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We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality
class that apply to the superfluid transition in “He along the A line of its phase diagram. We obtain the estimates
a=-0.0151(3), v=0.6717(1), n=0.0381(2), y=1.3178(2), B=0.3486(1), and 6=4.780(1). Our results are
obtained by finite-size scaling analyses of high-statistics Monte Carlo simulations up to lattice size L=128 and
resummations of 22nd-order high-temperature expansions of two improved models with suppressed leading
scaling corrections. We note that our result for the specific-heat exponent « disagrees with the most recent
experimental estimate «=-0.0127(3) at the superfluid transition of *He in a microgravity environment.
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I. INTRODUCTION AND SUMMARY

The renormalization-group (RG) theory of critical phe-
nomena classifies continuous phase transitions into univer-
sality classes, which are determined by only a few global
properties of the system, such as the space dimensionality,
the nature and the symmetry of the order parameter, the
symmetry-breaking pattern, and the range of the interactions.
Within a given universality class, the critical exponents and
scaling functions describing the asymptotic critical behavior
are identical for all systems. The three-dimensional XY uni-
versality class is characterized by a complex order parameter
and symmetry breaking O(2)=%7,® U(1) —Z,. An interest-
ing representative of this universality class is the superfluid
transition of *He along the \ line T)(P), which provides an
exceptional opportunity for a very accurate experimental test
of the RG predictions, because of the weakness of the singu-
larity in the compressibility of the fluid and of the purity of
the samples. Exploiting also the possibility of performing
experiments in a microgravity environment, the specific heat
of liquid helium was measured up to a few nanokelvins from
the \ transition.! The resulting estimate of the specific-heat
exponent, obtained after some reanalyses of the experimental
data,'3 is3

a=-0.0127(3). (1)

Other experimental results at the superfluid transition of “He,
and for other physical systems in the XY universality class,
are reported in Ref. 4.

On the theoretical side the XY universality class has been
studied by various approaches, such as field-theoretical (FT)
methods and lattice techniques based on Monte Carlo (MC)
simulations or high-temperature (HT) expansions. A review
of results can be found in Ref. 4. Accurate estimates of the
critical exponents were obtained in Ref. 5 by combining MC
simulations and HT expansions of improved Hamiltonians.
This synergy of lattice techniques provided the estimate

a=-0.0146(8), (2)

which is substantially consistent with the experimental result
(1), although slightly smaller. Other results obtained from FT
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calculations,®® MC simulations,>® and HT expansions!®-!!

are less precise and in agreement with both estimates (1) and
(2).

In this paper we significantly improve the theoretical es-
timates. This allows us to check whether the small difference
between the theoretical and experimental estimates (1) and
(2) disappears after a more accurate theoretical analysis, as
recently suggested in Ref. 12. We again follow the strategy
of Ref. 5, considering two classes of lattice Hamiltonians,
the ¢* lattice model and the dynamically diluted XY (ddXY)
model. They depend on an irrelevant parameter, A and D,
respectively, which can be tuned to suppress the leading scal-
ing corrections, giving rise to improved Hamiltonians. We
improve the finite-size scaling (FSS) analysis of these mod-
els by significantly increasing the statistics (by approxi-
mately a factor of 10) and simulating larger lattices (up to
lattice sizes L=128). The precision of the data allows us to
observe the expected next-to-leading scaling corrections, and
therefore to have a much better control of the systematic
errors. Moreover, we extend the HT expansion of the suscep-
tibility and of the correlation length in the ¢* and ddXY
models to 22nd order, i.e., we add two terms to the HT series
computed and analyzed in Refs. 5 and 11. Using this bulk of
data and calculations, we perform several analyses, also
combining information obtained from MC simulations and
THT analyses (IHT denotes the HT expansion specialized to
improved models).

In Fig. 1 we show a summary of our results for the
specific-heat critical exponent «, as obtained from the hyper-
scaling relation @=2-3v. We show three sets of estimates
for the ¢4 and ddXY models, obtained by different methods.
We first report the results of FSS analyses of MC data up to
L=128 (FSS). The three reported results for each model are
obtained from the analysis (left) of a combination of two
quantities (temperature derivatives of RG-invariant quanti-
ties) that does not have leading scaling corrections, (center)
of the energy density, and (right) of the fourth-order (Binder)
cumulant of the magnetization. Next, we report the results
obtained from the analyses of the 22nd-order THT series at
the optimal values of the irrelevant parameters \* and D",
biased using the MC estimates of 8. (MC+IHT). Finally, we
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FIG. 1. (Color online) Summary of our results for the specific-
heat exponent «. Abbreviations are explained in the text. The col-
ored region corresponds to our final estimate «=-0.0151(3).

show results obtained by requiring the FSS and IHT analyses
to give consistent results for the exponent v (FSS+IHT).
These results come from different analyses of the available
MC data and HT calculations. Although they are not com-
pletely independent, their comparison represents a highly
nontrivial cross-check of the results and of their errors. In
Fig. 1 we also show our earlier MC+IHT result obtained in
Ref. 5.

