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The depolarization ratio of the quadrupolar vibrations and the relative intensity of the symmetric l=0 and
quadrupolar l=2 acoustic vibrations in the Raman spectra of some dielectric nanocrystals has been calculated.
A dipole-induced-dipole model can account for the depolarized spectra from quadrupolar vibrations, but cannot
be at the origin of the polarized peak from the symmetric vibration. Bond polarizability seems to be the main
physical mechanism at the origin of Raman scattering from these modes. The study indicates that the quadru-
polar modes or symmetric modes dominate the spectra when the dipole induced dipole or bond polarizability
are more important, respectively. This result explains why semiconductor nanoparticles with covalent bonds
show intense symmetric scattering, and fluoride crystals with ionic bond show Raman scattering from quadru-
polar modes, and why in oxide crystals the two modes show comparable Raman activity. A comparison of the
spectra of titania, zirconia, and hafnia nanocrystals offers further support to the model.
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Low-frequency Raman scattering is a widely used experi-
mental technique for the study of the vibrational dynamics of
metallic, semiconductor or dielectric nanoclusters, usually
embedded in a glass.1–9 Most theoretical approaches for the
calculation of the acoustic vibrational dynamics of spheroi-
dal clusters are based on the work of Lamb, which found the
vibrations of a free homogeneous sphere.10 The modes are
classified in torsional and spheroidal, both labeled by three
indices �lmn�, which describe the angular �lm� and radial �n�
dependence of the displacements. As shown by Duval on the
basis of simple symmetry arguments, only the spheroidal
symmetric �l=0� and quadrupolar �l=2� spheroidal modes
are Raman active.11 Furthermore, the l=0 modes give a po-
larized Raman spectrum, whereas the l=2 modes give depo-
larized spectra, allowing to distinguish the nature of the vi-
brations by a comparison of the VV and HV spectra.
Recently, a paper appeared with the claim that the l=0 and
l=2 spheroidal modes are not Raman active because of an
odd displacement field.12 This wrong criterium does not con-
sider that even modes have usually odd displacements, as for
example, the vibration of the oxygen molecule or the sym-
metric stretching of the CO2 molecule, which are Raman
active even modes, having odd displacements. In any case,
the explicit calculation of the average strain starting from the
potential, deriving the displacement and again deriving the
strain components, shows that only the l=0 and l=2 sphe-
roidal modes are Raman active.13

There are no general rules that indicate both the relative
intensity of the symmetric and quadrupolar Raman peaks,
appearing in the VV spectrum, or the depolarization ratio
DR2= IHV / IVV for the quadrupolar modes. In fact, in some
systems as silver, gold and PbF2, the quadrupolar vibrations
dominate the Raman spectrum, in other systems, as CdS, Si,
Ga2O3, and HfO2, the symmetric vibrations dominate.3–6,8,9

In TiO2 nanocrystals both modes are observed with similar
intensities.7 Different depolarization ratios for the quadrupo-

lar vibration have been measured, ranging from about 0.3 for
silver to about 0.7 for TiO2.3,7

In the case of metal particles, the resonance with the sur-
face plasmon excitations produces intense low-frequency de-
polarized Raman scattering.3,14,15 Here, we will limit our
study to dielectric nanoparticles having electronic transition
far from the excitation frequencies used in nonresonant Ra-
man spectroscopy. The space-time changes of the polariza-
tion are usually separated in two contributes.16 The first one
is related to the density fluctuations, which cause inelastic
neutron scattering and usually most of the VV Brillouin scat-
tering, due to longitudinal acoustic phonons. The second
contribution is due to changes of the dipole induced dipole
�DID� effects, caused by the motion, and to changes of the
bond polarizability �BP� with the change of the atomic dis-
tances. The induced effect contribute to the polarized Bril-
louin peak due to longitudinal phonons and cause the depo-
larized Brillouin peak, due to transversal phonons, and the
disorder induced low-frequency Raman scattering in glasses
or disordered crystals. The scattering mechanism in the low-
frequency Raman scattering from the acoustic vibrations of
nanoparticles is something in between to those of Raman and
Brillouin scattering in bulk systems. If the particle is much
smaller than the wavelength of the exciting light source, the
mechanism of scattering due to density fluctuations is not
active. All polarization elements are excited in phase and the
particle behaves as a molecule, which can be described by an
effective polarizability and by its derivatives with respect to
the coordinates of the normal modes. However, the particle is
sufficiently big to support acoustic modes with wavelengths
much higher than the atomic sizes. Therefore, the effective
polarizability tensor and the intensity of the Raman band of
the active vibrations can be calculated with the method used
for the calculation of the intensity of the Brillouin scattering.
The important difference is that no q dependence is present,
so that isotropic scattering is observed instead of the Bragg-
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like scattering, typical of Brillouin scattering in systems,
which extend over many wavelengths. A method for calcu-
lating the low-frequency Raman spectrum of dielectric nano-
particles has been developed in Ref. 13. The contribution of
the pth mode to the Stokes part of the spectrum can be put in
the form

