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We theoretically investigate the response of a superconducting film to line currents flowing in linear wires
placed above the film, and we present analytic expressions for the magnetic-field and current distributions
based on the critical state model. The behavior of the superconducting film is characterized by the sheet-current
density Kz, whose magnitude cannot exceed the critical value jcd, where jc is the critical current density and d
is the thickness of the film. When the transport current I0 flowing in the wire is small enough, �Kz� is smaller
than jcd and the magnetic field is shielded below the film. When I0 exceeds a threshold value Ic0� jcd, on the
other hand, �Kz� reaches jcd and the magnetic field penetrates below the film. We also calculate the ac response
of the film when an ac transport current flows in the linear wires.

DOI: 10.1103/PhysRevB.74.144523 PACS number�s�: 74.25.Sv, 74.25.Nf, 74.78.�w

I. INTRODUCTION

The response of superconducting films to homogeneous
applied magnetic fields is well understood, and analytic ex-
pressions for the distributions of the magnetic field and cur-
rent density have been derived1–6 based on Bean’s critical-
state model.7 When small current-carrying coils are placed
near the surface to probe the local properties of supercon-
ducting films, the magnetic fields generated by the coils are
inhomogeneous. Analytic expressions describing the re-
sponse of superconducting films to small coils have been
derived for the linear response regime,8–13 but in order to
measure the local distribution of the critical current density jc
in superconducting films, it is necessary to investigate the
nonlinear response.14–18 Numerical computations of the non-
linear response of superconducting films to the inhomoge-
neous magnetic fields arising from small coils have been
carried out in Refs. 11 and 19–22, but here we present ana-
lytic results for the nonlinear response to line currents above
superconducting films.

The procedure proposed by Claassen et al.15 for inductive
measurements of the local jc distribution in films of thick-
ness much greater than the London penetration depth � can
be described briefly as follows. A small coil carrying a sinu-
soidal drive current I0 cos �t is placed just above a supercon-
ducting film, and the induced voltage V�t�=�nVn cos�n�t
+�n� in the coil is detected. The amplitude of the third-
harmonic voltage V3 is measured as a function of the drive
current amplitude I0, and the threshold current Ic0 is defined
such that V3=0 for 0� I0� Ic0 and V3�0 for I0� Ic0. Be-
cause Ic0� jcd, where d is the film thickness, jc can be evalu-
ated from Ic0.15,16,18 Since an electric-field criterion must be
applied for a precise determination of jc, it is important to
evaluate the electric field Ef generated in the superconduct-
ing film.23

In the present paper we consider linear wires as simple
models of coil wires, and we analytically investigate the re-
sponse of a superconducting film to linear wires carrying
transport currents. In Sec. II we investigate the dc �ac� re-

sponse of a superconducting film to a linear wire carrying a
dc �ac� transport current: we determine the threshold current
Ic0, and we present the voltage V�t� and the harmonic volt-
ages induced in the linear wire, as well as the electric field Ef
induced in the superconducting film. In Sec. III we consider
a superconducting film and two linear wires carrying trans-
port currents of opposite directions. We briefly summarize
our results in Sec. V.

II. SINGLE LINEAR WIRE AND A SUPERCONDUCTING
FILM

In this section we consider a superconducting film and a
linear wire carrying a transport current, as shown in Fig. 1.
An infinitely long wire, parallel to the z axis, is situated at
�x ,y�= �0,y0� where y0�0. The radius of the wire rw is as-
sumed to be much smaller than y0. A superconducting film,
infinitely extended in the xz plane, is situated at −d /2�y
� +d /2, where the film thickness d is much smaller than y0
but is larger than the London penetration depth �. Flux pin-
ning in the film is characterized by the critical current den-
sity jc, which is assumed to be constant �independent of mag-
netic field� as in Bean’s critical-state model7 and to be
spatially homogeneous in the film. We consider the limit d
→0, as this simplification allows us to obtain simple analytic
expressions for the magnetic-field and current distributions.
In the thin-film limit of d→0, the sheet current Kz�x�
=�−d/2

+d/2 jz�x ,y�dy plays crucial roles, and the upper limit of

FIG. 1. Configuration of a superconducting film at y=0 and a
linear wire at �x ,y�= �0,y0�. The film is infinitely extended in the xz
plane, and the infinite wire is parallel to the z axis.
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�Kz� is the critical sheet-current density jcd. The lower critical
field Hc1 is assumed to be much smaller than jcd �i.e.,
Hc1 / jcd→0�, such that the flux penetration into supercon-
ducting films is not affected by Hc1, but is determined by
jcd.24

We introduce the complex field H���=Hy�x ,y�
+ iHx�x ,y�,25–27 which is an analytic function of �=x+ iy for
y�0 and �x ,y�� �0,y0�. The Biot-Savart law for the com-
plex field is given by

H��� = H0��� +
1

2	
�

−


+


du
Kz�u�
� − u

, �1�

where H0��� is the complex field arising from the line cur-
rent alone. The H0��� is given by

H0��� =
Iz

2	

1

� − iy0
, �2�

where Iz is the transport current flowing in the linear wire. At
the upper ��=x+ i�� and lower ��=x− i�� surfaces of the su-
perconducting film, where �=d /2 is a positive infinitesimal,
the perpendicular and parallel magnetic fields Hy�x ,0�
=Re H�x± i�� and Hx�x , ±��=Im H�x± i�� are obtained from
Eq. �1� as

Hy�x,0� = Re H0�x� +
1

2	
P�

−


+


du
Kz�u�
x − u

, �3�

Hx�x, ± �� = Im H0�x� � Kz�x�/2, �4�

where P denotes the Cauchy principal-value integral. The
complex potential is defined by G���=�H���d�, and the con-
tour lines of the real part of G��� correspond to magnetic-
field lines.

