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We present a model where two magnetic impurities in a discrete tight-binding ring become entangled
because of scattering processes associated to the injection of a conduction electron. We introduce a weak-
coupling approximation that allows us to solve the problem in an analytical way and compare the theory with
the exact numerical results. We obtain the generation of entanglement both in a deterministic way and in a
probabilistic one. The first case is intrinsically related to the structure of the two-impurity reduced density
matrix, while the second one occurs when a projection on the electron state is performed.
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I. INTRODUCTION

The generation of entanglement in mesoscopic structures
is considered as a fundamental resource for the implementa-
tion of solid-state quantum information processing devices.1

The first proposals for spin-based quantum computation con-
cern direct interaction between qubits.2 Further, different
schemes for mesoscopic structures have been suggested that
create separated streams of entangled particles.3–8

Recently, Costa et al.9 have examined the possibility of
entangling two spatially separated stationary spins by means
of electron scattering. In this case the generation of entangle-
ment would require lower external control. After considering
a toy model concerning a ballistic electron interacting in
succession with two distant spins, Costa et al. face the
more realistic problem of how two magnetic impurities em-
bedded in a solid become entangled because of the injection
of a conduction electron, which is scattered by the impurities
according to a s-d Hamiltonian. Since in a normal metal
described by a tight-binding model the energy spectrum
constitutes a continuous band, the appearance of an imagi-
nary part in the eigenenergies of the system is expected
that would limit the coherence time of the entangled state. A
way to overcome this instability can be represented by the
introduction of an artificial discrete system, i.e., a ring of N
quantum dots �QDs� coupled by tunneling. During the last
decade, electronic transport properties through quantum dots
have been widely considered both experimentally and
theoretically.10 Because of the progress of nanotechnology, it
is possible to fabricate various structures of coupled QDs
smaller than the electron coherence length.

If the interaction term between the electron spin and the
impurities is much less than the energy separation between
consecutive eigenvalues, in a finite-size system such as a
nanostructure, resonance conditions are reached, and a re-
duction to a few-body system11 can be observed. In that case
an oscillatory regime is expected to come out also in the
degree of entanglement. Dissipation effects could appear
only through the interaction with some external bath �for
instance, coupling with phonons�.

The aim of this paper is to show how entanglement
through electron scattering can be generated efficiently in
such nanostructures. Then, we consider a finite tight-binding

model, and add two magnetic impurities. By studying the
dynamical evolution of the state of a conduction electron
injected in the chain, we establish the amount of entangle-
ment between the two spins as a function of time. We find
that entanglement can be generated in a deterministic way as
well as in a probabilistic one.

The plan of the work is the following. After the Introduc-
tion, in Sec. II we define the general Hamiltonian model,
getting the equations of motion for the states involved in the
evolution. In Sec. III we establish the approximation of con-
sidering the interaction of the incoming mode only with the
other resonant modes, and solve the equation of motion. In
Sec. IV the generation of entanglement is studied by means
of two different approaches: the measure of concurrence as-
sociated to the reduced density matrix obtained by tracing
out the electron spin, and the “localizable entanglement” de-
rived from a projective measurement on the electron. In Sec.
V we conclude the paper.

II. MODEL

We consider a discrete ring structure, described by a stan-
dard tight-binding Hamiltonian, where two particular sites
�for instance, we label the first site with 0 and the second one
with L� are substituted by magnetic impurities. The s-d
Hamiltonian describing the system is

H = H0 +
J

2
�S�0 · �� 0 + S�L · �� L� , �1�

with H0=�k,��kak,�
† ak,�, where ak,�

† �ak,�� creates �annihi-
lates� one electron with spin �= ↑ ,↓ on the mode k,
�k=−2w cos k are the eigenvalues of H in the absence of spin
interaction �w is the hopping amplitude between adjacent
sites, k= �2� /N�n, N is the total number of sites, and n is an
integer running from −N /2 to ��N /2�−1��, J is the coupling

constant between the impurity spins S�0 and S�L and the elec-
tron spins �� 0 and �� L, whose operators are defined as

�l
x = al,↑

† al,↓ + al,↓
† al,↑ =

1

N
�
q,q�

�aq,↑
† aq�,↓ + aq,↓

† aq�,↑�ei�q−q��l,

�2�
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�l
y = − i�al,↑

† al,↓ − al,↓
† al,↑�

=
− i

N
�
q,q�

�aq,↑
† aq�,↓ − aq,↓

† aq�,↑�ei�q−q��l, �3�

�l
z = al,↑

† al,↑ − al,↓
† al,↓ =

1

N
�
q,q�

�aq,↑
† aq�,↑ − aq,↓

† aq�,↓�ei�q−q��l.

