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A theory is presented to describe the optical transmission through a rectangular hole in a real metal film. The
previous theory of the transmission through a rectangular hole in a perfect electric conductor is extended to
include the effects associated with having a real metal by adding surface-impedance boundary conditions and
an effective index mode calculation. Both the peak and amplitude of the Fabry-Pérot resonance of the funda-
mental mode agree quantitatively with experiments. Finite-difference time-domain calculations are used to
verify the theoretical findings as well as to show the effects of including loss, which is not included in the
theory. The localized nature of the transmission resonances is also revealed by analyzing the electric field maps
associated with the enhanced transmission process.
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Observations of extraordinary optical transmission
through arrays of subwavelength holes in metal films have
spurred on intense research activity into understanding and
utilizing this phenomenon.1–10 Recent works have experi-
mented with the effects on transmission that arise from
changing the hole shape.11–13 The main findings of those
works is that elliptical or rectangular holes can dramatically
influence the polarization, the resonance wavelength, and the
intensity of the transmission. Random arrays of rectangular
holes were used to demonstrate that a resonance exists in the
transmission spectrum which is governed by the shape of the
individual hole.12 The peak wavelength of the resonance
could be redshifted by decreasing the width of the short side
of the hole. On the other hand, recent studies on isolated
rectangular holes have shown the same effects of a resonance
in transmission and a redshift that arises when reducing the
width of the hole.14

To explain how the shape-controlled resonance wave-
length arises from a single hole, the influence of the hole
shape on the cutoff wavelength of the modes within the hole
was considered.15 It was shown that the cutoff wavelength
increases for a real metal due to increased coupling between
evanescent fields on the long edges inside the hole. Later, the
origin of the resonance was explained with a theory that
incorporated the coupling between the mode inside the hole
with the free-space regions on either side of the film.16 The
physical nature of this effect was attributed to a Fabry-Pérot
resonance due to multiple reflections of the mode within the
hole at the interfaces with the free-space regions. That theory
did not capture the observed redshift phenomenon that arises
when the width of the hole is reduced in a real metal because
it considered only a perfect electric conductor.

In this paper, a theory that describes quantitatively the
transmission resonance for a rectangular hole in a metal film
is presented. Here, the previous theory has been generalized
to allow for a finite dielectric constant, and thereby captures
the new physics associated with having a real metal. Two
modifications were required for this generalization: the in-
corporation of surface-impedance boundary conditions
�SIBCs� and the use of the effective index theory to calculate
the propagation constant of the fundamental mode within the

hole. The redshift in the transmission resonance that arises
from decreasing the short-edge width of the hole is demon-
strated, and the calculated values agree well with past experi-
ments. Finite-difference time-domain �FDTD� simulations
are used to verify the theory, and to show the influence of
adding material loss. The small grid-size requirements of the
FDTD calculations demonstrate the sensitivity of this reso-
nance effect to evanescent waves at the surface of the metal.

Figure 1�a� shows a schematic of the system under study:
a rectangular hole of sides ax and ay perforated on a silver
film of thickness h. In the calculations presented here, ax
=270 nm and h=300 nm are fixed whereas ay takes several
values, ay =260, 185, and 105 nm. This set of geometrical
parameters corresponds to the ones used in the
experiments.14 The system is illuminated by a normally inci-
dent p-polarized plane wave of wavelength �, the E field
pointing along the y direction.

Here we outline the basic theoretical formalism; more de-
tails can be found elsewhere.16,17 It is based on a modal
expansion of the electromagnetic �EM� fields �plane waves
in vacuum regions and TE and TM eigenmodes inside the
hole�. We have shown17 that, for subwavelength holes, it is
an accurate approximation to consider only the first TE
eigenmode. In this way, the EM fields in all regions of space
can be written in terms of the modal amplitudes of this
mode, E and E�, at z=0 and h, respectively. The dielectric
properties of a real metal, i.e., the fact that its complex di-
electric constant takes finite values, can be incorporated into
the formalism in an approximate way by applying SIBCs at
the two horizontal interfaces of the structure. This is the first
improvement in our theoretical approach. The equations that
E and E� must satisfy emerge when these SIBCs are applied
at the two interfaces of the structure:

�G − ��E − GVE� = I0, − GVE + �G − ��E� = 0. �1�

Note that this system of two linear equations is formally
equal to the one found in Ref. 16 where perfect metal bound-
ary conditions were applied. As shown below, the difference
with respect to that case resides in the expressions of the
magnitudes appearing in it. The nonhomogeneous term I0
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measures the overlap between the incident plane wave and
the TE eigenmode inside the hole. For normally incident
radiation, I0=4�2/ �i��1+ZS��, where ZS is the surface im-
pedance of the metal, ZS=1/�����, ���� being the
�-dependent dielectric constant of silver. In our calculations,
we have used the values for � as tabulated in Ref. 18. The
coupling between the two sides of the hole is accounted for
by the term GV and is basically controlled by the propagation
constant of the fundamental TE mode, qz, and by its admit-
tance YTE=qz /k� ��with k�=2� /���:

GV =
2iYTE

eiqzh�1 + ZSYTE�2 − e−iqzh�1 − ZSYTE�2 . �2�

The term � in Eq. �1� also depends on qz and YTE:

� = iYTE
eiqzh�1 + ZSYTE� + e−iqzh�1 − ZSYTE�

eiqzh�1 + ZSYTE�2 − e−iqzh�1 − ZSYTE�2 . �3�

The self-illumination of the hole, via vacuum modes, is
controlled by G, which for this particular hole geometry can
be expressed as

G =
iaxay
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for I0, GV, �, and G in a perfect conductor film given in Ref.
16 can be easily obtained from Eqs. �2�–�4� by just setting
ZS=0.