The magnetic flux per unit length w around the linear
wire is

w = − �0�
y0+r0




dyHx�0,y�

= �0 Re�− G�i�y0 + r0�	 + lim
v→


G�iv�
 . �5�

We have introduced a cutoff length r0�y0, where r0 is of the
order of the radius of the wire, to remove the logarithmic
divergence as �→ iy0. The magnetic flux per unit length
 f�x�� up through the film �y=0� in the region x��x� +
 is

 f�x�� = �0�
x�




duHy�u,0� = �0 Re�− G�x�� + lim
u→


G�u�	 .

�6�

A. dc Response

In this subsection we consider the magnetic-field distribu-
tion when the linear wire carries a dc current Iz= I0�0 that is
held constant after monotonically increasing from Iz=0.

1. Linear response for 0�I0ÏIc0

For 0� I0� Ic0, the magnetic field is completely shielded
below the film, y=Im ��0. The field distribution can be
obtained by the mirror-image technique, and the resulting
complex field is

H��� = � I0

	

iy0

�2 + y0
2 for Im � � 0

0 for Im � � 0.
� �7�

The complex potential G���=�H���d� for Im ��0 is given
by

G��� =
I0

	
i arctan �

y0
� . �8�

The perpendicular magnetic field and sheet-current density
are thus given by Hy�x ,0�=0 and

Kz�x� = −
I0

	

y0

x2 + y0
2 , �9�

respectively. The net current induced in the superconducting
film is �−


+
Kz�x�dx=−I0, as expected. Note that the sheet-
current density cannot exceed jcd; that is, �Kz�x��� jcd. Be-
cause the maximum of �Kz� given by Eq. �9� is I0 /	y0, Eq.
�9� is valid for I0� Ic0, where the threshold current is given
by

Ic0 = 	jcdy0. �10�

Figure 2�a� shows the magnetic-field lines �i.e., the contour
lines of Re G�x+ iy�	 calculated from Eq. �8�, and the dashed
line in Fig. 2�d� shows Kz�x� given by Eq. �9�.

The magnetic flux per unit length around the linear wire,
calculated by substituting Eq. �7� into Eq. �5�, is

w =
�0I0

	
�

y0+r0




dy
y0

y2 − y0
2 = L0I0, �11�

where the inductance per unit length L0= ��0 /2	�ln�2y0 /r0�
corresponds to the difference between the self-inductance of
the linear wire and the mutual inductance of the wire and its
image. Because the perpendicular magnetic field in the film
is zero, the magnetic flux up through the film defined by Eq.
�6� is also zero:28

 f�x� = 0. �12�

Equations �7�–�9�, �11�, and �12� are valid for 0� I0� Ic0.

2. Nonlinear response for I0�Ic0

For I0� Ic0, on the other hand, the maximum �Kz� reaches
jcd and the magnetic field penetrates below the supercon-
ducting film. The field distributions for I0� Ic0, therefore,
must satisfy

Kz�x� = − jcd and Hy�x,0� � 0 for �x� � a , �13�

�Kz�x�� � jcd and Hy�x,0� = 0 for �x� � a , �14�

where the flux fronts �i.e., the boundaries between the region
of Hy�x ,0��0 and that of Hy�x ,0�=0	 are at x= ±a. The
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complex field and the parameter a are determined such that
they are consistent with Eqs. �13� and �14�, as derived in
Appendix A. The parameter a is a function of I0,

a = y0
��I0/Ic0�2 − 1, �15�

and the complex field is

H��� =
jcd

2
±i +

iy0
�a2 + y0

2 + ��a2 − �2

�2 + y0
2 � , �16�

where the upper sign holds for Im ��0 and the lower sign
for Im ��0. The corresponding complex potential is

G��� =
jcd

2
�±i� + �a2 − �2 + �a2 + y0

2

� �i arctan �

y0
� − arctanh�a2 − �2

a2 + y0
2��� .

�17�

Figures 2�b� and 2�c� show the magnetic-field lines, i.e., the
contour lines of Re G�x+ iy� calculated from Eq. �17�.

The perpendicular magnetic field Hy�x ,0�=Re H�x± i��
in the superconducting film, obtained from Eq. �16�, is

Hy�x,0� = � jcd

2

x�a2 − x2

x2 + y0
2 for �x� � a

0 for �x� � a ,
� �18�

and the sheet-current density Kz�x�=Im�H�x− i��−H�x
+ i��	 is

Kz�x� = �− jcd for �x� � a

− jcd1 −
�x��x2 − a2

x2 + y0
2 � for �x� � a . � �19�

The net current induced in the superconducting film is again
�−


+
Kz�x�dx=−I0, as expected. Figures 2�e� and 2�f� show
Hy�x ,0� and Kz�x� given by Eqs. �18� and �19�, respectively.

