�2	¯	�2n	�. Of these op-
erators, ka are creation operators �a

† and another ka are de-
struction operators �a and they are connected in all possible
ways by hybridization functions Fa �this is the interpretation
of the determinant�. Sandwiched in between the O’s are time
evolution operators Kloc, defined as

Kloc��� = e−Hloc�. �14�

A typical configuration can thus be illustrated by a sequence
of dots on an interval �0,�� representing imaginary time �see
Fig. 1�. Each color corresponds to a different flavor a, while
full and empty dots represent creation and annihilation op-
erators, respectively. The weight of such a configuration is
given by

w��Oi��i��� = Tr�Kloc�� − �2n�O2n��2n� ¯ O2��2�Kloc��2 − �1�

�O1��1�Kloc��1��d�1 ¯ d�2n

a

�det Ma
−1�sa.

�15�

A Monte Carlo procedure which samples the whole con-
figuration space is obtained by randomly inserting and re-
moving pairs of operators in the a channel �a=1, . . . ,N�, or
changing their position on the time interval. The detailed
balance condition for insertion/removal of a pair in channel a
reads

p��O�2n� → p��Õ�2n+2�

p��Õ�2n+2� → p��O�2n�
=

�2

�ka + 1�2

�
Tr�Kloc�� − �̃2n+2�Õ2n+2��̃2n+2� ¯ Õ1��̃1�Kloc��̃1��

Tr�Kloc�� − �2n�O2n��2n� ¯ O1��1�Kloc��1��

�
det M̃a

−1s̃a

det Ma
−1sa

, �16�

and can be satisfied for example by using the Metropolis
algorithm. In each update, it is therefore necessary to com-
pute both the determinant of the new Fa matrix, det Ma

−1, and
the trace of the new sequence of field operators and propa-
gators. This latter task is simplified by writing all the opera-
tors in the eigenbasis of Hloc.

In the simulation, one actually stores and manipulates Ma,
the inverse of the matrix defined in Eq. �10�. Fast matrix
updates, similar to the ones detailed in Ref. 12 allow one to
compute the new Ma in a time O�ka

2�. The elements of this
matrix also yield the measurement values for the Green func-
tion Ga at the time intervals given by the operator positions

��i for annihilation and � j� for creation operators�,

Ga��� =	 1

�
�
i,j=1

ka

Ma�j,i����,�i − � j��� , �17�

���,��� = ���� − ��� , �� � 0,

− ��� − �� − �� , �� 	 0.
� �18�

Angular brackets denote the Monte Carlo average. Other ob-
servables can be measured by computing a trace. For ex-
ample, the mean particle number can be obtained as

n = 	Tr�Kloc�� − �2n�O2n��2n� ¯ O1��1�Kloc��1�n̂�
Tr�Kloc�� − �2n�O2n��2n� ¯ O1��1�Kloc��1�� � ,

�19�

where n̂ is the number operator.
A computationally expensive part of this procedure is the

evaluation of the trace in the acceptance rate of Monte Carlo
moves. In general, there are certain combinations of opera-
tors which always yield a zero trace and checking these con-
ditions beforehand allows one to avoid unnecessary compu-
tations of the trace.

Models which do not contain exchange or “pair-hopping”
processes, so that Hloc and the � operators are diagonal in the
flavor indices a, constitute a special case. For these models,
the creation and annihilation operators for each flavor must
occur in alternating order and as shown in Ref. 13 the “seg-
ment” representation, illustrated in Fig. 2, is an efficient way
of specifying all the configurations of non-zero trace. In this
scheme, configurations are represented as collections of seg-
ments �one collection for each flavor�, whose start and end
points coincide with the positions of the creation and anni-
hilation operators. The weight of a configuration can be ex-
pressed in terms of the lengths of the segments and the over-
laps between segments of different flavors.

FIG. 1. �Color online� Every Monte Carlo configuration can be
represented by a sequence of operators on the time interval 0�
	� �we let time run from right to left to be consistent with the time
ordering convention�. Different colors correspond to different fla-
vors, while full �empty� circles represent creation �annihilation� op-
erators. The Monte Carlo moves consist of random insertions or
deletions of pairs of operators in the different channels.

FIG. 2. �Color online� If the creation and annihilation operators
for each flavor must occur in alternating order, as is the case for
models without exchange and pair hopping, then it is convenient to
represent the configurations with nonzero trace by collections of
segments. The weight of a segment configuration is determined by
the length of the segments and the overlap between segments of
different flavors �indicated by the hashed regions�.
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Care must be taken to prevent the system from being
trapped in a state which breaks a symmetry of Hloc when it
should not be. For studying paramagnetic �paraorbital�
phases, averaging the Green functions is sufficient. To study
broken symmetry phases, the Green functions corresponding
to different spin �orbital� states must be allowed to evolve
independently and to obtain a symmetry unbroken state �e.g.,
above some critical temperature� it is then important that the
Monte Carlo sampling explores the whole configuration
space. To avoid unphysical trapping, we introduce “swap”
moves, which exchange the operators corresponding, for ex-
ample, to up and down spins in a given orbital. Because the
calculation of the new Ma matrices requires explicit matrix
inversions, which are O�ka

3�, swap moves are costly, but a
relatively small number of attempts is enough to assure an
ergodic sampling.