The results shown in Fig. 1 provide a rather accurate es-
timate of a, which we summarize by taking

a=-0.0151(3) (3)

as our final estimate. This result significantly improves our
earlier estimate (2), but it does not reduce the difference
from the experimental result (1). Moreover, now the errors
are so small that their difference appears significant. Accord-
ing to our analyses, values of the specific-heat exponent «
>—0.014 should be highly unlikely. We think that this
discrepancy calls for further investigations. We mention
that a proposal of a space experiment has been presented in
Ref. 13.

We also anticipate our best estimates of the other critical
exponents:

v=0.6717(1), (4)
7=0.0381(2), (5)
y=1.3178(2), (6)
5=4.780(1), (7)
B=0.3486(1). (8)

Moreover, we obtain an accurate estimate of the exponent @
associated with the leading scaling corrections, i.e., ®
=0.785(20), and of the exponent w, associated with the next-
to-leading scaling corrections, i.e., w,=1.8(2).

Our results improve earlier theoretical estimates; we men-
tion the field-theoretical results® v=0.6703(15) (from six-
loop fixed-dimension perturbative series) and v=0.6680(35)
[from O(€) series], the MC estimates »=0.6723(11),
0.6716(5), and 0.6717(3), respectively, from Refs. 9, 5, and
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12, and the HT results v=0.674(2) and 0.67166(55) from
Refs. 10 and 11, respectively. Other results can be found in
Ref. 4.

The paper is organized as follows. In Sec. II we define the
¢* and ddXY lattice models. Section III is dedicated to a
summary of the basic RG ideas concerning FSS in critical
phenomena. In Sec. IV we present our MC simulations and
the FSS analyses of the data. The computation and analysis
of the HT expansion are presented in Sec. V. We report an
analysis of the IHT expansions of improved ¢* and ddXY
models biased using the MC estimates of 8. (MC+IHT), and
a combined analysis requiring the consistency of the IHT and
FSS results (FSS+IHT). In Ref. 14 we report the HT expan-
sion (up to 22nd order for the susceptibility and the correla-
tion length) of several quantities for the most general model
defined on a simple cubic lattice with two-component site
variables and nearest-neighbor couplings.

II. LATTICE MODELS

As in Ref. 5, we consider two classes of models defined
on a simple cubic lattice and depending on an irrelevant
parameter. They are the ¢* lattice model and the dynamically
diluted XY model. The Hamiltonian of the ¢* lattice model is
given by

M= B by dy+ SIRAGE-17, ©)

(xy) x

where $x=(¢§“,¢§2)) is a two-component real variable. The
ddXY model is defined by the Hamiltonian

Hdd=_18<2> (ZX'(;Z_\,—DE Q-b))zg (10)

with the local measure

dul,) = d¢>§”d¢§2)(5<¢§”) A7)+ 501 - |<Z>x|)),
m
(11)

and the partition function

f [T du(g)eMa, (12)

The parameters X in Hys and D in Hgyq can be tuned to
obtain improved Hamiltonians characterized by the fact that
the leading correction to scaling is absent in the Wegner
expansion of any observable near the critical point. Consid-
ering, for instance, the magnetic susceptibility y, the corre-
sponding Wegner expansion is generally given by

X= Ct_y(l +Cl0‘]t+a0‘2t2+ te +Cl]‘]tA+a]‘2t2A+ te
+b1,1t1+A+b],2t1+2A+ A +612’1tA2+ ), (13)

where t=1-/, is the reduced temperature. We have ne-
glected additional terms due to other irrelevant operators and
terms due to the analytic background present in the free
energy.'®!8 The leading exponent y and the correction-to-
scaling exponents A,A,,..., are universal, while the ampli-
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tudes C, a; j, b; ; are nonuniversal. For three-dimensional XY
systems, the value of the leading correction-to-scaling expo-
nent is A=0.53,%%° and the value of the subleading nonana-
lytic exponent is A,~1.2.!° In the case of improved Hamil-
tonians the leading correction to scaling vanishes, i.e., a;
=0 in Eq. (13) (actually a,;=0 for all i), in the Wegner
expansion of any thermodynamic quantity.

Improved Hamiltonians belonging to the XY universality
class have been discussed in Refs. 5, 9, and 11. We mention
that improved Hamiltonians have also been considered for
other universality classes, such as the Ising?®?3 and Heisen-
berg universality classes.>*?