The magnetic flux per unit length around the linear wire,
calculated by substituting Eq. �17� into Eq. �5�, is

w � −
�0jcd

2
�y0 − �a2 + y0

2 + �a2 + y0
2 ln2�a2 + y0

2

r0
�� .

�20�

Combining Eqs. �11�, �15�, and �20� yields w=̃w�I0�,
where

̃w�I0�

= �L0I0 for 0 � I0 � Ic0

L0I0 +
�0

2	
�Ic0 − I0 + I0 ln I0

Ic0
�� for I0 � Ic0. �

�21�

The magnetic flux up through the film, calculated by substi-
tuting Eq. �17� into Eq. �6�, is

 f�x� =
�0jcd

2
�− �a2 − x2 + �a2 + y0

2 arctanh�a2 − x2

a2 + y0
2��
�22�

for �x��a, and  f�x�=0 for �x��a. Combining Eqs. �12�,
�15�, and �22� yields  f�x�=̃ f�x , I0�, where

FIG. 2. �Color online� Magnetic-field and sheet-current distributions ��a� and �d�	 for I0 / Ic0=0.99, ��b� and �e�	 for I0 / Ic0=2�a=1.73�, and
��c� and �f�	 for I0 / Ic0=3�a=2.83�. Top figures ��a�, �b�, and �c�	 show the magnetic-field lines around a linear wire and a superconducting
film. The cross symbols at �x ,y�= �0,y0�= �0,1� denote the position of the linear wire, the black horizontal line the shielded region �x��a of
the superconducting film, and the gray horizontal lines the penetrated region �x��a of the film. The vertical dot-dashed lines indicate the
positions of the flux front at x= ±a. The bottom figures ��d�, �e�, and �f�	 show the distributions of the perpendicular magnetic field Hy�x ,0�
divided by jcd �solid lines� and the sheet-current density Kz�x� divided by jcd �dashed lines� in the superconducting film.
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̃ f�x,I0� = �0 for 0 � I0 � Ic0 or �x� � a

�0

2	
��I0

2 − Ic0
2 1 +

x2

y0
2� + I0 arccosh I0

Ic0

y0

�x2 + y0
2�� for I0 � Ic0 and �x� � a . � �23�

B. ac Response

In this subsection we consider the time-dependent field
distributions when the linear wire carries a sinusoidal ac
drive current Iz�t�= I0 cos �t. In inductive measurements of
the local jc in superconducting films, harmonic voltages in-
duced in coils are detected.15,16,18 For precise jc measure-
ments, it also is important to determine the electric field in-
duced in the film.23

We wish to calculate the magnetic field around the linear
wire w�t�, defined by Eq. �5�, and the voltage per unit
length induced in the wire,

V�t� = RwI0 cos �t − dw�t�/dt , �24�

where Rw is the resistance per unit length of the wire. We
also wish to determine the magnetic flux per unit length up
through the film  f�x , t�, defined by Eq. �6�, and the electric
field in the film,29

Ef�x,t� = − � f�x,t�/�t . �25�

1. Linear response for 0�I0ÏIc0

For 0� I0� Ic0 the magnetic field is completely shielded
below the superconducting film, y=Im ��0, as in Sec.
II A 1. The complex field, the sheet-current density in the
film, and the magnetic flux around the linear wire are given
by Eqs. �7�, �9�, and �11�, respectively, except that now I0 in
those equations is replaced by I0 cos �t.

The magnetic flux per unit length around the linear wire is
given by w�t�=L0I0 cos �t. The voltage induced in the wire
defined by Eq. �24� is thus given by V�t�=RwI0 cos �t
+�L0I0 sin �t. For 0� I0� Ic0, the harmonic voltages, the
magnetic flux per unit length penetrating the film  f, and the
electric field in the film Ef are all zero.28

2. Nonlinear response for I0�Ic0

For I0� Ic0, on the other hand, the magnetic field pen-
etrates through the superconducting film, as discussed in Sec.
II A 2.

For ac drive current I0 cos �t, the magnetic flux per unit
length around the linear wire w�t� is4

w�t� = ̃w�I0� − 2̃w�I0�1 − cos �t�/2	 �26�

for 0��t�	, and w�t�=−w�t−	 /�� for 	��t�2	,

where ̃w�I0� is defined by Eq. �21�. The voltage per unit
length of the wire, calculated from Eqs. �24� and �26�, is

V�t� = RwI0 cos �t + �I0 sin �tL̃w�I0�1 − cos �t�/2	 ,

�27�

where L̃w�I0��d̃w�I0� /dI0 is the differential inductance
given by

L̃w�I0� = �L0 for 0 � I0 � Ic0

L0 +
�0

2	
ln I0

Ic0
� for I0 � Ic0. � �28�

In response to the ac drive current, the magnetic flux per
unit length up through the film  f�x , t� is4

 f�x,t� = ̃ f�x,I0� − 2̃ f�x,I0�1 − cos �t�/2	 �29�

for 0��t�	, and  f�x , t�=− f�x , t−	 /�� for 	��t

�2	, where ̃ f�x , I0� is defined by Eq. �23�. The electric
field induced in the film, calculated from Eqs. �25� and �29�,
is

