
Reply to “Comment on ‘Reappraisal of experimental values of third-order elastic constants of
some cubic semiconductors and metals’ ”

A. S. Johal and D. J. Dunstan
Physics Department, Queen Mary, University of London, London E1 4NS, England

�Received 27 July 2006; revised manuscript received 23 August 2006; published 13 October 2006�

In his Comment �Phys. Rev. B 74, 146101 �2006��, Mañosa claims that other methods of calculation can
obtain reliable values of third-order elastic constants from data for acoustic measurement under uniaxial stress,
from data sets which fail under multivariate linear regression analysis �MVLA�. His analysis does not consider
errors. We show that his method leaves errors on the derived values, orders of magnitude larger than those
obtained by MVLA, and that his values are therefore completely unreliable.

DOI: 10.1103/PhysRevB.74.146102 PACS number�s�: 62.20.Dc, 74.25.Ld

The determination of third-order elastic constants from
acoustic data, stress coefficients of acoustic velocities, uses n
simultaneous linear equations to relate n data to m elastic
constants, with n�m. Mañosa claims that alternative meth-
ods of calculation can obtain reliable values from data sets
that fail under multivariate linear regression analysis
�MVLA�.1 This claim challenges the Gauss-Markov theorem
according to which the MVLA makes the best use of the
information in the data set. Moreover, the methods used by
Mañosa do not provide the analysis of errors that is intrinsic
to MVLA, and his resulting values lack reliability.

The n simultaneous equations for cubic crystals �with m
=6� are given in full �n=14� in Eq. �7� in our paper3 and the
reduced set �n=9� for uniaxial stress data alone are given as
Eq. �2� in Mañosa.1 They are of the form

ȳ = X� , �1�

where the symbols are defined in Refs. 1 and 3. Mañosa1

notes that we copied the mistake in the original expressions
given by Thurston and Brugger.4 This mistake, �b−a� for 2b
in line 8 of our Eq. �7�, was corrected by McSkimin and
Andreatch,5 and by Thurston and Brugger in their erratum.6

We used the corrected term in all of our calculations.
The data under discussion comes from Gonzales-Comas

and Mañosa.2 From their paper, we took the stress differen-
tials of fractional changes in acoustic velocities. Using the
density �0=7.090 g cm−3, and second-order coefficients c11
=139.7 GPa, c12=124.9 GPa, and c44=97.7 GPa �also from
their paper�, we calculated the stress coefficients of the
acoustic stiffnesses which, in the order required for the vec-
tor representation of Eq. �1� are

��0Wi
2�� = �− 3.22,− 6.96,− 4.88,− 7.26,− 3.52,− 2.54,

− 1.38, + 3.27,1.95� �2�

�in dimensionless units�. Adding the other terms required
yields

ȳ = �− 13.2,− 7.28, + 4.06,− 13.3,− 0.655,− 0.678, + 3.00,

+ 3.49,− 2.68� . �3�

Carrying through the experimental errors given by Gonzales-
Comas and Mañosa2 gives the errors on these values as

�y = �±0.5, ± 1.2, ± 0.8, ± 0.3, ± 0.6,

± 0.4, ± 0.9, ± 0.7, ± 0.4� . �4�

Mañosa1 recommends the method used by Verlinden
et al.,7 in which three lines of Eq. �1� are used to obtain c111,
c112, and c123 from three data alone. These values are then
carried forward into the subsequent calculation of c144, c166,
and c456. One of his reasons for doing this is that these three
data happen to have large stress coefficients and hence, he
says, small fractional errors. This is a misconception. The
errors arise predominantly from the uncertainty in uniaxial
strain �this is why hydrostatic data are more accurate�, not
from the acoustic velocity measurements. All data are then
expected to have the same fractional error, and so the abso-
lute errors, which are what matter in this calculation, should
be largest for the largest stress coefficients. MVLA treats all
errors as random numbers drawn from the same distribution.
If it were worth the refinement, the data and the correspond-
ing entries in the matrix X could be rescaled to make it so;
this would have the effect of increasing the weight of the
more accurate data. Mañosa’s method increases the weight of
some of the less accurate data �y2 and y8�.