II1. FINITE-SIZE SCALING

In this section we summarize some basic results concern-
ing FSS in critical phenomena. The starting point of FSS is
the scaling behavior of the singular part of the free energy
density of a sample of linear size L (see, e.g., Refs. 17 and
26):

fsing(”t’uh’{ui}al‘) = L_dfsing(utLyt’ MhLyh’{uiLyi}) s (14)

where u,=u,, u,=u,, and {u;} with i=3 are the scaling
fields (which are analytic functions of the Hamiltonian pa-
rameters) associated respectively with the reduced tempera-
ture ¢ (u,~t), magnetic field H (u;, ~ H), and the other irrel-
evant perturbations with y;<<0. The scaling behavior of the
interesting thermodynamic quantities can be obtained by per-
forming the appropriate derivatives of Eq. (14), with respect
to + and H. Since u, and u;, are assumed to be the only
relevant scaling fields, one may expand with respect to the
arguments corresponding to the irrelevant scaling fields. This
provides the leading scaling behavior and the power-law
scaling corrections.

The RG exponents of the relevant scaling fields u, and u,,
are related to the standard exponents v and 7, i.e., y,=1/v
and y,=(d+2-m)/2. The RG exponent y;=-w [A=wv, cf.
Eq. (13)] of the leading irrelevant scaling field u; has been
estimated by the analysis of high-order FT perturbative
expansions,® obtaining w=0.802(18) (e expansion) and
=0.789(11) (d=3 expansion) in the case of the three-
dimensional XY universality class. Results from lattice tech-
niques are in substantial agreement (see Ref. 4). As we shall
see later, our FSS analysis provides the estimate
=0.785(20). Concerning the RG exponents of the next-to-
leading scaling corrections [they are related to the scaling-
correction exponents of Eq. (13) by A,=—y,v, etc.], we
mention the FT results of Ref. 19: y,=—1.77(7) and ys
==1.79(7) (y45, and y4y in their notation) for the three-
dimensional (3D) XY model. Note that, at present, there is no
independent check of these results. As we shall see, our
present MC and HT analyses confirm that the next-to-leading
scaling corrections are characterized by a RG exponent y,
=-1.8(2). There are also corrections due to the violation of
rotational invariance by the lattice; the corresponding RG
dimension is yg=—2.02(1).%” We mention that for some quan-
tities, such as the Binder cumulant and the ratio R;= éIL,
there are also corrections due to the analytic background of
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the free energy. This should lead to corrections with y,;=
—(2—7)=-1.9619(2) (obtained by using the estimate of 7 of
this work). Finally, in the case of R, we expect also o(L™?)
corrections,”® related to the particular definition (22) of &

For vanishing external field H, the behavior of a phenom-
enological coupling R, i.e., of a quantity that is invariant
under RG transformations in the critical limit, can be written
in the FSS limit as

RUL BN = Rl (1)
= ro(u, L) + 2 ’"3,k(”zLy’)”13(ka3 + 2 riu L) u;Li
k

i=4
+ -, (15)

where we have singled out the corrections due to the leading
irrelevant operator. The functions ry(z), r,(z), and r;(z) are
smooth, finite for z— 0, and universal once one chooses a
specific normalization condition (which must be independent
of the Hamiltonian parameters) for the scaling fields. For
example, one may define the scaling field u, by imposing
ro(0)=1 for a particular phenomenological coupling; then,
the function ry(z) for any given phenomenological coupling
R is universal, i.e., independent of the Hamiltonian param-
eters. The scaling fields u,(8,\) and u;(8,\) are smooth
functions of 8 and \. For 8— 3. we have

u(BN) =c(Nt,  t=1-pIB.. (16)

All other scaling fields u; are generically finite for r=0. Im-
proved models are characterized by the additional condition
that us(r=0)=0: in this case, all corrections proportional to
L¥3=L7k vanish at the critical point =0. In the limit ¢
—0 and u, L' ~tL""—0, we can further expand Eq. (15),
obtaining

R(L,BN) =R" + ry(0)c, ()Lt
+ 2, r{0)ui( BN LT + O(PL¥1, L3, 1LY 3)

(17)

where R*=ry(0). As we already mentioned, in improved
models all corrections proportional to LX3 vanish for r=0.
Instead of computing the various quantities at fixed
Hamiltonian parameters, one may study the FSS keeping a
phenomenological coupling R fixed at a given value Ry. This
means that, for each L, one considers B{L) such that

R(L,B=BAL)) =Ry. (18)