The preceding paragraphs described the solution of an
impurity model specified by a local Hamiltonian and hybrid-
ization functions. In dynamical mean field theory, the hybrid-
ization functions are fixed by a self-consistency condition
relating the impurity model Green function �17� to the im-
plied lattice Green function. The precise form of the equation
depends on the specific dynamical mean field equation cho-
sen, so a general equation cannot be written here. A crucial
point is that the information concerning symmetry breaking
is carried by the hybridization functions F and enters the
problem via the self-consistency condition. Hloc �and there-
fore the matrix forms of the creation and time evolution op-
erators� retain their symmetry unbroken form.

In this paper we use semicircular densities of states with
�possibly orbital dependent� full bandwidths 4ta. The self-
consistency condition for translationally invariant states, in-
cluding both paramagnetic states and states with ferromag-
netic or ferro-orbital order is �the −� follows from the
definition of Fa in Eq. �9��

Fa��� = ta
2Ga�− �� . �20�

States with a broken translational invariance may also be
studied. For example, for bipartite lattices with simple two-
sublattice Néel order or �in the case of the models with two-
fold orbital degeneracy� two-sublattice orbital order, the con-
dition becomes

Fa��� = ta
2Gā�− �� , �21�

where ā denotes the opposite spin or the complementary or-
bital. In subsequent sections we illustrate the formalism via
study of two models in which exchange interactions play an
important role: the Kondo lattice model and the Hubbard
model with a twofold orbital degeneracy.

IV. APPLICATION I: KONDO LATTICE

A. Overview

In the Kondo lattice model, a local spin-1 /2 degree of
freedom S couples via a coupling constant J which may be
either negative �“ferromagnetic”� or positive �“antiferromag-
netic”� to electrons which reside in a single orbital, so that
Eq. �2� becomes

Hloc = − ��
a

�a
†�a + JS� ·

1

2
�a

†�� ab�b. �22�

The Kondo impurity model, i.e., a single spin subject to a
Hamiltonian HKondo+Hbath with Hbath fixed �no self-consis-
tency equation� and characterized by a constant density of
states � near the Fermi level, has been extensively studied.
The physics exhibits a profound dependence on the sign of
the exchange constant J: for ferromagnetic J the coupling
scales asymptotically to zero according to

Jeff��� �
�J

1 + �J �ln �/��
, �23�

�Jeff�
��1/ ln�
�� so that the asymptotic low temperature
and low frequency behavior is that of free moments decou-
pled from the conduction electrons. On the other hand, for
antiferromagnetic sign the problem scales to strong coupling,
leading to the formation of a Kondo resonance and the dis-
solution of the spin into the bath of conduction electrons.

Less is known about the lattice problem. We summarize
here some results which are relevant to the half-filled case
studied in this paper. For a classical spin the sign of J is
irrelevant and for a bipartite lattice and particle-hole-
symmetric dispersion the ground state is an antiferromag-
netic insulator for all J.17 The paramagnetic phase of the
classical model is characterized by disordered spins, and may
be an insulator at large J or a metal at small J. In the metallic
phase the spin disorder implies a nonvanishing scattering
rate at the Fermi level.

For S=1/2 quantum spins, fewer results have been pre-
sented. It is generally believed that the half-filled, bipartite
antiferromagnetic Kondo lattice exhibits a large-J Kondo in-
sulator phase �the lattice version of the Kondo singlet behav-
ior� whereas for smaller J a phase transition to an antiferro-
magnet occurs.18,19 For the ferromagnetic side even less is
known. A very recent study of the ferromagnetic Kondo lat-
tice model at n�1, based on the “equation of motion ap-
proach” which does not capture the Kondo scaling, reports a
transition from a ferromagnetic to a paramagnetic state with
increasing doping.20

TABLE I. Eigenstates and eigenenergies for the local part of the
Kondo lattice hamiltonian. The first entry labels the number of elec-
trons and the second entry the spin state: either impurity spin ↑, ↓ if
the number of electrons is 0 or 2 or the total spin S �singlet� Tm

�triplet with mz=m� if n=1.

Eigenstates Energy

�1�= �0, ↑ � 0

�2�= �0, ↓ � 0

�3�= �1,S� − 3
4J−�

�4�= �1,T1� 1
4J−�

�5�= �1,T0� 1
4J−�

�6�= �1,T−1� 1
4J−�

�7�= �2, ↑ � −2�

�8�= �2, ↓ � −2�
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B. Formalism

We now turn to the specifics of the solution of this prob-
lem using the new method. Hloc is diagonal in the basis of
total particle number, total spin and z component of total
spin. If the particle number is 0 or 2, then the spin state is
just the state of the local moment, if the number is 1, the spin
state is singlet �S� or triplet �Tmz

� with given mz. The eigen-
states may thus be labeled as shown in Table I, where the
first entry is the number of electrons and the second entry
refers to the spin state. The singlet state is defined as S
= 1

�2
��↑ , ↓ �− �↓ , ↑ ��, with the first entry the conduction elec-

tron and the second entry the local moment spin direction. In
this basis, the time evolution operator is diagonal K����n�
=exp�−En���n�, with eigenenergies En listed in Table I. The
creation operators for spin up and down become the sparse
matrices

�↑
† =�

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0
1
�2

0 0 0 0 0 0

1 0 0 0 0 0 0 0

0
1
�2

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0
− 1
�2

0
1
�2

0 0 0

0 0 0 0 0 1 0 0

� ,

�↓
† =�

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 1
�2

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
�2

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0
1
�2

0
1
�2

0 0 0

� . �24�

With these operators, the sampling then proceeds as de-
scribed in the previous sections.