�4�

Let us consider the impurities initially with spin up, and the
introduction of one excess electron in the state �↓k�. Then,
differently from the treatment given in Ref. 9, we look at
entanglement generation from a dynamical point of view,
i.e., we analyze the evolution in the time domain of the state
�↑ ↑ ��↓k� to show explicitly how coherent effects persist. By
introducing the complex Laplace transform the state evolves
in

�↑↑��↓k�� =
1

� − �k
�↑↑��↓k�

+
1

� − �k
� J

N
�

q

��↓↑��↑q�� + ei�q−k�L�↑↓��↑q���

−
J

2N
�

q

�1 + ei�q−k�L��↑↑��↓q��	 , �5�

where the notation � � refers to a configuration, while � ��

refers to the evolution of that configuration, and �=1. The
other states involved in the evolution satisfy the following
equations:

�↓↑��↑k�� =
1

� − �k
��↓↑��↑k� +

J

2N
�

q

�− 1 + ei�q−k�L��↓↑��↑q��

+
J

N
�

q

�↑↑��↓q��	 , �6�

�↑↓��↑k�� =
1

� − �k
��↑↓��↑k� +

J

2N
�

q

�1 − ei�q−k�L��↓↑��↑q��

+
J

N
�

q

ei�q−k�L�↑↑��↓q��	 . �7�

III. RESONANT COUPLING APPROXIMATION

The problem is significantly simplified by introducing
the following weak-coupling approximation. In the
solution of the system derived from Eqs. �5�–�7�, it
would appear denominators with the structure
��−�k− �J2 /N2��qf�k−q� / ��−�q��−1, where f�k−q� is some
weight function derived from �±1±ei�q−k�L�. If the scattering
amplitude, of the order of J /N, is much less than the energy
differences appearing in the spectrum of H0, which is about
w /N near the middle of the band, we keep just the resonant
terms, corresponding to q= ±k.11 For instance,

1

� − �k −
J2

N2�
q

�1 − ei�q−k�L��1 + ei�q−k�L�
� − �q



1

� − �k −
J2

N2

1 − e2i�q−k�L

� − �k

=
� − �k

�� − �k�2 −
J2

N2 �1 − e2i�q−k�L�
, �8�

and in the right-hand side of Eqs. �5�–�7� we maintain only
states with momentum k or −k, that is, the states that were
degenerate with the initial one in the absence of interaction.
Under these assumptions the equations of motion reduce to

�↑↑��↓k�� =
1

� − �k +
J

N

��↑↑��↓k� −
J

2N
�1 + e−2ikL��↑↑��↓−k��	

+
1

� − �k +
J

N

J

N
��↓↑���↑k�� + �↑−k��� + �↑↓���↑k��

+ e−2ikL�↑−k���� , �9�

�↓↑��↑k�� =
1

� − �k
��↓↑��↑k� +

J

2N
�− 1 + e−2ikL��↓↑��↑−k��

+
J

N
�↑↑���↓k�� + �↓−k���	 , �10�

�↑↓��↑k�� =
1

� − �k
��↑↓��↑k� +

J

2N
�1 − e−2ikL��↑↓��↑−k��

+
J

N
�↑↑���↓k�� + e−2ikL�↓−k���	 . �11�

Together with these equations we must consider also those
obtained by exchanging k with −k.

A further simplification can be introduced by properly
choosing the distance between impurities L. For instance, if
k=� /2 and L is even, e±2ikL=1. In this case the study of the
state evolution greatly simplifies. Since at t=0 we had
�↑ ↑ ��↓k�, at the time t we obtain

�↑↑��↓k�t =
1

6
�3 + e−2i�J/N�t + 2e4i�J/N�t��↑↑��↓k� +

1

6
�− 3

+ e−2i�J/N�t + 2e4i�J/N�t��↑↑��↓−k� +
1

6
e−2i�J/N�t�1

− e6i�J/N�t���↓↑� + �↑↓����↑k� + �↑−k�� . �12�

The correctness of the above approximation is checked by
numerical integration of the Hamiltonian evolution. In Fig. 1
we compare the probabilities derived from the coefficients in
Eq. �12� with the exact results. The agreement between per-
turbation theory and numerical results is remarkable.
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IV. ENTANGLEMENT MEASURES

The two-impurity reduced density matrix � is obtained by
tracing out the electron degree of freedom: in the basis
spanned by the states ��↑↑�,�↓↑�,�↑↓�,�↓↓�� we have

� =

1 −

4

9
sin2 3J

N
t 0 0 0

0
2

9
sin2 3J

N
t

2

9
sin2 3J

N
t 0

0
2

9
sin2 3J

N
t

2

9
sin2 3J

N
t 0

0 0 0 0

� .