All interesting thermodynamic quantities are then measured
at B=B,(L). The pseudocritical temperature S/(L) converges
to B, as L— <. The value R, can be specified at will, as long
as Ry is taken between the high- and low-temperature fixed-
point values of R. The choice R;= R" (where R is the
critical-point value) improves the convergence of 3, to 3, for
L—o0; indeed>? B,—B,=0(L™""") for generic values of Ry,
while B;— B.=O0(L™""=) for Rf:R*. This method has sev-
eral advantages. First, no precise knowledge of (. is needed.
Second, for some observables, the statistical error at fixed R,
is smaller than that at fixed 8=_,.
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Typically, the thermal RG exponent y,=1/v is computed
from the FSS of the derivative of a phenomenological cou-
pling R with respect to B at B,. Using Eq. (15) one obtains

JR
SR|IBCE % ﬂ
—_ C()\) ! 't ! . Yitye
-4 ()\)<VO(O)L’ + 2; P (0 B)L y)
+ ri(O)z—Z(ﬁc,x)U’f 4o (19)
=3

An analogous expansion holds for Sp computed at a fixed
phenomenological coupling. The leading corrections scale
with L3. However, in improved models in which us(8,)=0,
the leading correction is of order L”4. Note that corrections
proportional to L37i~[L723 are still present even if the
model is improved. If one computes the derivative at 5., one
should also take into account the uncertainty on S, in the
error estimate of v; therefore, it is more convenient to evalu-
ate Sy at B, defined in Eq. (18).

Before concluding the section, we would like to recall
three basic assumptions of FSS when considering boundary
conditions consistent with translation invariance, such as pe-
riodic boundary conditions:!” (a) 1/L is an exact scaling field
with no corrections proportional to 1/L%, 1/L3, etc.; (b) the
nonlinear scaling fields have coefficients that are L indepen-
dent; (c) the analytic background present in the free energy
depends on L through exponentially small terms.

The theoretical evidence for these three hypotheses is dis-
cussed in Ref. 17. Under these assumptions, there are no
analytic 1/L corrections. These assumptions can be verified
analytically in the two-dimensional Ising model (see, e.g.,
Refs. 18, 29, and 30 and references therein). As far as we
know, all numerical results reported in the literature are in
full agreement with assumptions (a), (b), and (c). In particu-
lar, there is no evidence of 1/L corrections to FSS. As we
shall see, the FSS analysis that we shall present in this paper
will provide further support to the FSS assumptions, and in
particular to the absence of 1/L analytic corrections.

IV. MONTE CARLO SIMULATIONS AND FINITE-SIZE
SCALING ANALYSES

In this section we present MC simulations that signifi-
cantly extend those of Ref. 5. The statistics are much larger
and we consider larger lattice sizes (the largest lattice has
L=128). As we shall see, the present MC data allow us to
perform a more accurate FSS analysis, achieving a much
better control of the next-to-leading scaling corrections, and
therefore of the systematic errors related to the subleading
scaling corrections.

A. Monte Carlo simulations

We simulated the ¢* and ddXY models on simple cubic
lattices of size L with periodic boundary conditions, at sev-
eral values of the Hamiltonian parameters A and D, close to
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the optimal values A" and D", at which leading scaling cor-
rections vanish.

The basic algorithm is the same as in our previous nu-
merical study reported in Ref. 5. We use a combination of
local and cluster’’ updates. We perform wall-cluster
updates:>! we flip all clusters that intersect a plane of the
lattice. A cluster update changes only the angle of the vari-
ables. An ergodic algorithm is achieved by adding local
updates,’?> which can also change the length of the spin vari-
ables. We use Metropolis and overrelaxation algorithms as
local updates, which we alternate with the cluster updates.

The main difference with respect to our previous numeri-
cal work® concerns the random number generator. Since we
planned to increase the statistics by approximately one order
of magnitude, we decided to use a higher-quality random
number generator, such as those proposed in Ref. 33. In our
MC simulations we used the RANLUX random number gen-
erator with luxury level 2. Its main drawback is that it re-
quires much more CPU time than the GOSCAF generator of
the NAG library** which we used in Ref. 5. In order to get a
good performance, despite the use of the expensive random
number generator, we used demonized versions*>-¢ of the
update algorithms, which allowed us to save many random
numbers.

Most simulations of the ¢* and ddXY models were per-
formed at the estimates of A" and D" obtained in Ref. 5, i.e.,
A=2.07 and D=1.02. In addition, we performed simulations
at A=1.9,2.1,2.2,2.3 for the (]54 model, and at D=0.9,1.2
for the ddXY model. We shall also present some MC simu-
lations of the standard XY model. In total, the MC simula-
tions took approximately 20 years of CPU time on a single
2.0 GHz Opteron processor.

B. Definitions of the measured quantities

The energy density is defined as

lw - -
== ¢ by (20)
Vi ’

where V=L>. The magnetic susceptibility y and the correla-
tion length ¢ are defined as

x= $<(E $x>2> 1)

and
[ x/F-1
=\, 22
¢ 4 sin® /L (22)
where

_ 1 27\ - |2
F=v< L >¢’“ > 29

is the Fourier transform of the correlation function at the
lowest nonzero momentum.