Ef�x,t� = �I0 sin �tL̃f�x,I0�1 − cos �t�/2	 , �30�

where the function L̃f�x , I0���̃ f�x , I0� /�I0 is given by

L̃f�x,I0� = �0 for 0 � I0 � Ic0 or �x� � a

�0

2	
arccosh I0

Ic0

y0

�x2 + y0
2� for I0 � Ic0 and �x� � a . � �31�

In order to measure jc in superconducting films by the inductive method detecting the harmonic voltages,15 it is important to
estimate the induced electric field in superconducting films.23 The maximum electric field is induced just below the linear wire
at x=0, and is given approximately by
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�Ef� �
�0

�2	
�Ic0 I0

Ic0
− 1� �32�

for 0� I0− Ic0� Ic0.

3. Harmonic voltages

The voltage per unit length induced in the linear wire can
be expressed as the Fourier series

V�t� = �
n=1




Vn cos�n�t + �n� , �33�

where the amplitude Vn and phase difference �n of the nth
harmonics are calculated by

Vn exp�− i�n� =
1

	
�

0

2	

d��t�V�t�exp�in�t� . �34�

Because of the periodicity of V�t+	 /��=−V�t�, the even
harmonics are zero; i.e., Vn=0 for n=2,4 ,6 , . . .. The funda-
mental voltage V1 exp�−i�1� is simply determined by the re-
sistance per unit length of the linear wire, the self-inductance
per unit length of the wire, and the mutual inductance per
unit length between the wire and its image. We are interested
in the odd harmonics of Vn exp�−i�n� for n=3,5 ,7 , . . .; they
are obtained by substituting Eqs. �27� and �28� into Eq. �34�,
which yields

Vn exp�− i�n�

=
2

	
�I0�

0

	

d� exp�in��sin �L̃w�I0�1

− cos ��/2	

=
�0

	2�I0�
�c

	

d� exp�in��sin � ln I0

Ic0

1 − cos �

2
� ,

�35�

where �c=arccos�1−2Ic0 / I0�. For 0� I0 / Ic0−1�1 we have

Vn �
�0

	2�Ic0 I0

Ic0
− 1�2

, �36�

�n � − 	 +
16n

15
 I0

Ic0
− 1�1/2

. �37�

Figure 3 shows the I0 dependence of the third-harmonic
voltage V3 exp�−i�3� calculated from Eq. �35� with n=3.
Although the present model of a linear wire is oversimpli-
fied, the behavior of the third-harmonic voltage shown in this
figure qualitatively agrees with the experimental data mea-
sured by a coil with a YBa2Cu3O7−y film.15,16,18

III. TWO LINEAR WIRES AND A SUPERCONDUCTING
FILM

Two linear wires are better than a single wire to model
current-carrying coils. In this section we consider a super-
conducting film and two linear wires carrying transport cur-

rents of opposite directions, as shown in Fig. 4. Infinitely
long wires, parallel to the z axis, are situated at �x ,y�
= �±x0 ,y0� where x0�0 and y0�0. A superconducting film,
infinitely extended in the xz plane, is situated at −d /2�y
� +d /2, where ��d�y0.

One wire carrying a dc current +Iz is situated at �x ,y�
= �+x0 ,y0� and another wire carrying a current of opposite
direction −Iz is at �x ,y�= �−x0 ,y0�, where x0�0 and y0�0.

The complex field due to the two wires is given by

H0��� =
Iz

2	
 1

� − �1
−

1

� − �2
� , �38�

where �1=x0+ iy0 and �2=−x0+ iy0=−�1
*.

A. dc Response

In this subsection we consider the magnetic-field distribu-
tion when the linear wire carries a dc current Iz= I0�0 that is
held constant after monotonically increasing from Iz=0.

1. Linear response for 0�I0ÏIc0

For 0� I0� Ic0, the magnetic field is completely shielded
below the film, y=Im ��0. The field distribution can be
obtained by the mirror-image technique, and the resulting
complex field is

H��� = �2H���� for Im � � 0

0 for Im � � 0,
� �39�

where

H���� =
I0

2	
 �

�2 − �1
2 −

�

�2 − �2
2� . �40�

The complex potential for Im����0 is given by

FIG. 3. �Color online� The amplitude V3 and the phase �3 of the
third-harmonic voltage as functions of the drive current amplitude
I0.