An important issue for simulations of interacting fermion
problems is the sign of the different contributions to the par-
tition sum. For the Hubbard model we noted the empirical
absence of a sign problem in Ref. 13. This absence of sign is
not unexpected: the density-density interaction is essentially
classical �no exchange� and other simulation methods do not
give rise to a sign problem in this case. One might expect the
situation in the Kondo lattice model to be worse, because it
contains explicit exchange processes. Indeed as can be seen
from Eq. �24�, the matrix elements for transitions into or out

of singlet states can be negative. However, since these nega-
tive matrix elements always occur in pairs, the trace in Eq.
�15� is not a source of sign problems. Negative determinants
of the F matrices could, in principle, lead to negative weights
�note that the exchange processes lead to operator orderings
not found in the Hubbard model�. Surprisingly, we do not
find a sign problem in our simulations of the Kondo lattice
either. For the parameters used in most of this investigation,
�t=50 or 100, −10J / t1 and densities per spin n0.98,
the average sign is 1. Configurations with negative weight
exist, but contribute negligibly little to the partition sum and
are hence not generated. On some occasions, we measured
average signs which differed from one in the sixth or seventh
decimal place, but the converged solutions were usually not
affected in any way by negative-weight contributions.

A particularly attractive feature of the hybridization ex-
pansion approach is the fact that stronger interactions lead to
a lower perturbation order, independent of the sign of J. In
Fig. 3 we plot the distribution of perturbation orders p�k↑�
= p�k↓� corresponding to the converged solutions for different
values of J / t and �t=50. While the distribution shifts in a
way which is comparable to the one observed in the Hubbard
model13 for J	0, the effect is even more pronounced for J

FIG. 3. Distribution of perturbation orders p�k� p�k↑�= p�k↓�
for the ferromagnetic �top panel� and antiferromagnetic �bottom
panel� Kondo lattice models at half filling and inverse temperature
�t=50. Note the different J ranges in the two panels. The mean
perturbation order shifts lower as the coupling magnitude �J� is in-
creased. For antiferromagnetic coupling, this effect is much more
pronounced.
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�0. For all parameter values considered in this study, the
perturbation order remains reasonably low and thus allows
an efficient Monte Carlo sampling.

C. Paramagnetic phase

1. Overview and classical limit

In this subsection we consider the behavior of the model
in the paramagnetic phase �with magnetism suppressed by
symmetrization of the Green function�. For orientation, we
first briefly discuss the physics of the classical core-spin
model, in the paramagnetic phase. As noted above, in the
classical model the sign of the exchange is irrelevant, and in
the paramagnetic phase the spins are disordered and provide
a static spin-dependent scattering potential for the electrons.
In the dynamical mean field approximation to the classical
spin model one finds that the self-energy is ��
�=Jeff

2 /G0
−1

with 2Jeff=J /2 the up-down energy splitting arising from the
diagonal part of the exchange term in Eq. �22� and the mean
field function G0

−1 is given by

G0
−1�
� = 
 + � − t2

G0
−1

�G0
−1�2 − Jeff

2 . �25�

At half filling ��=0� and at the Fermi level �
=0� this equa-
tion has two solutions

G0
−1 = 0, �26�

G0
−1 = i�t2 − Jeff

2 . �27�

Equation �27� describes a metal �Im G�0 at the Fermi level�
with a self-energy

� = − i
Jeff

2

�t2 − Jeff
2

�28�

which has a nonvanishing imaginary part, corresponding to
scattering of electrons off the static spins. As Jeff→ t the
Fermi level density of states vanishes and the scattering rate
diverges. For �Jeff�� t the relevant solution is that of Eq. �26�,
which is the 
→0 limit of the expected insulating result
G0

−1�
 �describing an insulator with �� J2

i
 �. In the rest of
this section we present results for the quantum model, where
the physics depends on the sign of J.

2. Ferromagnetic J

We begin with the ferromagnetic case. The top panel of
Fig. 4 plots the converged Green functions for the ferromag-
netic couplings J / t=−1, −3, −6, −8, and −10 at half filling
and at the low temperature �t=50. It is apparent that for
J / t�−6 the Green function is weakly dependent on J and
exhibits the slow decay with time characteristic of a metal.
As the exchange coupling is increased, the system eventually
undergoes a metal-insulator transition at a critical value be-
tween J / t=−6 and −8 �see also Fig. 6�, which is consider-
ably larger in magnitude than the classical-model critical
value J / t=−4 �Jeff=−t�. The bottom panel shows the depen-
dence of the particle number per spin n on chemical potential

for several J values; for small coupling, a smooth evolution
is seen with no indication of a gap, whereas the opening of a
gap is evident in the n��� curve for J / t=−10.