We also consider several so-called phenomenological
couplings, i.e., quantities that, in the critical limit, are invari-
ant under RG transformations. We consider the Binder pa-

g exp(i

144506-4



THEORETICAL ESTIMATES OF THE CRITICAL EXPONENTS...

rameter U, and its sixth-order generalization Ug, defined as

_ (i)

2j <7;12>J ’

(24)

where m=(1/ V)Exg?)x is the magnetization of the system. We
also consider the ratio R;=Z,/Z, of the partition function Z,
of a system with antiperiodic boundary conditions in one of
the three directions and the partition function Z, of a system
with periodic boundary conditions in all directions. Antipe-

riodic boundary conditions in the first direction are obtained
by changing the sign of the term (Zx~ <;SV of the Hamiltonian
for links (xy) that connect the boundaries, i.e., for x
=(L,x,,x3) and y=(1,x,,x3). Finally, we define the helicity
modulus Y. For this purpose we introduce a twisted term in
the Hamiltonian. More precisely, we consider the nearest-
neighbor sites (x,y) with x;=L, y,=1, x,=,, and x3=y3, and
replace the term g?)x- <Z>y in the Hamiltonian with

b, - quzy = ¢i])(¢§,l)cos o+ d);z)sin ®)
+ d))(cz)(qS;z)cos ©— ¢fc1)sin ), (25)

where R, is a rotation by an angle ¢. The helicity modulus is
defined by

1 &In Z(¢)
L (9(102 ¢=0

The quantities U, R;=Z,/Z,, R;=§/L, and Ry=YL are
invariant under RG transformations in the critical limit.
Thus, they can be considered as phenomenological cou-
plings. In the following we will generically refer to them by
using the symbol R. Finally, we also consider the derivative
of the phenomenological couplings with respect to the in-
verse temperature, i.e.,

Y= (26)

Sk=—, 27)

which allows us to determine the critical exponent v through
Eq. (19).

C. Determination of the critical temperature

As a first step of the analysis we determine the inverse
transition temperature 3, for various values of \ in the ¢*
model and of D in the ddXY model. For this purpose we
employ the standard Binder-crossing method, i.e., 3, is de-
termined by requiring

R(B.L) =R (28)

independently of L. Here R is a phenomenological coupling,
R" is its fixed-point value, and corrections to scaling are
ignored. In practice we compute R(B,L) as Taylor series up
to third order around the simulation value 3,,,- We choose as
Bun our previous best estimate of B, (see Ref. 5). In the
analysis we consider four different phenomenological cou-
plings: R;=Z,/Z,, R;=§&/L, U, and Us. We do not use the
helicity modulus because it has a poor statistical accuracy for
large lattices, which are important to determine f..
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TABLE I. Estimates of B. at A=2.07 and D=1.02 and of the
fixed-point value R” for several dimensionless quantities. Results of
fits of the MC data in the range 48 =L =128. For details, see the
text.

Quantity B. at \=2.07 B. at D=1.02 R*

R, 0.5093835(2)[3]  0.5637963(2)[2]  0.3203(1)[3]
R 0.5093836(2)[3]  0.5637963(2)[2]  0.5924(1)[3]
U, 0.50938333)[1]  0.5637961(3)[1]  1.2431(1)[1]
Uy 0.5003834(3)[2]  0.5637962(3)[2]  1.7509(2)[7]

We first analyze the data at A\=2.07 for the ¢* model and
D=1.02 for the ddXY model, for which we have data with
higher statistics especially for the largest lattices. We per-
form fits with Ansatz (28) for the two models separately. The
two models provide consistent results for R", as required by
universality. In order to improve the statistical accuracy, we
also perform joint fits of the results for both models, impos-
ing the same value of R*. In Table I we report our final
results, which are taken from joint fits of the results for the
two models (A=2.07 and D=1.02) with 48<L=128. Sys-
tematic errors are estimated by comparison with fits with
24=1=48, i.e., by evaluating (difference of the two fits)/
(2*=1) with x=1/v+w=2.3 for B, and x=w=0.8 for R"
(here we pessimistically assume that leading corrections
dominate). The estimates of B. obtained by using different
quantities are all consistent among each other. As our final
result we take the one obtained from the data of R, S,
=0.509 383 5(2)[3] for the ¢* model at A\=2.07 and S,
=0.563 796 3(2)[2] for the ddXY model at D=1.02, where
the number in parentheses is the statistical error, while the
number in brackets is the systematic error due to scaling
corrections. In Table I we also report the estimates of the
fixed-point values R" of the phenomenological couplings,
which improve the results of Ref. 5. For the other values of
N and D considered, we estimate B. by requiring that
R(B.,L=128)=R"; for R* we use the estimate of R" reported
in Table 1. Again, the best estimate is obtained from R; for
this quantity scaling corrections are quite small. The results
are reported in Table II, where the number in parentheses is
the statistical error, while the number in brackets is the error
due to the uncertainty on R".