FIG. 4. Configuration of a superconducting film at y=0 and two
linear wires at �x ,y�= �±x0 ,y0� carrying transport currents ±Iz.
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G��� =
I0

2	
ln �2 − �1

2

�2 − �2
2� . �41�

The perpendicular magnetic field is Hy�x ,0�=0, and the
sheet-current density is thus given by

Kz�x� = − I0Fw�x� , �42�

where the function Fw�x� is determined by the configuration
of the wires,

Fw�x� =
1

	
� y0

�x − x0�2 + y0
2 −

y0

�x + x0�2 + y0
2� . �43�

The sheet-current density �Kz�x�� is maximum at x=ac, where

ac =�1

3
�x0

2 − y0
2 + 2�x0

4 + x0
2y0

2 + y0
4� . �44�

The sheet-current density cannot exceed jcd; that is, �Kz�x��
� I0Fw�ac�� jcd, and Eq. �42� is valid for I0� Ic0, where the
threshold current is given by

Ic0 = jcd/Fw�ac� . �45�

Figure 5�a� shows the magnetic-field lines �i.e., the con-
tour lines of Re G�x+ iy�	 calculated from Eq. �41�, and the
dashed line in Fig. 5�d� shows Kz�x� given by Eq. �42�.

2. Nonlinear response for I0�Ic0

For I0� Ic0, on the other hand, the maximum �Kz� reaches
jcd and the magnetic field penetrates below the supercon-
ducting film. The field distributions for I0� Ic0, therefore,
must satisfy

Kz�x� = − jcd sgn�x� for b � �x� � a , �46�

Hy�x,0� = 0 for �x� � b or �x� � a , �47�

where the flux fronts are at x= ±a and x= ±b. The complex
field and the parameters a and b �where a�b�0� are deter-
mined such that they are consistent with Eqs. �46� and �47�,
as derived in Appendix C.

The parameters for flux fronts, a and b, are determined as
functions of I0 for I0� Ic0, by solving the following two
equations,

I0

jcd
Re��1

2 − b2

a2 − �1
2 = aE�k� −

b2

a
K�k� , �48�

I0

jcd
Re�a2 − �1

2

�1
2 − b2 = a�K�k� − E�k�	 , �49�

where K�k� and E�k� are the complete elliptic integrals of the
first and second kinds, and k=�1−b2 /a2. These parameters
obey a=b=ac when I0= Ic0, and a�ac�b�0 when I0� Ic0,
where ac is given by Eq. �44�. As shown in Fig. 6, a in-
creases and b decreases with increasing I0.

The complex field is derived in Appendix C, and is given
by

H��� = H���� + H���� + Hc��� , �50�

where

H���� =
I0

2	
������ 1

��2 − �1
2����1�

−
1

��2 − �2
2����2�� ,

�51�

Hc��� =
jcd

	
������

b

a du

�u2 − �2���u�
, �52�

FIG. 5. �Color online� Magnetic-field and sheet-current distributions ��a� and �d�	 for I0 / Ic0=0.99 �ac=1.07�, ��b� and �e�	 for I0 / Ic0

=1.5 �a=2.06 and b=0.32�, and ��c� and �f�	 for I0 / Ic0=3 �a=3.23 and b=0.02�. The top figures ��a�–�c�	 show the magnetic-field lines
around linear wires and a superconducting film. The cross symbols at �x ,y�= �±x0 ,y0�= �±1,1� denote the positions of the linear wires, the
black horizontal lines denote the shielded regions ��x��b or �x��a� of the superconducting film, and the gray horizontal lines denote the
penetrated regions b� �x��a of the film. The vertical dot-dashed lines indicate the positions of the flux fronts at x= ±a and ±b. The bottom
figures ��d�–�f�	 show the distributions of the perpendicular magnetic field Hy�x ,0� divided by jcd �solid lines� and the sheet-current density
Kz�x� divided by jcd �dashed lines� in the superconducting film.
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���� = ��a2 − �2���2 − b2� . �53�

Integrating Eq. �50� �or Eq. �C9�	, we obtain the complex
potential G���=�H���d�, as

G��� =
I0

4	
ln �2 − �1

2

�2 − �2
2� +

I0

2	
�− G0��,�1� + G0��,�2�	

+
jcd

	
�

b

a

duG0��,u� , �54�

where

G0��,s� = arctanh��2 − b2

a2 − �2

a2 − s2

s2 − b2 . �55�

Figures 5�b� and 5�c� show the magnetic-field lines, i.e.,
the contour lines of Re G�x+ iy� calculated from Eq. �54�.
Figures 5�e� and 5�f� show Hy�x ,0�=Re H�x± i�� and Kz�x�
=Im�H�x− i��−H�x+ i��	 calculated from Eq. �50� �or from
Eqs. �46�, �47�, �C18�, and �C19�	.

B. ac Response

The response of a superconducting film to ac drive cur-
rents ±Iz�t�= ± I0 cos �t flowing in the two linear wires at
�x ,y�= �±x0 ,y0� is calculated in a manner similar to that de-
scribed in Sec. II B. The magnetic flux per unit length w
linked in the two wires is calculated from

w = − �0�
−x0+r0

+x0−r0

dxHy�x,y0�

= �0 Re�G��2 + r0� − G��1 − r0�	 , �56�

and the magnetic flux per unit length  f�x�� up through the
film �y=0� in the region x��x� +
 is calculated from Eq.
�6�, where G��� is given by Eqs. �41� and �54�. The time-
dependent magnetic flux is given by Eqs. �26� and �29�. The
voltage V�t� induced in the wires per unit length and the
electric field induced in the film are given by Eqs. �24� and
�25�, respectively.

