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A nonlinear differential equation is derived for the surface shape evolution in epitaxial growth, from a
transport equation for the adatoms. A negative Ehrlich-Schwöbel barrier is assumed to be present at atomic
steps, favoring downhill migration of adatoms. Expressions for the coefficients in the growth equation are
obtained in terms of the deposition rate, step density, step edge potential barrier, and adatom release rate from
step edges. The analytical model is tested by comparison with a kinetic Monte Carlo simulation of a solid-on-
solid model, which includes the same physical phenomena.
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The time evolution of the surface shape is one of the most
basic phenomena in epitaxial growth and has been studied
extensively.1–4 Although the underlying atomistic physics is
conceptually simple, the aggregate dynamical behavior of
many adatoms during crystal growth is difficult to model
analytically. In the simplest case, vapor-deposited adatoms
diffuse on the surface until they are absorbed by a step edge
and incorporate into the surface.5 Adatoms also desorb from
the step edges, but at a lower rate. An adatom located at the
top edge of a step may experience an asymmetric potential,
known as an Ehrlich-Schwöbel �ES� barrier,6 that will tend to
either enhance or reduce the rate of transfer to the lower
terrace. In this paper we describe a method for deriving a
growth equation starting with an adatom transport equation,
for the case in which the step edge potential barrier enhances
the rate of transfer to the lower terrace.

Considerable effort has gone into identifying universality
classes in crystal growth, from the scaling behavior of the
interface width.7 If one can match the scaling behavior of the
system to that of a suitable partial differential equation, then
one can argue that the system can be described by this dy-
namical equation. However, this method provides little guid-
ance on how to relate the coefficients in that model to mi-
croscopic physical processes. In addition, the system of
interest could easily be in a crossover regime, which is not
amenable to a scaling analysis.

In this paper, we derive an equation for the time depen-
dence of the shape of a patterned surface directly from the
adatom transport equation. The analytical model is compared
with a kinetic Monte Carlo �KMC� simulation of a solid-on-
solid �SOS� model of crystal growth. Since we understand
the physics of this computational model completely, it is a
better test of the analytical model than experimental data, for
which the physical mechanisms are uncertain. The model in
this paper was developed to describe measurements of sur-
face shapes during epitaxial growth of GaAs on patterned
substrates, and therefore the parameter values are designed to
reproduce experimental parameters for GaAs.8 In particular,
the GaAs experiments show a downhill bias in the adatom
drift that we model with inverse �negative� ES barriers at
step edges.

The transport equation for adatoms with a density n �with
dimension nm−2�, crystal lattice constant a, and diffusion
constant D is as follows:2,8

�tn = F + �Ka − �Dn�S2 + D�2n − � · Jes. �1�

In this equation, F �nm−2 s−1� is the flux of adatoms depos-
ited from the vapor and S �nm−1� is the density of surface
steps per unit area. S is a function of the surface slope �h,
where h is the surface height above a flat reference plane. K
is the thermal release rate of adatoms from step edges
�nm−1 s−1� and � is a dimensionless geometrical constant.
The second term on the right-hand side of Eq. �1� describes
the net incorporation rate of adatoms into the substrate at
step edges, namely, the difference between the capture and
release rates. The third term describes adatom diffusion with
coefficient D. The last term depends on the slope-dependent
adatom current Jes, associated with the ES barrier. We as-
sume that the potential barriers favor downhill migration of
adatoms, as discussed above. Clearly, there are also systems
for which the adatoms tend to migrate uphill, although we do
not consider this case here. The various terms in Eq. �1� are
explained in more detail below.

We neglect kinetic roughening associated with the random
motion of adatoms. We also neglect island nucleation as a
mechanism for adatom capture; however, nucleation is im-
plicitly assumed to be present in order to maintain a steady-
state step density.