D. FSS at fixed phenomenological coupling R

Instead of performing the FSS analysis at fixed Hamil-
tonian parameters, one may analyze the data at a fixed value
of a given phenomenological coupling R, as discussed in
Sec. TII. For this purpose we need to compute R(B) in the
neighborhood of .. This could be done by reweighting the
MC data obtained in a simulation at 8=~ .. However,
due to our enormous statistics, we could not store all results
needed to reweight the data. Instead, we computed the first
derivatives of R(B) with respect to 8 and determined R(S)
by using its third-order Taylor expansion around f,,,. We
checked that this is by far enough for our purpose. If we do
not use the reweighting technique, it is enough to store bin
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TABLE II. Estimates of . for several values of A and D, from
the FSS analysis of the MC data, and from the fit of MC data of y
and ¢ in the HT phase using bIA1 approximants of the 22nd-order
HT series (MC HT) of y and ¢ (see Sec. V B). The results for N
=2.00 (¢* model) and D=0.90,1.03 (ddXY model) are taken from
Ref. 5.

MC HT MC HT
Model FSS from y from &
¢*, A=1.90 0.5105799(4)[3]
¢*, A=2.00 0.5099049(15)
¢t =207 0.5093835(2)[3]
¢*, A=2.10 0.5091503(3)[3]  0.5091504(4) 0.5091504(4)
¢t A=2.20 0.5083355(3)[4]  0.5083361(4) 0.5083363(4)
ddXY, D=0.90 0.5764582(15)[9]
ddxy, D=1.02 0.5637963(2)[2] 0.5637956(6) 0.5637970(7)
ddXY, D=1.03 0.5627975(7)[7]
ddXY, D=1.20 0.5470376(17)[6] 0.5470383(6) 0.5470392(7)
Standard XY 0.4541652(5)[6]

This estimate is obtained from a fit with RZ(ﬁC,L)=R;+ cL™®, with
L,in=32, fixing RZ=0.3203 and w=0.785. This result is consistent
with 8,=0.454 165 9(10) given in Ref. 37.

averages of the different quantities, significantly reducing the
amount of needed disk space. Given R(f), one determines
the value B, such that R(8=/)=R;. All interesting observ-
ables are then measured at ﬂf; their errors at fixed R=R; are
determined by a standard jackknife analysis. For compatibil-
ity with our previous study,”> we choose Rz=0.3202 and
R¢;=0.5925.

This method has the advantage that it does not require a
precise knowledge of the critical value B.. But there is an-
other nice side effect: for some observables the statistical
errors at fixed R, are smaller than those at fixed 8 (close to
B.). This is due to cross correlations and to a reduction of the
effective autocorrelation times. For example, we find

err[ X ] ~32, err x| | ~ 45
err[X | RZ:0.3202] eff[X |R 50.5925]
Mz 19, en{ Uil ~16 (29)
CH[ U4|RZ=0_3202:| CIT[ U4|R§=0.5925]

for the ddXY model, with a very small L dependence (within
the last figure of the above-reported numbers). In the case of
the ¢* model we find slightly smaller improvements for the
same quantities. We also mention that the gain is marginal
for the derivatives of R considered in this paper. A reduction
of the statistical errors when some quantities are measured at
a fixed R has also been observed in other models.*8

E. The leading correction-to-scaling exponent w

In order to study corrections to scaling, we analyze the
value of a phenomenological coupling R, at a fixed value of
a second coupling R,. If B, is determined by R,(B/)=R, ;, we
consider
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El = Rl(,Bf) (30)

(the dependence on L is understood hereafter). Note that>2

the large-L limit of R, is universal but depends on R,/ (it
differs from the critical value R), unless Rz,f=R;). Neglect-
ing scaling corrections in Eq. (15), we have R,
=ryolc(N)tL] and Ry=r, o[c(N)1L*1] where ry (z) and r; (z)
are universal functions. Fixing R,=R, ; corresponds to fixing
a particular trajectory in the 7,L plane, given by c¢(\)tL
=z; where z; is the solution of the equation R, y=r,(z)).

Along this trajectory R1=§1=r1’0(zf) which shows the uni-

versality of R;.

The phenomenological couplings that we consider are Uy,
Us, Rz=27,/Z,, R;=§&/L, and Ry=YL.

