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Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots
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We study the effects of excitons in nonlinear optical rectification in one-dimensional semiparabolic quantum
dots. We consider the cases that the electron and the hole are confined in semiparabolic potentials (i) with the
same oscillator frequency and (ii) with the same width. In the first case we present approximate analytical
results in the strong confinement regime and find a closed-form relation between the nonlinear optical rectifi-
cation coefficient of an exciton and the nonlinear optical rectification coefficient when only one electron exists
in the structure. In the second case we use the Hartree-Fock approximation and the potential morphing method
and present results for the nonlinear optical rectification coefficient in all confinement regimes.
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Nonlinear optical properties in semiconductor nanostruc-
tures have attracted considerable interest due to their rel-
evance in several applications.!> Among the nonlinear opti-
cal properties, significant theoretical>'?> and experi-
mental'3-!8 attention has been paid to second-order nonlinear
optical properties, such as nonlinear optical rectification
(OR) and second harmonic generation. This happens as the
second-order nonlinear processes are the simplest and the
lowest-order nonlinear effects and their magnitudes are usu-
ally stronger than those of high-order ones, if the quantum
system demonstrates significant asymmetry. In general, these
asymmetries are produced by two methods. One is by using
advanced material growing technology, such as molecular
beam epitaxy and metallic-organic chemical vapor deposi-
tion, to obtain nanostructures with asymmetric confining
potential 3>7-9-12.14-18 The other is through the application of
a static electric field to a structurally symmetric system in
order to get an asymmetric nanostructure.*%%13

Recently, Yu et al.'® studied the effects of an exciton
(taken as an interacting electron-hole pair) on the nonlinear
OR in one-dimensional asymmetric semiparabolic quantum
dots that are strongly confined in the x and y directions and
are confined by a semiparabolic potential in the z direction.
We note that the semiparabolic confining potential has been
also used in other studies in semiconductor quantum wells
and quantum dots.!%1220-22 Yy ¢t al. in their study'® assumed
that the electron and the hole are confined in semiparabolic
potentials with the same oscillator frequency. Using analyti-
cal approximate results they showed that in the strong con-
finement regime the excitonic effects enhance significantly
the nonlinear OR coefficient, in comparison to the value that
one obtains if only one electron exists in the structure.'’

In the present work we also study the effects of excitons
in nonlinear OR in one-dimensional semiparabolic quantum
dots. We first revisit the problem studied by Yu et al.'® and
present approximate analytical results in the strong confine-
ment regime. With the use of these results we find a closed-
form relation between the nonlinear OR coefficient in the
case that one exciton is confined in the quantum dot structure
and the corresponding nonlinear OR coefficient when only
one electron exists in the structure. It is found that the OR
coefficients are related only by the effective masses of the
electron and the hole. These results are also verified by nu-
merical calculations performed with the potential morphing
method (PMM).?3-26
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We also consider the case where the electron and the hole
are confined in a quantum dot structure with the same width.
This problem is quite different from that studied by Yu et
al.’® In our study, we take into account the interaction of
electron and hole and use the Hartree-Fock approach and the
PMM for the calculation of the necessary energy eigenvalues
and eigenfunctions.”>2° We find that the magnitude of the
nonlinear OR coefficient of this system in the strong confine-
ment regime is lower than the corresponding coefficient
when only one electron exists in the structure. In addition,
we show that larger values of the nonlinear OR coefficient
are found for larger quantum dot structures.

In the effective mass approximation the Hamiltonian for

the electron-hole system in one dimension can be written
27,28
as*"
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Here e refers to the electron and & to the hole. Also, mz(h) is

the effective electron (hole) mass, € is the relative dielectric
constant, and Vf)(h) is the confinement potential for the elec-
tron (hole).

In this Brief Report we consider the case that the electron
and the hole are confined in a semiparabolic potential of the
form Vg™ (z,00) = 3¢y @3 Zeqay 1 Zen =0 and Vg™ (zoin)
— 0, if 7,4, <0, where w,,w), are the oscillator frequencies
of the electron and the hole confining potentials, respectively.