The downhill drift current and step edge capture rates in
Eq. �1� can be estimated with reference to the solution of the
diffusion equation on a terrace bordered by parallel steps, a
distance L apart. In this case, the step density, or step length
per unit area, is S=1/L. The up and down steps capture
adatoms with capture velocities Cu ,Cd, respectively, and re-
lease them back onto the terrace at a rate K /2 per unit length.
Therefore, we can write the gradient boundary conditions

�D � n�u,d = ± �Cu,dn�u,d � K/2 �2�

at the step edges.5 The diffusion coefficient D=a2�0 /4,
where �0=2kBT /h�exp�−Esub /kBT� is a temperature-
dependent hop rate with substrate bonding energy Esub. Solv-
ing the steady-state diffusion equation for the adatom density
with these boundary conditions, we find the net step edge
capture rate to be �12Dnav

2 −Ka�S2 where nav is the average
adatom density. This reproduces the second term on the
right-hand side of Eq. �1� with �=12. This analysis ignores
the fact that, in general, the steps will not be parallel lines,
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but rather will have a random shape. We wish to find out
whether the observed surface shapes can be described with-
out detailed knowledge of the shape of the step edges.

The net downhill flux for a single terrace is the difference
in the rate of adatom absorption at the down step and the up
step. This is readily obtained from the solution of the diffu-
sion equation in the parallel step configuration and is given
by

JS = ��F + KS� �3�

where �= 1
2D�1/Cu−1/Cd� is the Ehrlich-Schwöbel param-

eter. In our case, the absorption rate at the downhill step is
greater than the rate at the uphill step �Cd�Cu� so that
��0. In the case of a low surface slope, many of the terraces
contain islands that are bordered by opposite-sign steps
�down on both sides� and will not contribute to the net down-
hill flux associated with the macroscopic topography. In this
case we prorate the downhill flux by the fraction of terraces
that have the same sign steps �up on one side, down on the
other�. In the low-slope limit �h�aS and

Jes = JS � �h/aS . �4�

�This result differs from results reported earlier in that we
have also included the rate of adatom release from step
edges.9� The step density S also depends on the surface
slope. For example, in the high-slope limit, when the surface
resembles a staircase, aS��h. A suitable interpolation for-
mula for the step density can be obtained from the incoherent
sum of the random local slope associated with kinetic growth
phenomena and the deterministic slope �h associated with
the macroscopic surface shape,8,9

S = �S0
2 + ��h/a�2 �5�

where S0 is the step density at zero slope. This expression
has the expected asymptotic step density at large slopes. Sub-
stituting Eq. �5� into Eq. �4�, we obtain the downhill adatom
flux Jes for both large and small slopes.

The time derivative in Eq. �1� is approximately equal to
zero, because the adatom dynamics �diffusion, step attach-
ment� are fast compared with the rate at which the macro-
scopic shape of the surface changes. The transport equation
�Eq. �1�� can now be solved for the adatom density n. Using
Eqs. �3�–�5� and Eq. �1�, we get

F − �DS2n + KaS2 + ��F

S
+ K	�2h + D�2n 
 0. �6�

In the limit of weak surface topography, the spatial variation
in the adatom density is small compared to its average value.
In this case, the last two terms in Eq. �1�, which describe the
spatial variations, are small compared to the first three terms
and we can solve Eq. �6� for n to lowest order in the �2

operator as follows:

n =
�

�DS2�F

S
+ K	�2h +

F + KaS2

�DS2 − D�2 

�

�DS2�F

S
+ K	�2h

+
F + KaS2

�DS2 −
2F�2S

�2DS5 . �7�

The last term in Eq. �7�, with the �2 moved to the numerator,
is obtained by solving Eq. �6� for the Fourier transform of n
to second order in the spatial frequency, and then inverse
transforming.

The surface height increases whenever an adatom attaches
to a step edge and decreases when an adatom is released
from a step edge. Therefore, the time dependence of the sur-
face height is

�th = a3S2��Dn − Ka� . �8�

From Eqs. �7� and �8� we then obtain the growth equation

�th = a3F + 	�2h − 
�2��h�2 �9�

to lowest order in the derivatives of the linear and nonlinear
terms in �h and to second order in h, where 	=a3��F /S0

+K� and 
=aF / ��S0
4�. This equation is of mixed order in the

spatial derivatives and is expected to describe surface shape
evolution for low-amplitude, long-wavelength surface topog-
raphy. A similar expression for 
 was obtained earlier by
Krug7 and Politi et al.9 From Eq. �7� we conclude that the
nonlinear term arises from the diffusion of adatoms from
regions with low densities of attachment sites to regions with
high densities.