In the ¢* model we define

A()\l’)\z)zﬁl()\z)_kl()\l)» (31)

and analogously for the ddXY model, replacing N with D.
Since

RN =R +c(ML™+ -+, (32)
we perform fits with the most simple Ansatz
A()\l,)\z) =ACL_w, AC=C()\2) —C()\l), (33)

and analogously for the ddXY model. A selection of such fits
is given in Table III, where we report only results for U, and
Ry at a fixed value of either R, or R ¢ Very similar results are

obtained by using Uy instead of U,. R ¢ at a fixed value of Ry
is not very useful, because corrections to scaling and statis-
tical errors are relatively large. In order to get an idea of the
corrections to scaling, we give results for the fit intervals 5
=L=12 and 10=L=24. The difference of the two results
provides a rough estimate of the error due to next-to-leading
corrections to scaling. As our final result we quote

TABLE III. Fits to Ansatz (33), using the data at \;=1.9 and
\,=2.3 in the case of the ¢* model and D;=0.9 and D,=1.2 in the
case of the ddXY model. L, and L, are the minimal and maxi-
mal lattice sizes that have been included in the fit. DOF is the
number of degrees of freedom of the fit.

Model R, R, Luyin Lmax Ac ) X>/DOF
¢ Uy, R, 5 12 -0.0209(2) 0.825(4) 0.8
10 24 —-0.0200(5) 0.804(10) 1.1

Uy Ry 5 12 -0.02102) 0.775(4) 0.5

10 24 -00215(5) 0.785(10) 1.4

Ry R, 5 12 -0.0053(1) 0.722(9) 1.4

10 24  -0.0060(5) 0.775(37) 0.7

ddxy U, R, 5 12 -00355(2) 0.782(3) 0.7
10 24 -0.0349(6) 0.775(7) 0.9

U R; 5 12 -0.0365(2) 0.739(3) 43

10 24 -0.0386(7) 0.764(7) 0.6

Ry Ry 5 12 —-0.0099(1) 0.708(5) 3.6

10 24  -00115(7) 0.77325) 0.9
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FIG. 2. (Color online) U, (above) and Ry (below) at fixed R,
=0.3202 for various values of N (¢* model), D (ddXY model), and
the standard XY model, vs L™ with w=0.785.

w=0.785(20), (34)

which includes (almost) all results for the interval 10=L
=24.

F. Determination of A" and D*

To begin with, in Fig. 2 we show results for U, and Ry at
fixed R,=0.3202, for various values of \ in the ¢* model, of
D in the ddXY model, and in the standard XY model, vs L™
with w=0.785. They show a clear evidence of the leading
scaling corrections, and of the existence of optimal values
\",.D" of N and D for which they are suppressed. We also

note that Ry is subject to larger next-to-leading scaling cor-
rections; we shall return to this point later.

In order to determine \* and D", we mainly use our data
generated for A=2.07 and D=1.02. We fit them using various
Ansdtze. The most simple one is

R=R"+cL™®, (35)

where R is defined in Eq. (30). Equation (35) includes only
leading corrections to scaling; we fix w=0.785 as previously
obtained. We may also include subleading corrections to
scaling. As we mentioned in Sec. III, there are several scal-
ing corrections that have similar exponents with 1.8=<w;
=<2.0. Of course, it is impossible to distinguish these correc-
tion terms and in the fits we have included a single effective
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next-to-leading term with an exponent that we still indicate,
for notational simplicity, with w,. Thus, we consider

R=R +cL™®+elL™, (36)

and use either w,=1.8 or w,=2.

We first perform fits of types (35) and (36) for the two
models ¢* and ddXY separately. As R we consider U, at
fixed Ry, 174 at fixed R 176 at fixed R, l_]6 at fixed R, and
Ry at fixed Ry. The results for R are, as required by univer-
sality, consistent for the two models. Hence we take our final
results from joint fits of the results for both models. For
instance, in a joint fit with Ansatz (35) there are three free
parameters: R* and two correction-to-scaling amplitudes, one
for the ¢* and one for the ddXY model.

In order to determine N (and analogously D*), we assume
c(\) to be linear in the neighborhood of \* and write

c(N) = ¢;(N =\, (37)
so that
N=A- lc(>\). (38)
g

We use N=2.07, the value for which we have most of the
simulations, and determine ¢; by using

dc

B _c(A=23)-c(A=19)
N - '

N 23-19

9] (39)

In the ddXY model we use the same formulas with D=1.02
and

_e(D=1.2)-c(D=09)
. 12-09

dc
==

~ 9D (40)

In order to determine ¢(\) and ¢(D), we fix @=0.785 (and, to
estimate errors, w=0.765, w=0.805). The results of the fits
with Ansatz (33) for @=0.785 are summarized in Table IV.
The final estimate is taken from the fits with 12=L=24. The
comparison with the fits with 6=L=12 gives us an idea of
the error due to subleading corrections. It is small enough to
be ignored in the following.