The top panel of Fig. 5 shows the impurity-model spin-
spin correlation function CSS���= �Sz�0�Sz���� calculated for
the ferromagnetic Kondo lattice. An initial drop �with a
J-dependent magnitude� is followed by a saturation to an
almost temperature-independent value. In the classical model
in the paramagnetic phase C���=1/4 independent of time.
The saturation seen in the quantum calculation thus indicates
that the long-time behavior of the spins is essentially classi-
cal, qualitatively consistent with the ferromagnetic Kondo
scaling discussed in Eq. �23�. The combination of a paramag-
netic state and a saturated �nonvanishing� spin-spin cor-
relator implies the existence of annealed disorder in the
spins, in other words the existence of zero frequency spin
fluctuations. In particular, the saturation evident in the data
for J / t=−8 and −10 shows that the charge gap seen in G���
does not imply the opening of a spin gap.

FIG. 4. Top panel: local Green functions for the half filled fer-
romagnetic Kondo lattice model at the indicated exchange values
and temperature. For J / t�−3 the computed Green functions are
very close to the J=0 value and for J / t�−6 the long time behavior
is characteristic of a metal. The exponential drop of the Green func-
tions for J / t−8 shows that the system becomes insulating at these
large couplings. Bottom panel: dependence of the density on chemi-
cal potential. The smooth behavior for J / t�−6 shows the absence
of a gap at half filling whereas a gap is clearly evident in the curve
corresponding to J / t=−10. Some suggestion of a precursor to a gap
is visible at J / t=−6.
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In the classical model, the spin disorder in the paramag-
netic phase leads to a nonvanishing self-energy at 
→0 �ei-
ther divergent, in the insulating phase, or finite, in the metal-
lic phase�. Figure 6 shows the self-energies calculated for the
ferromagnetic quantum model. For J / t=−10, the system is
insulating and � diverges, as in the classical case. However,
for the smaller �J� the self-energy clearly vanishes as 
→0,
a behavior quite different from that found in the classical
case.

The differences between the quantum spin-ferromagnetic
coupling calculations and the results for the classical model
have, we believe, a common origin, namely, the decoupling
of the carriers and spins at low energies �as found in the
single-impurity model, Eq. �23��. This is directly seen from
the comparison of the spin-spin correlator �which shows
classical spins� and the metallic phase self-energy �whose
vanishing at small frequency suggests no scattering at the
Fermi surface�. This physics was already noted by Biermann
and co-workers21 in a study of a related model. These authors
argued that one could obtain the low frequency behavior of
the electron self-energy by combining the Kondo scaling
�23� with the perturbative formula for the self-energy to ob-
tain ��
���Jeff

2 �
���1+ln �
�−2. The bottom panel of Fig.
6 shows an expanded view of the lower frequency regime of

the metallic phase self-energies. One sees that at the frequen-
cies accessible to us the self-energy is better fitted by a weak,
J-dependent power law �the dashed lines correspond to the
exponents 0.25 for J / t=−1, 0.45 for J / t=−3 and 0.55 for
J / t=−6�. In particular, except perhaps at J / t=−1, the curva-
ture of the numerical data is opposite to the curvature pre-
dicted by the one-impurity form. We suggest that the power
law arises from an interplay between the one-impurity ferro-
magnetic Kondo scaling and the density of states renormal-
ization due to J. In particular, for J near the critical value for
the metal-insulator transition one expects a vanishing density
of states. However, we note that the temperature range is
insufficient to rule out a low-T crossover to the form pro-
posed in Ref. 21. Further study of the frequency dependence
of the self-energy, and in particular a more precise character-
ization of the power law associated with the metal-insulator
critical point, would be of great interest.

FIG. 5. Imaginary time correlation function for the local mo-
ment calculated for ferromagnetic �top panel� and antiferromagnetic
�bottom panel� couplings at half filling for the J values indicated.
Solid lines show results for �t=50. The dotted lines show results
for �t=100 and J / t=−3 �ferromagnetic case� and J / t=0.6 �antifer-
romagnetic case�.

FIG. 6. Top panel: imaginary part of the electron self-energy
��i
n� for the half-filled ferromagnetic Kondo lattice model at �t
=50, J / t=−1, −3, −6, and −10. The metal-insulator transition which
takes place between the last two values of J is obvious from the
change in the low-frequency behavior. Bottom panel: expanded
view of the low frequency behavior of the self-energy in the
smaller-J “metallic” phase. Dashed lines demonstrate an approxi-
mate power-law decrease of Im � as 
→0 with exponents 0.25 for
J / t=−1, 0.45 for J / t=−3 and 0.55 for J / t=−6. The solid line is
proportional to the theoretically expected �Ref. 21� asymptotic be-
havior Im ��1/ �ln 
n�2.
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3. Antiferromagnetic J