The coefficient 	 of the linear term in Eq. �9� reproduces
the result of Vvedensky if we apply the constraints of the
Wolf-Villain model.10 In that model, the ES parameter �=1,
since the particle always moves down at a step edge; simi-
larly, the step density is �1/a as every site acts as an
adatom-immobilizing step site since there is no surface dif-
fusion.

Equation �9� has the form of a conservative Kardar-Parisi-
Zhang equation,11 in good qualitative agreement with experi-
mental data for GaAs.12,13 For a more rigorous test of the
continuum model, we compare the predictions of Eq. �9�
with numerical simulations of crystal growth using a full-
diffusion, restricted SOS model.8,14 In the particular model
that we use as a test case, adatoms are deposited at a rate F
and bind to terrace sites with a activation barrier for hopping
of 1.25 eV. At step edges, the adatoms bind laterally with up
to three additional bonds, each with energy 0.35 eV. On the
upper edge of an atomic step, there is a barrier lowering of
50 meV �Ees=−50 meV� for adatom hopping to the lower
terrace, which simulates the ES barrier that favors downhill
migration. A typical simulation involves 1010 events.

In Fig. 1, we show the steady-state density of step edge
attachment sites on a vicinal surface as a function of tem-
perature and surface slope in the SOS simulation. The initial
condition for these simulations consists of regularly spaced
steps on a 400�400 lattice with wrapped boundaries. As
expected, the step density decreases with temperature and
increases with surface slope. At 400 °C, the slope depen-
dence of the step density matches our interpolation formula
in Eq. �5� rather well. At higher temperatures, the step den-
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sity has a nonmonotonic dependence on surface slope. The
reason for this behavior can be seen in Figs. 1�b�–1�d�,
which show the surface topographies for three different sur-
face slopes for growth at 500 °C. At low slopes the steps
have a closed-loop, island-type topology, while at higher
slopes they have an open-loop, staircase-type topology. The
minimum step density occurs at the transition between the
two different step topologies.

The time evolution of an initially sinusoidal surface in the
SOS simulation can be fitted by Eq. �9� with 	 and 
 as
adjustable fitting parameters. The fitted parameters can then
be compared with theoretical values computed from the ex-
pressions for 	 and 
 following Eq. �9�. The time develop-
ment of an initially sinusoidal surface cross section is shown
in Fig. 2�a� for growth at 495 °C, along with the continuum
model fit obtained by solving Eq. �9� numerically. The ini-
tially sinusoidal surface develops downward-pointing cusps,
due to the nonlinearity in the growth process, as the surface
amplitude decays. The best-fit values of 	 and 
 are obtained
by matching the Fourier coefficients of the surface in the
continuum model to the atomistic simulation according to
h�x , t�=�i=1

3 ai�t�cos�2�ix /L�, where L is the period of the
starting surface and a1�0�=6 and a2�0�=a3�0�=0. Examples
of the time dependence of the Fourier coefficients are shown
in Figs. 2�b�–2�d�. The nearly exponential decay of the first
Fourier coefficient is primarily determined by the linear term
in Eq. �9�. The growth of the second harmonic reflects the
amplitude of the nonlinear term, and can be recognized in the
broadening of peaks and the cusps developing between them.
Figures 2�c� and 2�d� indicate that Eq. �9� matches the simu-
lation very well for all three Fourier coefficients at low to
medium growth temperatures. In Fig. 2�b� we see that high-
temperature growths do not fit as well. This discrepancy may

be due to the fact that the step density does not increase
monotonically at high temperatures as we have assumed �Eq.
�5��, but shows instead a more complex behavior �Fig. 1�.
Support for this interpretation is that we observe cusp inver-
sion for low-amplitude, high-temperature surfaces, as one
would expect if the step density decreases with slope for low
slopes.