First case: w,=w,=w,. In this case it is useful to rewrite
the Hamiltonian of Eq. (1), in the case that z,,7;,=0, in the
center-of-mass and relative motion coordinates as
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where M=m,+m;, is the total mass, w=m,m,/M is the re-
duced mass, Z=(m,z,+m,z,)/M is the center-of-mass mo-
tion coordinate and z=z,—z, is the relative motion coordi-
nate along the z-axis. The form of the Hamiltonian of Eq. (2)
allows us to separate the center-of-mass and the relative po-
sition motions. Therefore we take W(z,,z,)=P(Z)p(z) for
the total (envelope) wave fuction of the system, and E=E,

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.74.153306

BRIEF REPORTS

+E, for the total energy of the system. The center-of-mass
motion wave functions and eigenergies are!® ®(2)=D\(2)
=[Nm2?N2N+ 1)/ a]* exp(-a?Z*/2)Hyy.i(aZ),  E,=Ey
=hwy(2N+3/2), with N=0,1,2,... and a= \MwO/ﬁ Here,
H,y,, are Hermite polynomials of order 2N+ 1. The relative
motion wave functions and eigenergies are determined by the
equation

htF o1
_5(72 SHO 0 —ﬂ $(2) =E.¢(2). (3)
The above equation can be solved analytically in the strong
confinement regime?’?® where the Coulomb interaction term
is omitted. Then ¢(z)=a,(z)=[Vm22"(2n+1)!/B] 2
exp(-B*z 2/2)H2n+1(,8z) E.=E,=hwy(2n+3/2), with n
=0,1,2,... and B=\pwy/f.
The nonlinear OR coefficient of an asymmetric one-
dimensional quantum dot can be obtained by a density ma-
trix approach and a perturbation expansion method and it can

be written, within a two-level system approach, as>7-11:12:19
3.2
X(z (o) = 4630}/*01501
0 Eoﬁz
T, , 1\(1,
“’01 1+ )+ o + =51
T, 2)\ 1,
X . (4)
(001 0+ 75 || (w01 + 0+ 7
Wy — W - w w -
01 Tg 01 T%
where  po =(Wolz, =24 1), So1 =KW 1lze=2,/ W) —(Pylz,

—7;| )|, with W, W, the total wave functions of the exciton
in the ground state and in the first excited state, respectively.
Also, wy; is the transition frequency, o, is the density of
electrons in the quantum dot, €, is the vacuum permittivity,
T, is the longitudinal relaxation time, and 7, is the transverse
relaxation time.

For w= wy,, there is a peak value of X(2)( Xo max) esti-
mated by the expression g ;m—2e3T1 Tr0,u5, 501/ (60h).
The matrix elements wg;, & in this case are given by g,
=(olzl p1), S01=[(1|z|p1)—(olz|bp)|. Using the above ana-
lytical results we obtain o, =v2/(\37B), 8y =1/ (\mp), and
wy=2w,. Then, )(&)Wx—4e%T]T20' /(372 ﬁ1/2;/,3/2w(3)/2).

In the case that there is only one electron in the quantum
dot structure then the matrix elements are given by'*!? g,
=\2/(\Bmy), 8y=1/(Vmy), with y= \m, wylh. Also,
=2w,. Therefore the following relation exists between the
nonlinear OR coefﬁcient When there is an exciton in the
quantum dot structure ( Xo ) and when there is only one elec-

tron in the structure ( X(z))

@) m, 3/2—(z>
Xo (@ ={1+—=5] X (o). (5)

my,

The above relation is dependent only on the effective masses
of the electron and the hole and explains analytically the
results of Ref. 19. For our study we assume a GaAs/AlGaAs
structure and take'® m,=0.067mq, m,=0.09m, (m, is the
mass of a free electron) and e=12.53. In addition,'® the re-
laxation times are set to 7;=1 ps, 7,=0.2 ps and the electron
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FIG. 1. The peak value Xo max @S @ function of the electronic
quantum dot width. Closed squares represent the numerical results
and open squares the analytical results.

density is taken o0,=5X10*m™3. In this case (I
+m,/m,)¥*=2.304, therefore in the strong confinement re-
gime the nonlinear OR coefficient for an exciton in the struc-
ture is enhanced by this value.