The physics of the antiferromagnetic Kondo lattice is
markedly different from that of either the classical spin or the
ferromagnetic S=1/2 Kondo lattice. The top panel of Fig. 7
shows the electron Green function calculated for several
�small� J values and low temperatures. Comparison to Fig. 4
shows that for all J / t�0.4, G�� /2� falls below the value
4/ ���t��0.0254 expected for a Fermi liquid and approxi-
mately observed in the ferromagnetic case. Furthermore, as T
is decreased G drops rapidly, suggesting the opening of the
gap expected for a Kondo insulator.18 We believe that even
the smallest J will eventually become insulating, but that the
gap is too small to be seen on the temperature scales we have
studied. The bottom panel shows that for J / t=1.0 and 1.2 a
gap in the excitation spectrum is evident in the n��� curve.
Also, as expected in the presence of a charge gap, we find
that the imaginary part of the self-energy diverges as 
n
→0 �not shown�.

The spin-spin correlation functions for antiferromagnetic
coupling are shown in the bottom panel of Fig. 5. The cor-
relations decay rapidly with time, consistent with the forma-
tion of a gapped Kondo insulating state. While the exponen-
tial decay may not be obvious from the �t=50 data, their

�t=100 counterparts �shown as an illustration for J / t=0.6
by the dotted line� can be reasonably well fitted to a function
of the form a cosh��s��−� /2��. From these fits we extract
the spin gaps �s shown in Fig. 8. Also plotted are the charge
gaps �c, which we obtained from an analogous fit to the
Green functions. The variation of the gaps with J is very
rapid and �as shown in the bottom panel of Fig. 8� is roughly
consistent with the theoretically expected behavior ln ��
−1/�J at small J, crossing over to ��J for J� t. Remark-
ably, we find that the impurity model spin gap is less than
twice the charge gap, with the ratio �s /�c decreasing
through 1 as J is decreased. We understand this as a precur-
sor of the magnetic state which would exist at small J and
low T if magnetic order were not suppressed. However, we
caution the reader that the spin gaps at the larger J values are
so large they are difficult to determine accurately, while the
charge gap is uncertain at small J because the Green func-
tions do not very nicely fit to a cosh function.

D. Magnetic ordering

We now show that our method correctly captures the mag-
netic ordering phenomena characteristic of the Kondo lattice.
As in the previous sections, we specialize to half filling, bi-

FIG. 7. Top panel: Thick lines show the local Green functions
for the antiferromagnetic Kondo lattice model for J / t=0.4,
0.6,0.8,1 and inverse temperature �t=50. Thin dash-dotted lines
correspond to �t=100 and J / t=0.8,1. Bottom panel: Density per
spin plotted as a function of chemical potential. The data for J / t
=1.0 and 1.2 are consistent with the opening of a charge gap.

FIG. 8. Top panel: spin gap �s and charge gap �c extracted from
fits of the function a cosh����−� /2�� to the spin-spin correlation
functions and Green functions obtained for �t=100 and the indi-
cated values of J. Bottom panel: same data plotted as a function of
t /J on a semilog scale. The results are consistent with the expected
small-J behavior ln ��−1/�J.

PHILIPP WERNER AND ANDREW J. MILLIS PHYSICAL REVIEW B 74, 155107 �2006�

155107-8



partite lattices, and particle-hole symmetry. For orientation,
we first review the known results for the classical-spin case.
At half filling the classical model has antiferromagnetic or-
der at all coupling strengths.17 At very small J, the classical
transition temperature grows as TN

cl�J2 / t. It reaches a maxi-
mum around J / t�2 and for large J decreases as TN

cl� t2 /J.
In the quantum ferromagnetic case, we expect the TN

cl�J�
curve to retain essentially the same shape. In the quantum
antiferromagnetic case we expect a quantum phase transition
to a singlet phase for J larger than a critical value.18,19

We now turn to the results for the quantum model, begin-
ning with ferromagnetic couplings. At half filling ferromag-
netism is never found to be stabilized, whereas the top panel
of Fig. 9 shows that with use of the antiferromagnetic self-
consistency condition a spin polarization �difference between
up and down Green functions� becomes apparent for �t
�20 and J / t=−1. The spin polarization is associated with
the formation of a gap, as can be seen from the rapid time
decay of the lower-T Green functions �compared for example
to the paramagnetic solution for �t=50 in Fig. 4�. Hence the
ground state of the ferromagnetic Kondo lattice model is an
antiferromagnetically ordered insulator.

The bottom panel of Fig. 9 shows the staggered magneti-
zation. Around T / t=0.033, the staggered magnetization m
=n↑−n↓ for J / t=−1 starts to increase rapidly. We also plot
data for a larger magnitude coupling J / t=−2, as well as re-
sults calculated for the classical model at couplings corre-
sponding to the same effective spin splitting �dashed lines�.22

Surprisingly, in view of the ferromagnetic Kondo scaling, the
critical temperatures in both models are comparable. While
the magnetization onset in the quantum spin case is more
rapid, the low-T saturation value is apparently lower.