The second improvement of this theory is to incorporate a
realistic value for the propagation constant of the TE mode
�qz� inside the hole. For a perfect electric conductor qz

=�k�
2 − �� /ax�2. By using the effective index method,15 an

analytic expression for qz in a real metal can be derived
which gives very accurate results when compared with finite-
difference calculations. Within this approach, although the
absorption in the metal is neglected, both the penetration of
the EM fields inside the metal and the existence of surface
plasmons are captured into qz.

Figure 1�b� shows the effective index calculations of the
real and imaginary parts of qz versus � rendered for rectan-
gular holes with fixed ax=270 nm and three different values
of ay =105, 185, and 260 nm. In the three cases, the cutoff
wavelength �C �defined as the wavelength at which qz=0� is

much longer than the perfect conductor value �C
PC=2ax

=540 nm. Importantly, the shift to longer wavelengths in-
creases when ay decreases.

Figure 1�c� shows the normalized-to-area transmission �T�
spectra for the three cases analyzed in Fig. 1�b�. These spec-
tra have been computed by using the formalism described
above. It is clear that there is a close correlation between the
locations of the transmission resonances and the values of �C
for the three rectangular holes analyzed. For the case of a
rectangular hole perforated on a perfect conductor, we also
demonstrated that a transmission resonance emerges at the
corresponding cutoff wavelength, �C

PC.16 These combined re-
sults allow us to raise a general conclusion: for a rectangular
hole drilled on a metal, there is a transmission resonance
located at the cutoff wavelength, associated with the condi-
tion qz=0. In a real metal �finite ��, due to the different
effective propagation characteristics of the fundamental TE
mode, this cutoff wavelength is shifted to longer wave-
lengths with respect to the perfect conductor case ��=−��.
However, our results suggest that the physical origin of the
transmission resonances appearing in both real metals and
perfect conductors is the same. Figure 1�c� also shows the
redshift in the transmission peak wavelength with reducing
short-edge width of the hole and that T increases with the
ratio ax /ay. These two trends agree very well with past
experiments.14

FIG. 1. �a� Diagram of a single rectangular hole of sides ax and
ay perforated on a silver film of thickness h. The structure is illu-
minated by a normally incident p-polarized plane wave with its
E-field vector pointing along the y axis. �b� Real and imaginary
parts of the propagation constant qz for rectangular holes with ax

=270 nm and ay =105, 185, and 260 nm perforated on a silver film
with h=300 nm. �c� Normalized-to-area transmittance �T� versus �
for the three cases displayed in �b� calculated with the modal ex-
pansion technique.
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To further corroborate the theory and to consider the ef-
fects of absorption in the metal, we have conducted FDTD
numerical simulations on these structures. Convergence of
the transmission spectra was found by varying the grid sizes
from 20 to 3 nm. This last value for the grid size ensures that
the surface plasmon effects are accurately captured. The
source used was a plane wave with a center wavelength of
700 nm with a broadband pulse of 5 fs.

Figure 2 shows T versus � obtained with the FDTD code
for the three cases analyzed in Fig. 1�c�. Remarkably, there is
a very good agreement between the two very distinct theo-
retical approaches on the location of the resonances and on
their transmission values. The main difference is linked to
the appearance of an additional peak located at around
600 nm in the modal expansion calculations �clearly evident
in the ay =105 nm case and showing lower amplitude in the
other two cases�. FDTD calculations in which the absorption
in the metal is gradually reduced indicate that the origin of
this discrepancy is related to neglecting silver absorption on
the vertical walls of the hole within the modal expansion
formalism. Except for this feature, the two theoretical spectra
closely resemble the experimental ones �see Fig. 3c in Ref.
14�, allowing us to safely conclude that the physical origin of
the transmission peaks found in isolated rectangular holes
perforated in real metals stems from resonant modes that
present a nearly zero propagation constant �qz=0�. At this
condition, the group velocity of the mode tends to zero, re-
sulting in a huge increase of the photonic density of states.

This conclusion is reinforced by looking at the amplitude
of the E field on two different planes �x=0, top panel, and
z=0−, bottom panel, in Fig. 3� for the case ax=270 nm and
ay =105 nm evaluated at the resonant wavelength ��
=780 nm� using the FDTD code. The top panel shows that
the E-field amplitude is practically uniform inside the hole,
as corresponds to a mode with qz=0. The bottom panel re-
veals the localized character of the mode. It is worth noticing
the similarities of these pictures with the ones reported for a

single rectangular hole perforated on a perfect conductor.16

In conclusion, we have demonstrated theoretically that
single rectangular holes perforated on real metals exhibit
transmission resonances that appear near the wavelength in
which the propagation constant inside the hole waveguide
approaches zero. The physical origin of these resonances is
very similar to the one previously found for single rectangu-
lar holes perforated on perfect conductors, except for the
redshift in the resonance peak resulting from the change in
the cutoff wavelength. Good quantitative agreement was
found with past experiments and FDTD calculations. The
FDTD calculations also show the effects of including losses,
which were not present in the theory.
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FIG. 2. T for a normally incident plane wave versus � as ob-
tained with the FDTD numerical code for the same three cases
analyzed in Fig. 1�c�.

FIG. 3. �Color online� E-field amplitude evaluated at the reso-
nant wavelength for a rectangular hole with ax=270 nm and ay

=105 nm in two different planes: cut through the center of the
rectangle �x=0, top panel; wave impinging from the bottom� and
entrance surface �z=0−, bottom panel�.
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