With rounded numerical values in the reduced 3�3 X
matrix, the three lines are

�y2

y4

y8
� = � 0.0108 − 0.0337 0.0229

0.0216 − 0.0242 0

− 0.00604 0.01685 − 0.0108
��c111

c112

c123
� , �5�

where the elements of X are in units of GPa−1. Mañosa1

claims that this solves to c111=−1790 GPa, c112=
−1050 GPa, and c123=−980 GPa. He gives no error esti-
mates; indeed none are generated since Eq. �5� is not over-
determined. Mañosa’s Table I �particularly the scatter be-
tween the values of columns B and C� implies errors of the
order of ±20 GPa, while Gonzales-Comas and Mañosa gave
errors of ±100 to ±150 GPa. We may calculate the ȳ values
corresponding to Mañosa’s cIJK, obtaining �y2 ,y4 ,y8�
= �−6.392,−13.293,3.716�. These are similar to but not iden-
tical with the values we used of �−7.28,−13.3,3.49�. This
discrepancy would be worth dealing with if reliable cIJK
could be obtained from these data. However, they cannot. To
see this, we invert Eq. �5� to form
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� = X−1ȳ , �6�

and with numerical values for X−1 in GPa, this is

�c111

c112

c123
� = �− 4703 − 389 − 9965

− 4203 − 389 − 8907

− 3924 − 389 − 8407
��y2

y4

y8
� . �7�

The large numbers, up to nearly 10 000 GPa, in the matrix
mean that errors of ±100 GPa in the elastic constants require
errors better than ±0.01 in the y values and hence in the
pressure coefficients. This is wholly implausible. Even for
silicon, which is a far easier material to measure accurately,
the scatter in the uniaxial pressure coefficients between dif-
ferent authors5,8 is about ±0.01 �see Table II of Ref. 3�. The
errors �y in the y values calculated from the experimental
errors given by Gonzales-Comas and Mañosa2 are, as given
in Eq. �4�, around 0.5, so the errors in the cIJK using Eq. �7�
cannot be less than a few thousand GPa. Using the
�y2 ,y4 ,y8�= �−7.28,−13.3,3.49� that we found, does indeed
yield values for c111, c112, and c123 all of the order of
−4000 GPa. This very high sensitivity to error in the data
occurs because the matrix X of Eq. �5� is very nearly singu-
lar, with a determinant of 5�10−8. Even the small changes
in X obtained by rounding to the nearest 0.0001 in Eq. �5�
cause large changes of the order of a factor of 2 in the ele-
ments of X−1 in Eq. �7�.

The values for c111, c112, and c123 in Mañosa’s Table I,
column B are thus unreliable and implausibly precise. It fol-
lows that the values calculated using them for c144, c166, and

c456 are equally defective. In his Table I, column C, Mañosa
gives the results of another calculation using an iterative
least-squares method under constraints �cIJK�0, etc�, but
with insufficient detail for us to analyze its results and its
handling of errors. Nor is any more detail of the calculation
given in the original papers.2,9,10 In principle such methods
ought to be equivalent to MVLA. Since the results are so
similar to the results obtained from the Eq. �5� method, it is
clear that the actual implementation replicated the defects of
the Eq. �5� method and lacked the essential analysis of errors
that this work requires.

A nice illustration of the theoretical advantage of MVLA
is that the first line of the inverse of the �n=9� version of Eq.
�1� is

c111 = �− 118,4,− 242,16,− 248,− 124,− 287,− 27,− 124�ȳ .

�8�

These numerical values �in GPa� are far smaller than those of
the first line of Eq. �7�, so that the errors in ȳ feed through to
yield much smaller errors in c111. And to illustrate again the
advantages of using hydrostatic data too, the first line of the
full �n=14� matrix for hydrostatic as well as uniaxial data is

c111 = �− 67,9,− 5.5,9,− 3,− 6,6,15,23,− 5,− 2,

− 38,− 5,− 2�ȳ , �9�

where the first five elements are for the hydrostatic data and
the last nine for the uniaxial. This shows that including the
hydrostatic data reduces the sensitivity to uniaxial errors by
another order of magnitude.
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