�13�

Given �, we can compute the corresponding degree
of entanglement by means of the concurrence C.12

The concurrence between two qubits is defined to be C
=max��1−�2−�3−�4 ,0�, where �r is the square root of the
rth eigenvalue of R=��̃ in descending order. The matrix �̃ is
defined as �̃= ��y � �y��*��y � �y�, where �* is the complex
conjugate of �. Since the eignevalues of R are
�0,0 ,0 , �16/81�sin4�3Jt /N��, the corresponding �r are
�0,0 ,0 , �4/9�sin2�3Jt /N��. So we have C=4/9 sin2�3Jt /N�.
In Fig. 2 we report the numerical value of C as a function of
time and compare it with the analytical expression.

In this way we have calculated the amount of entangle-
ment arising spontaneously from scattering processes. Actu-
ally, there is a different strategy from which a higher degree
of entanglement, the so-called localizable entanglement,13,14

could be extracted. It consists in a projective measurement

performed on the electron degree of freedom. If we project
�↑ ↑ ��↓k�t onto ��↑k�+ �↑−k�� /�2 we get the state

�↑k� + �↑−k�
�2

�↑↑��↓k�t =
1

3
�e−2i�J/N�t − e4i�J/N�t�

�↓↑� + �↑↓�
�2

.

�14�

As a result of the projective measurement, a maximally en-
tangled state appears for all the times. However, the prob-
ability P of actually finding ��↑k�+ �↑−k�� /�2 is different from
one;

P = �1

3
�e−2iJ/Nt − e4iJ/Nt��2

=
4

9
sin2 3J

N
t . �15�

That is, the process is probabilistic instead of deterministic.
We obtain a success probability that evolves in time with the
same law of C. The two results have the following interpre-
tation. In the first case the two spins are spontaneously en-
tangled by electron scattering. The amount of entanglement
is obviously related to the probability of finding the compo-
nent ��↓ ↑ ��↑k�+ �↓ ↑ ��↑−k�+ �↑ ↓ ��↑k�+ �↑ ↓ ��↑−k��. In the
physical procedure related to the projective measurement, we
consider only this component. The same time evolution is
then associated to two different kinds of processes, the first
one being deterministic and the second one being probabilis-
tic. In fact, without any kind of projection, we have a limited
degree of entanglement. By projecting on the electron state
we can reach C=1, but the price to pay consists in a limited
success probability of the projection. The best strategy to
adopt will depend on the specific application.

V. CONCLUSIONS

In this paper we have discussed the problem of entangling
two distant spins embedded in a solid-state environment
through the interaction with a conduction electron. We have
described explicitly what happens when a finite-size system
is considered. By applying a weak-coupling approximation,
that is, by neglecting nonresonant scattering states, we have

FIG. 1. �Color online� Plot of the probabilities of the states
involved in the evolution as a function of time. Solid lines corre-
spond to theoretical predictions, while dashed lines show numerical
�exact� evolution. Red �gray� lines concern the state �↑ ↑ ��↓k�, black
�dark gray� lines are related to �↑ ↑ ��↓−k�, while green �light gray�
lines regard �↓ ↑ ��↑k�. The probabilities associated to �↓ ↑ ��↑−k�,
�↑ ↓ ��↑k�, and �↑ ↓ ��↑−k� are not plotted, being practically indistin-
guishable from that of �↓ ↑ ��↑k�. The system parameters are the
following: w=1 is chosen as unit of energy; the number of sites is
N=16; the scattering amplitude is J=0.2, while the distance be-
tween the spins is L=4.

FIG. 2. Concurrence as a function of time. The solid line is
derived from the theoretical model described in the text, while the
dashed line corresponds to the numerical calculation. The system
parameters are the same as those defined in the caption of Fig. 1.
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solved analytically the evolution in time of the state associ-
ated to an incoming conduction electron. In fact, the exis-
tence of discrete levels and the weakness of the coupling
make possible a resonance between the scattered states and
one level of the energy band. A comparison between theoret-
ical results and exact numerical results has been presented,
showing the accuracy of the weak-coupling approximation.

As a result of the evolution, two-spin entanglement appears.
We have analyzed the emergence of entanglement merely
from evolution through the reduced density matrix, and the
role of projection on the electron spin state. In conclusion,
magnetic scattering in a discrete system has been shown to
create entanglement both in a deterministic and in a proba-
bilistic way.
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