I����p� �
n��p� + 1

�p
C����p� , �1�

where � and � are the directions of polarization of the inci-
dent and scattered photon, n�� ,T� is the Bose-Einstein fac-
tor, and C����p� is the mode-radiation coupling coefficient.
The scattering amplitudes of the pth mode B��

p = �C��
p �1/2 are

given by

B��
p = �

��
�

i

A�����xi�
�e��xi,p�

�x�

, �2�

where xi�t� is the equilibrium position of the ith scatterer,

and the
�e��xi,p�

�x�
are related to the strain components at xi�t�

produced by the normal mode e�i , p�. The A���� coefficient
are local quantities to be calculated at the equilibrium posi-
tion of the ith unit and do not depend on the vibrations.

Within a DID model of the scattering mechanism, we will
have

A�����xi� = �i�
j

�iT����xij�x�
ij , �3�

where �i is the bare polarizability of the ith scatterer, xij

=x j −xi is the equilibrium distance of the pair of scattering
units i , j and T���

�3� �r�=−�������� 1
�r�

��.
By neglecting the size dependence of the A����, i.e., by

neglecting surface effects, and by converting the sum on the
point scatterers into an integral on the volume of the sphere,
in a continuum description of the vibrational modes, we fi-
nally obtain

B��
p = N�

k��

A����
k � �e��x,p�

�x�

dv , �4�

where N is the number of unitary cells in the crystalline
sphere and the sum over k is the sum over the atoms �ions� in
the unit cell.

In this way, the problem of calculating the Raman inten-
sities is reduced to the calculation of two set of independent
quantities: �i� the A����, which are quantities that depend on
the microscopic structure and on the scattering mechanism
�DID or BP�, but not on the dynamics; �ii� the average strain
components produced by the vibrational mode, treated in a
continuum approximation. The components of the local
strain are calculated in the Lamb approximation of a homo-
geneous sphere, simply described by its density and isotropic
transverse and longitudinal sound velocity.

The depolarization ratio DR2 of the l=2 mode and the
ratio of the coupling coefficients of the surface symmetric
and quadrupolar modes C02=C0 /C2 have been calculated for
some crystalline systems. A spherical cluster of radius R,
centered on a particular atom is cut in the crystal. The quan-
tities A����

k are calculated in the different k sites by consid-

ering the induced fields from a sufficient number of shells
around the kth site. In particular, the contribution of the first
shell of nearest neighbor atoms is calculated.

The structure of the A���� in a cubic Bravais lattice and of
the strain tensor 	�� for the l=0 makes C0
0 and DR2
=1/3.13 These two results can be extended to simple cubic
system, as diamond, NaCl, CsI, PbF2, in which all atoms in
the unitary cell have cubic site symmetry. This is because the
scattered field is the sum of the fields scattered by each atom.

In noncubic systems, DR2 and C02 depend on the atomic
polarizabilities. In binary systems, a single parameter, the
ratio of atomic polarizabilities of the two atomic species, is
needed. Figure 1 shows the calculated DR2 and C02 for the
three TiO2 structures, tetragonal rutile, tetragonal anatase,
and monoclinic brookite, as a function of the atomic polar-
izability ratio.