On the mean field level, one expects a continuous transi-
tion of the form m2�Tc−T. In the quantum case, we find
m2�T� curves which are roughly consistent with the linear
behavior of the classical model, although the magnetization
drops somewhat more rapidly near the critical temperature.
The numerical data for J / t=−1 might even hint a first order
transition. In addition to the steep drop near Tc, an essentially
paramagnetic solution remains apparently stable for some
range of temperatures below Tc. However, a definite state-
ment would require a more detailed investigation of the be-
havior near the critical point.

In Fig. 10 we show the staggered magnetization of the
antiferromagnetically coupled model as a function of J / t at
several fixed temperatures. On the small J side a strong tem-
perature dependence is evident, reflecting the strong J depen-
dence of the Néel temperature at weak coupling. For J / t
�0.75 the �t=40 data provide a good estimate of the T=0
result. At J / t�1 the staggered magnetization rapidly drops
to zero. This is the quantum phase transition to the singlet,
Kondo insulator phase. We observe that this phase transition
occurs at a J which is small relative to the bandwidth. The
dashed line indicates the T=0 result for classical spins. In
this case, no transition to a paramagnetic insulator occurs.
The bottom panel again shows the magnetization as a func-
tion of temperature. For J / t=1, magnetic order sets in
around T / t=0.077, which is noticeably higher than the tran-
sition temperature of the ferromagnetically coupled model or
the model with classical spins. We attribute this to the growth
in J implied by the antiferromagnetic Kondo scaling. On the
other hand, due to the tendency to form singlets, the magne-
tization m=n↑−n↓ for the antiferromagnetic model with
quantum spins saturates at m�0.2, which is considerably
smaller than the staggered magnetization of the correspond-
ing ferromagnetic system.

V. TWO ORBITAL MODEL

For a second demonstration of the power of the method
we consider here the two orbital model studied by other
workers as a model for the orbital selective Mott transition.
The local Hamiltonian is

Hloc = − �
�=1,2

�
�

�n�,� + �
�=1,2

Un�,↑n�,↓ + �
�

U�n1,�n2,−�

+ �
�

�U� − J�n1,�n2,� − J��1,↓
† �2,↑

† �2,↓�1,↑

+ �2,↑
† �2,↓

† �1,↑�1,↓ + H.c.� . �29�

We adopt the conventional choice of parameters U�=U−2J,

FIG. 9. Ferromagnetically coupled Kondo lattice. Top panel:
Green functions obtained for J / t=−1 and �t=10, 20, 30, 40, and
50. A magnetic transition, setting in at �t�30 is evident from the
appearance of a difference between spin up and spin down Green
functions. Bottom panel: staggered magnetization m=n↑−n↓ as a
function of temperature. Solid lines: S=1/2 model, J / t=−1, and
−2. Dashed lines: results from the classical model for J correspond-
ing to the same diagonal spin splitting.
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which follows from symmetry considerations for d orbitals
in free space and is also assumed to hold in solids. We con-
sider semicircular densities of states of bandwidth 4t1 and 4t2

for orbitals 1 and 2, respectively, with a fixed ratio t2 / t1=2,
and furthermore restrict ourselves to the paramagnetic phase
by averaging over spin in each orbital.

The half-filling condition for this model is �= 3
2U− 5

2J and
the 16 eigenstates and their energies are listed in Table II. In
this basis, the propagators K are diagonal, while the creation
and annihilation operators for the different orbital and spin
states become sparse 16�16 matrices. For a given spin, no
more than two creation �or annihilation� operators may occur
in a row and we check this condition before actually com-
puting the trace.

An issue of debate in recent years has been the occurrence
of an orbital selective Mott transition in such two-orbital
systems with Hund’s coupling and different band widths t1
� t2. Using exact diagonalization6 to solve the impurity prob-
lem, Koga et al.23 found that the narrow band becomes insu-
lating at a smaller coupling than the wide band. For semicir-
cular densities of states with a ratio of band widths t2 / t1=2,
the critical couplings were found to be approximately
U1

c / t1=5.4 and U2
c / t1=7. On the other hand, in earlier work

using QMC simulations, Liebsch24 concluded that the transi-
tion takes place simultaneously in both bands. The QMC
method should be more reliable than a ED calculation with a
small number of bath sites, but the straight forward extension
of the usual auxiliary field approach5 suffers from a bad sign
problem in the presence of spin flip and pair hopping pro-
cesses, which were thus ignored in Ref. 24. Arita and Held10

have recently used a new type of Hubbard-Stratonovich
decomposition,9 which reduces the sign problem, and a pro-
jective QMC algorithm in their study of the two-orbital
model. They found evidence for an orbital selective Mott
transition in the presence of spin exchange, yet a single tran-
sition when merely the Ising component of the Hund’s ex-
change was taken into account. Their estimate of U1

c was
consistent with the value obtained in Ref. 23, while the pro-
jective QMC method did not allow to compute results at
large enough couplings to estimate U2

c. Other recent
works16,25,26 report the observation of two successive first
order transitions and highlight the importance of taking the
full Hund’s coupling into account. It is therefore instructive
to test our new algorithm on this example.