IV. DISCUSSION

Here we discuss the more realistic situation of experi-
ments detecting the response of a superconducting film to a
circular current-carrying coil.15 We consider a single-turn
coil parallel to a superconducting film. When the radius of
the coil is x0 and the distance between the coil and the film is
y0, the configuration of the coil and the film in the xy plane
is similar to that in Fig. 4. We expect that the magnetic-field
lines, the magnetic-field component perpendicular to the
film, and the circular sheet-current distribution in the film
then will be similar to the corresponding quantities shown in
Fig. 5.

In actual superconducting films the critical current density
jc and the film thickness d can be inhomogeneous, although
in the present paper we assumed that jcd is spatially homo-
geneous. The magnetic field produced by the coil of radius x0
is largest directly below the coil �i.e., the circular region of
radius �x0 in the film� when x0�y0. If jcd in the circular
region below the coil is nearly homogeneous, the response of
the film will be similar to that presented in Sec. III, and the
signal in the coil will yield the local value of jcd. In this
sense the resolution of the measurements using the coil is on
the order of x0. However, if jcd is very inhomogeneous
within the circular region below the coil, the response of the
film will be quite different from that given in Sec. III.

V. CONCLUSION

We investigated the response of an infinite superconduct-
ing film at y=0 to linear wires above the film carrying trans-
port currents Iz. We derived analytic expressions for the com-
plex field, and these are given in Eqs. �7�, �16�, �39�, and
�50�. The behavior of the film can be summarized as follows.

�i� Response to a dc current, Iz= I0: For a small dc current
in the range 0� I0� Ic0� jcd, the sheet-current density Kz in
the film is less than the critical value jcd, and no magnetic
field penetrates into the region y�0 below the film. How-
ever, for a large dc current I0� Ic0, the sheet-current density
reaches �Kz�= jcd and the magnetic field penetrates into the
region below the film.

�ii� Response to an ac current, Iz= I0 cos �t: For 0� I0
� Ic0 the voltage V�t� induced in the linear wire has only the
first harmonic at the fundamental frequency �1=�. How-
ever, for I0� Ic0, odd-harmonic voltages with frequency �n
=n�, n=3,5 ,7 , . . ., are also induced in the linear wire.

The complex field for the case of a single current-carrying
linear wire above the film is derived in Appendix A. The
complex field for the case of a pair of current-carrying wires
in a plane perpendicular �parallel� to the film is given in
Appendix B �Appendix C�.

ACKNOWLEDGMENTS

We thank H. Yamasaki for stimulating discussions. This
manuscript has been authored in part by Iowa State Univer-
sity of Science and Technology under Contract No. W-7405-
ENG-82 with the U.S. Department of Energy.

FIG. 6. �Color online� The parameters for flux fronts, a �upper
lines� and b �lower lines�, as functions of I0, determined by Eqs.
�48� and �49�. The solid lines show a and b for �x0 ,y0�= �1,3� �ac

=1.92�, the dashed lines for �x0 ,y0�= �1,1� �ac=1.07�, and the
chained lines for �x0 ,y0�= �1,0.3� �ac=1.00�.

ANALYTICAL MODEL OF THE RESPONSE OF A… PHYSICAL REVIEW B 74, 144523 �2006�

144523-7



APPENDIX A: COMPLEX FIELD FOR A
SUPERCONDUCTING FILM WITH A LINEAR

CURRENT-CARRYING WIRE ABOVE IT

In this appendix we derive Eqs. �15� and �16�. Consider
the function f��� defined by

f��� = �H��� − �����	�a2 − �2, �A1�

where ����� is

����� =
I0

2	

iy0

�2 + y0
2 . �A2�

We calculate the integral �Cd��f���� / ���−�� along the closed
contour C shown in Fig. 7, as

1

2	i
�

C

d��
f����
�� − �

=
1

2	i
�

−


+


du
f�u + i�� − f�u − i��

u − �
,

�A3�

where the contour integral along the infinite circle vanishes
because �f������H�����→0 for ���→
. Because the inte-
grand in the left-hand side of Eq. �A3� has poles at ��=� and
��= ± iy0, the contour integral of Eq. �A3� is also calculated
by using the residue theorem, as f���− f0���, and thus yield-
ing

f��� − f0��� =
1

2	i
�

−


+


du
f�u + i�� − f�u − i��

u − �
, �A4�

where f0��� is given by

f0��� =
I0

2	

��a2 + y0
2

�2 + y0
2 . �A5�

For �=x± i�, the H��� and ����� are given by

H�x ± i�� = Hy�x,0� + i�Im H0�x� � Kz�x�/2	 , �A6�

���x� = i Im H0�x� , �A7�

respectively, and thus yielding

H�x ± i�� − ���x� = Hy�x,0� � iKz�x�/2. �A8�

By using Eqs. �A1� and �A8� and

�a2 − �x ± i��2 = ��i sgn�x��x2 − a2 for �x� � a

�a2 − x2 for �x� � a ,
�

�A9�

we have

f�x + i�� − f�x − i��

= �− 2i sgn�x��x2 − a2Hy�x,0� for �x� � a

− i�a2 − x2Kz�x� for �x� � a ,
�

= �0 for �x� � a

i�a2 − x2jcd for �x� � a ,
� �A10�

where we used Eqs. �13� and �14�. Substitution of Eq. �A10�
into Eq. �A4� yields

f��� − f0��� =
jcd

2	
�

−a

+a

du
�a2 − u2

u − �
,

=
jcd

2
�− � ± i�a2 − �2� , �A11�

where the upper �lower� signs hold for Im ��0 �Im ��0�.
From Eqs. �A1�, �A5�, and �A11� we obtain

H��� =
I0

2	

1

�2 + y0
2iy0 +

��a2 + y0
2

�a2 − �2 � +
jcd

2 ±i −
�

�a2 − �2� .