The DR2 curve of anatase shows that the Ti-Ti DID ef-
fects �left side of the figure� are strongly depolarized, that the
O-O contribution �right side� have low depolarization ratio
and that the combined effects of O-O, Ti-Ti, and O-Ti pro-
duce a critical DR2 behavior caused by the interference of
the induced fields. In the case of rutile, for a polarizability
ratio �O2− /�Ti4+ �8 these interference effects simulate a cu-
bic symmetry with DR2=1/3 and C02=0. A pronounced
maximum of DR2 is found at �O2− /�Ti4+ �8 for the anatase
and brookite structure. The polarizabilities are not well de-
fined quantities that can be assigned to a given ion, indepen-
dent on the context and different values, covering wide
ranges, can be found in the literature. A possible criterion is
to estimate a value of the polarizability proportional to the
atomic volume.17 Another criterion is to measure the atomic
distances and the dielectric constant of different compounds
assigning an effective radius and polarizability to each atom

FIG. 1. �Color online� Calculated �DID model� DR2 and C02 for
TiO2, as a function of the ratio of the polarizabilities of oxygen and
titanium ions. Full line: brookite, dotted line: anatase, dashed line:
rutile. The horizontal segments to the left give the quantities calcu-
lated in a NNDID model.
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or ion.18 The two methods give different results, especially
when the bonds have mixed ionic and covalent nature and
the ionic charge is not well defined. In the case of O2−, the
two methods give an ionic radius of 55 and 138 pm, respec-
tively �44 and 57 pm for Ti4+�, from which values of 1.9 and
14 for the �O2− /�Ti4+ ratio can be estimated. From the spectra
of Fig. 2�a� for silica-titania glassceramics, DR2=0.7±0.1 is
obtained. This value can be reproduced only in the small
range of the resonance at �O2− /�Ti4+ �9 in Fig. 1, the maxi-
mum value being just DR2=0.7.

The peak intensities of the l=0 and l=2 surface vibrations
are comparable in the VV spectrum of Fig 2�a� for TiO2.
From the spectra a value of C02=7±2 is obtained. It should
be noted that the ratio of the peak intensities in the Raman
spectrum is reduced, with respect to the C02 ratio, by a factor
of the order of ��0 /�2�3, because of the �n+1� /���2 factor
�see Eq. �1�� and because of a peak broadening due to a size
distribution with ��0 /�0���2 /�2.

The calculations were performed for many other systems
of interest, as quartz, christobalite, Ga2O3, HfO2. In some
cases the dependence of DR2 on the ratio of ionic polariz-
abilities is not so critical as for TiO2 crystals. A common
result of all investigated systems is that C02�1. This is re-
lated to the intrinsically depolarized nature of the DID effect,
but also to the fact that at the microscopic scale of the first
neighbor atoms, high symmetry is present even in lattices
with low symmetry. For this reason, the deviation from the
simple structure of the cubic A����

k is not really very impor-
tant.

Therefore, we need other scattering mechanisms, different
from DID, for accounting for the observation of intense
peaks from the symmetric mode in the Raman spectra of
many systems. A bond polarizability mechanism is often
taken into account by considering the DID effect limited to

the nearest neighbors atoms �NNDID�.19 The results of this
calculation are reported in Fig. 1 as horizontal segments,
since DR2 and C02 do not depend on the ratio of polarizabil-
ities. The intensity of the symmetric mode remains very
weak also in the NNDID model.

However, the NNDID model does not fully reproduce the
BP mechanism. When atoms move, bonds also move, pro-
ducing fluctuations of the induced fields, and this effect is
accounted for by NNDID. But bond stretching, by changing
the charge distribution within the volume of the covalent
bond, will also change the value of the bond polarizability. In
general, different effects will be present for fields parallel or
perpendicular to the bond direction �	 and ��. We are inter-
ested to the derivatives of the polarizability with respect to
bond length and we can define an isotropic ��=1/3 ��	�
+2��� � and an anisotropic ��=�	�−��� derivative.