In Fig. 11 we show converged Green functions for �t1
=50, J=U /4 and U / t1=4, 6, and 8. The chemical potential
corresponds to half-filling and we average over spin up and

FIG. 10. Staggered magnetization of the antiferromagnetically
coupled Kondo lattice model �half filling, bipartite lattice, particle-
hole symmetry�. Top panel: staggered magnetization as a function
of J / t for �t=20, 40, and 80. There is an antiferromagnetic state at
small coupling �for sufficiently low temperature� and around J / t
=1 a quantum phase transition to a paramagnetic insulator. The
dashed line shows the T=0 result for classical spins. The bottom
panel plots m=n↑−n↓ as a function of temperature. We find that the
transition temperature is considerably higher than for ferromagnetic
coupling and that the magnetization saturates at a smaller value.
This smaller magnetization is the result of stronger quantum fluc-
tuations �Kondo divergence� and singlet formation.

TABLE II. Eigenstates and eigenenergies for the local part of the two-orbital model. The first entry
corresponds to orbital 1 and the second entry to orbital 2.

Eigenstates Energy Eigenstates Energy

�1�= �0,0� 0 �9�=1/�2��↑ , ↓ �− �↓ , ↑ �� U−J−2�

�2�= �↑ ,0� −� �10�=1/�2��↑ ↓ ,0�− �0, ↑ ↓ �� U−J−2�

�3�= �↓ ,0� −� �11�=1/�2��↑ ↓ ,0�+ �0, ↑ ↓ �� U+J−2�

�4�= �0, ↑ � −� �12�= �↑ ↓ , ↑ � 3U−5J−3�

�5�= �0, ↓ � −� �13�= �↑ ↓ , ↓ � 3U−5J−3�

�6�= �↑ , ↑ � U−3J−2� �14�= �↑ , ↑ ↓ � 3U−5J−3�

�7�=1/�2��↑ , ↓ �+ �↓ , ↑ �� U−3J−2� �15�= �↓ , ↑ ↓ � 3U−5J−3�

�8�= �↓ , ↓ � U−3J−2� �16�= �↑ ↓ , ↑ ↓ � 6U−10J−4�
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down in each orbital. Our continuous-time algorithm does
not suffer from any sign problem at these parameter values
and the hybridization expansion approach allows us to access
large interaction strengths. Figure 12 shows the distribution
of orders in the two bands for the two coupling strengths
U / t1=4 and U / t1=6. As expected, the average order is lower
for the narrow band and the peaks shift to lower order as the
interaction strength is increased.

At U / t1=4, both bands are metallic, as can be seen in Fig.
11 from the long-time behavior of G���, which is close to the
noninteracting solutions, shown by the dotted lines. The shift
in the narrow band indicates that the electrons, while still
itinerant, are becoming more strongly correlated. At U / t1
=8, both bands are insulating as follows from the rapid �ap-
proximately exponential� drop of G��� to values much lower
than the metallic solution. For U / t1=6, Fig. 11 shows that
G��� for the wide band is close to the non-interacting value,
indicating metallic behavior, while G��� for the narrow band
drops exponentially, indicating an insulating state.

The bottom panel of Fig. 12 shows the self-energies of the
metallic bands for U / t1=4 ,6. We see that for U / t1=4 the

wide band is weakly correlated �self-energy small compared
to frequency and to the bandwidth� but the narrow band is
strongly correlated. At U / t1=6 the wide band is strongly
correlated �self-energy larger than frequency and indeed
comparable to half the bandwidth�, but similar to a Fermi
liquid in the sense that Im ��i
�→0 as 
→0. However, a
more detailed analysis reveals interesting differences with
conventional Fermi liquid behavior.

As noted by Biermann et al.,21 the insulating orbital is
effectively a local moment, which is coupled to the metallic
orbital by the exchange coupling J. The usual Hund’s rules
imply that the exchange is typically of ferromagnetic sign;
thus in the orbital selective phase one might expect the
model to map onto a ferromagnetic Kondo-Hubbard lattice,
with both an exchange coupling to a local moment and an
on-site repulsion. Figure 13 shows that this is �at least quali-
tatively� indeed the case. The top panel plots the spin-spin
correlation function of the insulating orbital. The initial drop
and saturation behavior characteristic of the ferromagnetic
Kondo lattice model is evident. �Note that because the orbital
1 can be empty or doubly occupied, the correlation function
of the two orbital model at �=0 is slightly less than 0.25.�
The magnitude of the initial drop is surprisingly large. The

FIG. 11. Converged Green functions for the two-orbital model
with semicircular density of states at half-filling. The ratio of band
widths is t2 / t1=2 and the temperature �t1=50. The exchange cou-
pling is fixed as J=U /4. For U / t1=4 �i.e., U	U1

c�, both bands are
metallic, whereas for U / t1=8 �i.e., U�U2

c�, both bands are insulat-
ing. For U / t1=6, which lies in between U1

c and U2
c, the narrow band

is insulating, while the wide band is still metallic. Dotted lines show
the noninteracting Green functions for �t=50 and �t=100.