The above relation is based on the approximate analytical
results that have been obtained after the omission of the Cou-
lomb term in Eq. (3). We will now assess the validity of this
approximation by obtaining the values of the nonlinear OR
coefficient numerically without making this approximation.
We therefore solve Eq. (3) numerically with the PMM and
obtain the relevant energies, wave functions, and matrix
elements.?* We then calculate the nonlinear OR coefficient as
a function of the “electronic width” of the one-dimensional
quantum dot, w=y"". These results are shown in Fig. 1. As it
can be seen for the system under study the numerical and the
approximate analytlcal results agree very well.

Second case: m,w, mhwh In th1s case we take the param-
eters of the system such that m , mhwh, so that the elec-
tron and the hole are confined in a quantum dot with well-
defined width.>*-?7 In this case the system cannot be
separated in relative motion and center-of-mass motion and
the relevant wave functions and energies will be determined
numerically using the Hartree-Fock approach. We note that
the Hartree-Fock approach has been used with success in
explaining experimental results in quantum dot and quantum
rod structures.’>?® In our approach we solve the iterative
Hartree-Fock equations for the electron and the hole with
PMM. For a detailed description of the relevant equations
and the numerical methodology see Refs. 25 and 26.

We calculate the nonlinear OR coefficient with the
Hartree-Fock method for a GaAs/AlGaAs structure. The rest
of the parameters are taken the same as before. As it is
clearly shown in Figs. 2(a) and 2(b) for the strong and inter-
mediate confinement regimes x . increases as the quantum
dot width increases. However, as it can be seen from Fig.
2(c) in the weak confinement Xo. ,)nax decreases as the quantum
dot width increases. This behavior is also clearly shown in
Fig. 3, where the maximum value of the nonlinear OR coef-
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FIG. 2. The nonlinear OR coefficient ng) (w): (a) in the strong
confinement regime, for quantum dot width w=7 nm (solid curve),
w=8 nm (dashed curve), and w=10 nm (dotted curve); (b) in the
intermediate confinement regime, for quantum dot width w
=15 nm (solid curve), w=20 nm (dashed curve), and w=25 nm
(dotted curve); and (c) in the weak confinement regime, for quan-
tum dot width w=30 nm (solid curve), w=50 nm (dashed curve),
and w=60 nm (dotted curve).
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FIG. 3. The peak value X(z)

0.may & @ function of the quantum dot
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ficient is plotted as a function of the quantum dot width.

Comparing these results with those obtained previously
we find that in this case the maximum value of the nonlinear
OR coefficient is significantly reduced. In addition, even if
we compare these results with those obtained in the case that
only one electron exists in the structure we find that the
existence of an exciton in the structure decreases the maxi-
mum value of the nonlinear OR coefficient. This is in con-
trast to the results presented above for the case that w,=w;,.
Therefore for this structure excitonic effects decrease the
nonlinear OR coefficient in the strong confinement regime.
In this case that the electron and the hole have the same
width, in the strong confinement regime, their wave func-
tions obtain approximately the same functional form. Due to
the use of the Slater wave function for the exciton?-° in the
Hartree-Fock calculations,?*2° the relevant matrix elements
obtain small values, much smaller than those obtained in the
case of a single electron in the quantum dot structure. This
explains the decrease of the OR coefficient in the strong
confinement regime. As our results further indicate, for the
system under study, the larger values of the nonlinear OR
coefficient are found for large widths of the quantum dot,
around w=30 nm.

In summary, in the present work we study excitonic ef-
fects in nonlinear OR in one-dimensional semiconductor
quantum dots with semiparabolic confinement. We present
numerical and analytical results for two cases, the case that
the electron and the hole are confined in one-dimensional
semiparabolic potentials with the same oscillator frequency,
and the case that the electron and the hole are confined in a
quantum dot with well-defined width. We intend to extend
these results in two and three dimensions in another publica-
tion.
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