The isotropic term has A����=A ������. By using the re-
lations among the strain components in Table I of Ref. 13,
one obtains that �� produces Raman scattering from the sym-
metric modes, but not from the quadrupolar modes. From a
more physical point of view, we can observe that most bonds
are stretched in phase in a surface symmetric mode, produc-
ing a modulation of the total polarizability of the sphere. On
the contrary, for the quadrupolar modes, the total polarizabil-
ity of the sphere does not change in time because the bonds
are stretched with phase relations that maintain the average
bond length constant.

The anisotropic term �� will contribute to depolarized
scattering and indeed to the Raman activity of the quadrupo-
lar mode. Its importance will depend on the �� /�� ratio, but
also on the crystal structure with its distribution of bond
directions. It should be noted that when the polarization of
the exciting light is parallel or perpendicular to the bond
direction, no depolarized scattering will occur. Furthermore,
depolarized fields produced by bonds with different orienta-
tion will sum up with a tendency to destructive interference.
For these reasons, within a bond polarizability scattering
mechanism, it is expected that the Raman activity of the
quadrupolar vibrations is much smaller than that of the sym-
metric ones.

The above analysis seems to bring forward a quite simple
result. The relative importance of the symmetric and quadru-
polar modes in the Raman spectra is mainly related to the
scattering mechanism, BP or DID. The few available experi-
mental data are reported in Table I, where the systems are
ordered in increasing C02 values. PbF2 has the smallest C02

FIG. 2. �Color online� VV and VH polarized Raman spectra of
�a� �full lines� silica-titania �with TiO2 nanoparticles 7� and �circles�
silica-hafnia �with HfO2 nanoparticles 5�; �b� silica-zirconia �with
ZrO2 nanoparticles�.

TABLE I. Depolarization ratio of the l=2 mode and ratio of the
coupling coefficients of the l=0 and l=2 modes.

System DR2 C02 Ref.

PbF2 0.5±0.1 1.0±0.4 6

TiO2 0.7±0.1 7±2 7

Ga2O3 12±4 4

CdS-CdSe �20 9

HfO2 0.8±0.2 30±8 5

ZrO2 �20 present
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value in agreement with a high ionic character of the bonds.
The DR2=0.5±0.1 is higher than the calculated one for a
cubic system �DR2=0.33�, but this could be due to the fact
that the investigated nanocrystals were highly defective, due
to a high Er3+ doping. On the low side of Table I we find
CdSxSe1−x, indicating that the BP mechanism of scattering
dominates in covalent systems. In between we find Ga2O3
and TiO2, which are systems where the ionic and covalent
nature of the bonds compete.

Tetragonal HfO2 has a quite strong scattering from the
symmetric modes.5 Silica-zirconia glassceramics were pro-
duced for a comparison with the titania and hafnia systems.
The waveguides fabricated by dip coating with compositions
80SiO2−20ZrO2 were annealed at different temperatures
�900 °CT1300 °C� for promoting the growth of ZrO2

nanocrystals of increasing size. The polarized Raman spectra
of these systems, obtained by waveguide excitation in the
TE0 mode, are shown in Fig. 2�b� for the waveguide an-
nealed at 1150 °C. The spectra of zirconia and hafnia nano-
crystals look very similar with dominant scattering from the
l=0 vibrations, whereas anatase has also an important scat-
tering from the l=2 modes. A common trend would be ex-
pected for the three oxides with bonds involving 3d, 4d, and

5d electrons, respectively. However, hafnia and zirconia have
very similar structures and absorption edges, quite different
from those of anatase.20 This suggests that also the nature of
the bonds are different. A quantitative comparison of the
three systems would need first principle calculation of the
polarizabilities, and their derivatives with the strain.

In conclusion, we have found that DID scattering mecha-
nism produce depolarized Raman spectra and indeed Raman
scattering from the quadrupolar vibrations. DR2 depends on
the crystalline structure and on the ratios of polarizabilities
of the different dipoles. The symmetric mode is forbidden in
cubic systems and has whatever quite low intensity in all
systems. BP scattering mechanism mainly gives polarized
Raman spectra and indeed Raman from the symmetric vibra-
tions. A correlation seems to exist between the C02 and the
degree of ionicity/covalency nature of the bonds. Accurate
measurements of DR2 and C02 in many systems are now
needed to test this model.
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