FIG. 12. Top panel: distribution of the orders p�ka�, a=1,2 for
U / t1=4 and U / t1=6. The average order is lower for the narrow
band and decreases with increasing interaction strength. Bottom
panel: imaginary part of the self-energies for the metallic states in
the narrow and wide band, showing the strong correlations in the
narrow band for U / t1=4 and in the wide band for U / t1=6. At
U / t1=4, the wide band is only weakly correlated.
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plot was made for U / t1=6 and J /U=0.25 implying J / t2
=0.75. In the Kondo model, J’s of this magnitude lead to a
much smaller decrease of CSS from its initial value. For com-
parison, we also plot results for J / t=−0.8 in Fig. 13, but as
can be seen, an effective J / t�−6 is required to reproduce
the two-orbital results. Similarly, the bottom panel compares
the calculated self-energy of the wide band to the Kondo
lattice self-energy corresponding to a J / t chosen to approxi-
mately reproduce the drop in CSS. The qualitative behavior
with a rapid decrease at low frequency is the same in both
models, but the quantitative agreement is not good, suggest-
ing that much of the self-energy of the metallic band arises
from the U, rather than from spin-dependent scattering due
to the Kondo coupling to the localized orbital. We have not
yet run simulations at low enough temperatures to test the
occurrence of the power-law behavior in the self-energy,
demonstrated in Fig. 6 for the Kondo lattice model.

Our results indicate that the ferromagnetic Kondo-Hub-
bard model exhibits an interesting interplay between the on-
site repulsive interaction and the Kondo coupling, leading to
a much larger effective exchange coupling than implied by
the bare parameters. Further exploration of this physics is an
important open issue.

VI. CONCLUSIONS

We have presented a formalism which extends a previ-
ously proposed diagrammatic QMC method to wide classes
of impurity models. The idea is to expand the partition func-
tion in the impurity-bath hybridization function, while treat-
ing the local part of the Hamiltonian exactly. The resulting
matrix formalism allows an efficient simulation of models
with reasonably small Hilbert spaces. We have demonstrated
the usefulness of the new approach with simulation results
for the Kondo lattice and two orbital models. In both cases,
the simulations in physically interesting parameter regions
do not suffer from a sign problem.

The new formalism opens up wide classes of questions
for investigation. Systematic investigations of quasiparticle
and magnetic properties of orbital selective Mott phases are
now possible. We have provided direct calculations which
support the conjecture of Biermann et al.21 that the orbital
selective Mott phase is in some qualitative sense described
by an effective ferromagnetic Kondo lattice model, and we
have further demonstrated that the Coulomb correlations in
this phase play a very important role, leading to an effective
coupling much larger than expected from the basic scales of
the model. Concerning the Kondo lattice model, we have
shown by comparing the ferromagnetically and antiferro-
magnetically coupled cases that the renormalizations familiar
from the one-impurity problem survive and have pronounced
effects on the lattice problem, even at interaction scales of
the order of unity. For example, the Néel temperature of the
�J�=1 models differ considerably in the ferromagnetic and
antiferromagnetic cases, which we believe is a result of the
opposite renormalization of J in the two cases. For the fer-
romagnetic Kondo lattice model, we have discovered an un-
usual power law renormalization of the electron self-energy
which we propose is related to the density of states renor-
malization associated with the J-driven metal-insulator tran-
sition. Further investigation of this transition will be a fruit-
ful subject for future research. For the antiferromagnetically
coupled model we have located the Kondo-insulator to anti-
ferromagnet transition and shown that the variation of the
magnetization near the transition point is extremely rapid.

Our method is from a conceptual and technical point of
view appealing, because it does not require a double expan-
sion in both the hybridization and the exchange couplings.
The algorithm leads to manageable perturbation orders and,
in the models studied so far, to an undetectably small sign
problem in relevant regions of parameter space. In the pres-
ence of exchange processes, however, one has to compute
the trace over all basis states in Eq. �16� explicitly. Because
the Hilbert space grows exponentially with the number of
orbitals, a straightforward application of the procedure intro-
duced here becomes impractical for large impurity problems
�a four site Hubbard cluster with 256 basis states seems
about the largest system one might want to consider�.

We see two possible ways to approach this problem. A
straightforward alternative is the above mentioned double
expansion, which allows one to return to the economical seg-
ment picture13 to represent the configurations and to devise
efficient Monte Carlo moves which are compatible with the
constraints of the model. Since the exchange couplings in

FIG. 13. Illustration of the relationship between an orbital se-
lective state and the ferromagnetic Kondo lattice model. The top
figure shows the spin-spin correlation function in the narrow �insu-
lating� band. The bottom figure shows the imaginary part of the
self-energy for the wide �metallic� band. As in the ferromagnetic
Kondo lattice model, the correlation function in the insulating or-
bital saturates at large times, while the self-energy of the metallic
band drops very rapidly as 
n→0.
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many relevant models tend to be weak, the increase in the
perturbation orders should still be manageable. What will
happen to the sign problem remains to be seen.

Another approach is based on the observation that most of
the states in the exponentially large Hilbert space are of very
high energy and are therefore not directly relevant to the
physics. An important issue for future research is the devel-
opment of “effective action” methods which will allow the
elimination of high energy states, reducing the problem to
one with a much smaller Hilbert space, to which the matrix

formalism can be directly applied.
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