Best-fit values for 	 and 
 for a wide range of growth
temperatures and growth rates are shown in Fig. 3. We also
show the values for 	 and 
 calculated from the theoretical
expressions in the text following Eq. �9�, using the growth
parameters from the SOS simulations.15 The step density S0
is obtained from the KMC simulation by summing over the
three different types of step edge incorporation sites. The
step density becomes constant after a few monolayers of
growth, consistent with the earlier assumption. The average
step edge release rate is calculated according to K
=�i=1

3 kini /S0, where ni �nm−2� is the number density of sites
on the surface with i lateral neighbors, and ki is calculated
from D exp�−Ei /kBT�. Throughout the range of the KMC
simulations, K is constant as a function of time and closely
approximated by k1n1 /S0, the release rate for adatoms with
one lateral bond. For the material parameters we have cho-
sen, the step edge release dominates the deposition flux F in
the coefficient of the linear smoothing term in Eq. �9�, at
high temperatures and low fluxes.

The temperature and growth rate dependence of the theo-

FIG. 1. �Color online� Steady-state step density from SOS KMC
simulations of vicinal surfaces at four different temperatures. The
line through the origin is the step density for a straight-stepped
vicinal surface �staircase�. �b�–�d� show sections of three surfaces
from simulations at 500 °C taken �b� before, �c� at, and �d� after the
step-density minimum, at slopes indicated in �a� by circles.

FIG. 2. �Color online� �a� shows the time evolution of an ini-
tially sinusoidal surface according to SOS KMC simulations at
495 °C and 1 monolayer �ML�/s growth rate, together with a best fit
to the simulation with the continuum model Eq. �9�, with 	
=1 nm2/s and 
=280 nm3/s. The simulated surface and fits are
offset for clarity. �b�–�d� show how the continuum model repro-
duces the first three Fourier coefficients �a1, a2, and a3� in the
Fourier series representation of the simulated surface topography as
a function of time at 585, 495, and 400 °C, respectively.
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retical values for 	 ,
 are in good agreement with the “mea-
sured” values from the KMC simulations over most of the
range, as shown in Fig. 3. The agreement tends to break
down at low temperatures and high growth rates. This is the
regime where the step edges become highly irregular and
fractal-like. Both the simulation and the theory show stron-

ger temperature dependence for 
 than for 	, but a weaker
flux dependence.

We can turn the problem around and use experimental
values for the smoothing parameters to infer the atomistic
growth parameters. For example, in the case of epitaxial
growth of GaAs at 1 �m/h at 550 °C, we find experimen-
tally that 
=5�105 nm3/s and 	=1–10 nm2/s, depending
on the in-plane orientation.12,13 Setting �=6 in the expres-
sion for the nonlinear prefactor 
, we find S0=0.03 nm−1.
This is consistent with step densities observed in atomic
force microscope images of molecular beam epitaxy–grown
GaAs surfaces which are in the 0.005–0.06 nm−1 range. If
we substitute S0=0.03 nm−1 into the expression for the linear
smoothing coefficient 	, use Ees=−0.05 eV, and neglect K
compared with F /S0, we find 	=3 nm2/s, which is also con-
sistent with experiment.

In conclusion, we have obtained expressions for the linear
and nonlinear smoothing coefficients for a generic model of
epitaxial growth, in terms of atomistic parameters. The sur-
face smoothing rate is controlled by the deposition rate and
surface step density. The sign of the nonlinear term in the
growth equation, which determines whether the surface de-
velops up or down cusps, is determined by whether the step
density increases or decreases with surface slope. Along with
the Ehrlich-Schwöbel step edge barrier, the dependence of
the step density on the surface slope is an example of a
microscopic property that carries over to the macroscopic
surface shape. The detailed step edge geometry on the other
hand does not have a strong influence on the macroscopic
surface shapes.
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FIG. 3. �Color online� Temperature dependence of 	 and 
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 we use �
=6.

BRIEF REPORTS PHYSICAL REVIEW B 74, 153405 �2006�

153405-4