�A12�

Note that the first term of the right-hand side of Eq. �A12�,
which is proportional to I0, corresponds to the complex field
in the ideal Meissner state for two semi-infinite strips situ-
ated at �Re ���a with a line current at �= iy0. By using
�−�2= � i�, we confirm that Eq. �A12� for a→0 is identical
to Eq. �7�. Equation �A12� can be rewritten as

H��� = ± i
jcd

2
+

I0

2	

1

�2 + y0
2iy0 +

��a2 − �2

�a2 + y0
2 �

+
�

�a2 − �2 I0

2	

1

�a2 + y0
2

−
jcd

2 � . �A13�

However, the last term of the right-hand side of Eq. �A13�
must vanish, because H��� is finite at �= ±a. We thus obtain
I0=	jcd�a2+y0

2, such that the parameter a describing the
position of the flux front is given by Eq. �15�. The resulting
expression for the complex field is given by Eq. �16�. See
also Appendix B for the complex field for a superconducting
film with two wires in the yz plane.

FIG. 7. �Color online� The contour C in the �� plane for the
integrals in Eqs. �A3� and �C2� consists of a line just above the real
axis, ��=u+ i� from u=−R� to u= +R where R��R, an infinite
circle, ��=Rei� from �=� /R to �=2	−� /R, a line just below the
real axis, ��=u− i� from u= +R to u=−R�, and an infinitesimal line
parallel to the imaginary axis, ��=−R�+ iv from v=−� to v= +�,
taking the limit of R→
, R�→
, and �→ +0.
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APPENDIX B: COMPLEX FIELD FOR TWO PARALLEL
WIRES IN THE YZ PLANE

We present here the complex field for a superconducting
film with two parallel linear wires above it. An infinite su-
perconducting film is in the plane y=0, as shown in Fig. 1.
One wire carrying a dc current +I0 is situated at �x ,y�
= �0,y1� and another wire carrying current −I0 is at �x ,y�
= �0,y2�, where 0�y1�y2. The derivation of the complex
field for the two wires is similar to that given in Appendix A
for a single wire, and we exhibit here only the resulting
expressions.

For 0� I0� Ic0, the sheet-current density and the perpen-
dicular magnetic field satisfy �Kz�x��� jcd and Hy�x ,0�=0,
respectively. The threshold current is given by

Ic0 = 	jcd
y1y2

y2 − y1
, �B1�

and the complex field for 0� I0� Ic0 is

H��� = � I0

	
 iy1

�2 + y1
2 −

iy2

�2 + y2
2� for Im � � 0

0 for Im � � 0.
� �B2�

For I0� Ic0, Kz�x� and Hy�x ,0� fulfill Eqs. �13� and �14�, and
the relationship between a and I0 is given by

I0 = 	jcd 1

�a2 + y1
2

−
1

�a2 + y2
2�−1

. �B3�

The complex field and complex potential for I0� Ic0 are, re-
spectively, given by

H��� = ± i
jcd

2
+

I0

2	
� 1

�2 + y1
2iy1 +

��a2 − �2

�a2 + y1
2 �

−
1

�2 + y2
2iy2 +

��a2 − �2

�a2 + y2
2 �� , �B4�

G��� =
jcd

2
�±i� + �a2 − �2� +

I0

2	
�i arctan �

y1
�

− arctanh�a2 − �2

a2 + y1
2� − i arctan �

y2
�

+ arctanh�a2 − �2

a2 + y2
2�� . �B5�

APPENDIX C: COMPLEX FIELD FOR TWO PARALLEL
WIRES IN A PLANE PARALLEL

TO THE XZ PLANE

In this appendix we derive Eqs. �48�–�52�. Consider the
function F��� defined by

F��� = �H��� − H����	���� , �C1�

where H���� and ���� are defined by Eqs. �40� and �53�,
respectively. We calculate the integral �Cd��F���� / ���−��

along the closed contour C shown in Fig. 7, as in Eq. �A3�,

1

2	i
�

C

d��
F����
�� − �

=
1

2	i
�

−


+


du
F�u + i�� − F�u − i��

u − �
,

�C2�

where the contour integral along the infinite circle vanishes
because �F������H����2�→0 for ���→
. Because the inte-
grand on the left-hand side of Eq. �C2� has poles at ��=�,
±�1, and ±�2, the contour integral of Eq. �C2� can be calcu-
lated by using the residue theorem, as F���−F0���, and thus
yielding

F��� − F0��� =
1

2	i
�

−


+


du
F�u + i�� − F�u − i��

u − �
. �C3�

The F0��� is defined by

F0��� =
I0

4	
����1�

� − �1
−

���2�
� − �2

−
��− �1�
� + �1

+
��− �2�
� + �2

�
=

I0

2	
� ����1�

�2 − �1
2 −

����2�
�2 − �2

2� , �C4�

where we used ��−�1�=−���1� and ��−�2�=−���2�.
For �=x± i�, Eq. �53� is reduced to

��x ± i�� =�±i�̃�x� for �x� � b or �x� � a

sgn�x��̃�x� for b � �x� � a ,
�

�C5�

where

�̃�x� = sgn�a − �x�����a2 − x2��x2 − b2��

= �
��a2 − x2��b2 − x2� for �x� � b

��a2 − x2��x2 − b2� for b � �x� � a

− ��x2 − a2��x2 − b2� for �x� � a .
� �C6�

Substituting Eqs. �A8� and �C5� into Eq. �C1� with �=x± i�,
we have

F�x + i�� − F�x − i��

=�2i�̃�x�Hy�x,0� for �x� � b or �x� � a

− i sgn�x��̃�x�Kz�x� for b � �x� � a ,
�

= �0 for �x� � b or �x� � a

ijcd�̃�x� for b � �x� � a , � �C7�

where we used Eqs. �46� and �47�. Substitution of Eq. �C7�
into Eq. �C3� yields

F��� − F0��� =
jcd

2	
�

b��u��a

du
�̃�u�
u − �

=
jcd

	
�

b

a

du
���u�
u2 − �2 ,

�C8�

such that
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H��� = H���� +
F0���
����

+
jcd

	

�

�����b

a

du
��u�

u2 − �2 . �C9�

By using

��s�
����

=
����
��s�

+
��2 − s2���2 + s2 − a2 − b2�

������s�
, �C10�

we rewrite Eq. �C9� as

H��� − H���� = ������ I0

2	
� 1

��2 − �1
2����1�

−
1

��2 − �2
2����2�� +

jcd

	
�

b

a du

�u2 − �2���u��
+

�

����
R��� , �C11�

where

R��� =
I0

2	
� �2 + �1

2 − a2 − b2

���1�
−

�2 + �2
2 − a2 − b2

���2� �
−

jcd

	
�

b

a

du
�2 + u2 − a2 − b2

�̃�u�

=
��2 − b2�R�±a� + �a2 − �2�R�±b�

a2 − b2 . �C12�

For �= ±a and ±b, we have

R�±a� =
I0

2	
��1

2 − b2

a2 − �1
2 −��2

2 − b2

a2 − �2
2�

−
jcd

	
�

b

a

du�u2 − b2

a2 − u2 , �C13�

R�±b� =
I0

2	
�a2 − �1

2

�1
2 − b2 −�a2 − �2

2

�2
2 − b2�

−
jcd

	
�

b

a

du�a2 − u2

u2 − b2 . �C14�

In order to remove the divergences in Eq. �C11� at �= ±a and
±b, we require R�±a�=R�±b�=0, thus yielding

I0

jcd
Re��1

2 − b2

a2 − �1
2 = �

b

a

du�u2 − b2

a2 − u2 , �C15�

I0

jcd
Re�a2 − �1

2

�1
2 − b2 = �

b

a

du�a2 − u2

u2 − b2 . �C16�

Equations �C15� and �C16� reduce to Eqs. �48� and �49�,
respectively. We thus obtain R���=0 for any �, and Eq.
�C11� is reduced to Eqs. �50�–�52�.

The sheet current Kz�x�=Im�H�x− i��−H�x+ i��	 and the
perpendicular magnetic field Hy�x ,0�=Re H�x± i�� are ob-
tained by substituting �=x± i� in Eq. �50� with Eq. �A8�,

Hy�x,0� � iKz�x�/2 = H�x ± i�� − H��x�

= ��x ± i��� I0

2	
� x

�x2 − �1
2����1�

−
x

�x2 − �2
2����2��

−
jcd

	
�

b

a du

��x ± i��2 − u2	��u��
= ��x ± i��� I0

	
Re� x

�x2 − �1
2����1��

−
jcd

	
�

b

a du

��u�� x

x2 − u2

�
i	

2
���x − u� + ��x + u�	�� .

�C17�

Substitution of Eq. �C5� into Eq. �C17� yields the sheet cur-
rent Kz�x� and the perpendicular magnetic field Hy�x ,0�. The
Kz�x� for b� �x��a is given by Eq. �46�, and that for �x�
�b or �x��a is given by

Kz�x� =
2

	
x�̃�x��I0 Re� 1

�x2 − �1
2����1��

− jcd�
b

a du

�x2 − u2���u�� . �C18�

The Hy�x ,0� for �x��b or �x��a is given by Eq. �47�, and
that for b� �x��a is given by

Hy�x,0� =
1

	
�x��̃�x��I0 Re� 1

�x2 − �1
2����1��

− jcdP�
b

a du

�x2 − u2���u�� , �C19�

where P denotes the Cauchy principal value integral.
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