We also checked whether the linear approximation is suf-
ficiently accurate by determining the derivatives (39) and
(40) from other pairs of values of N and D. The error due to
the linear extrapolation is approximately 10%, which is neg-
ligible for the purpose of determining A" and D”. In Fig. 3 we
plot the results for A" and D" as functions of the L,,;, used in
the fits to (35) and (36). The results of the fits to Eq. (35)
show a systematic drift and become stable only for L,;,
=30. This systematic variation is mostly due to the next-to-
leading corrections and indeed fits to Eq. (36) are less depen-
dent on L,;, and give fully consistent results. As our final
results we quote

N'=2.15(5), D"=1.06(2), (41)

which correspond to
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TABLE 1V. Fits to Ansatz (33) as in Table III, but keeping w
fixed. Ac=c(A=2.3)-c(A\=1.9) for the ¢* model and Ac=c(D
=1.2)—c(D=0.9) for the ddXY model.

Model R, R, ® Lyyn L Ac X*/DOF
¢ U, R, 0785 6 12 -=0.01925(3) 5.8
12 24  -0.01898(5) L5

0805 6 12 —0.02006(3) 1.5

12 24 -0.02002(5) 1.2

0765 6 12 -0.01847(3) 136

12 24 -0.01799(5) 2.4

U, R; 0785 6 12 -0.02145(3) 0.2

12 24 -0.02145(5) 1.6

Us R, 0785 6 12 -0.0688(1) 7.7

12 24 -0.0678(2) 1.5

Us R; 0785 6 12 -0.0763(1) 0.2

12 24  -0.0763(2) 1.6

Ry R, 0785 6 12 -0.00608(2) 2.5

12 24 -0.00615(5) 0.8

ddxy U, R, 0785 6 12 -0.03576(3) 0.8
12 24 -0.03578(8) 0.9

0805 6 12 -0.03727(3) 6.5

12 24 -0.03774(8) 34

0765 6 12 —0.03431(3) 4.4

12 24 -0.03393(7) 0.2

Uy R 0785 6 12 -0.04021(4) 127

12 24 -0.04077(9) 1.0

Us R, 0785 6 12 -=0.1271(1) 1.7

12 24 -0.1276(3) 12

Us R; 0785 6 12 -0.1423(1) 223

12 24 -0.1447(3) 1.3

Ry R, 0785 6 12 -0.01157(2) 7.2

12 24 -0.01177(8) 1.2

(Tl z03200) = 1:24281(10),

(Tl mos025) = 12427710, (42)

Consistent results for \* and D" are obtained by analyzing

U6 at RZ—O 3202 and R=0.5925. Note that the estimates of
\" and D" are slightly larger than those obtained in our pre-
vious work,> where we reported \*=2.07(5) and D"
=1.02(2). Since the larger statistics and larger lattice sizes
allow us to achieve a better control of all sources of system-
atic errors, and in particular of the next-to-leading scaling
corrections, we are confident that the estimates (41) are now
correct with the quoted errors (which are as large as those
reported in our previous work).

We also performed some MC simulations of the standard
XY model up to lattice size L=96. Using the estimates for

and 172 obtained above, one-parameter fits of the MC data
give (taking data for 24 =1L=96)
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FIG. 3. (Color online) Determination of \* and D" from joint
fits of both ¢* and ddXY models: (a) results from fits of U, at Ry
=0.3202 to a+cL™® with w=0.785; (b) results from fits of l_/4 at
R:=0.5925 to a+cL™® with w=0.785; (c) results from fits of Uy at
R;=0.3202 to a+cL™®+eL™*? with w=0.785, w,=1.8; (d) results
from fits of U, at R:=0.5925 to a+cL™+eL™? with 0=0.785,
w,=1.8. The dashed lines indicate our final estimates.

174|RT_0,3202 =1.242 81 -0.1014(4)L7078 (43)

and
(74|Ré;0_5925 =1.24277-0.1138(4)L77%, (44)

We can use these results to obtain a conservative upper
bound on the ratios |c(A=2.15)/c(XY)| and |c(D
=1.06)/c(XY)| that are independent of the quantity one is
considering. Using the estimate of the linear coefficient ¢,
and taking into account that the error on N is £0.03, we infer
that the leading scaling-correction amplitude of U, at R,
=0.3202 for A=2.15 satisfies |c(A=2.15)| <0.0024. The
same bound is obtained in the ddXY model for c(D=1.06).
This implies |c(A=2.15)/c(XY)| <0.0024/0.1014~1/42
and an analogous bound for |c(D=1.06)/c(XY)|. A similar
calculation also shows that [c(A=2.07)| and |c(D=1.02)| are
at least 20 times smaller than |c(XY)|.

G. Next-to-leading scaling corrections

In this section we present evidence of next-to-leading
scaling corrections characterized by an exponent w,,=~2, as
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FIG. 4. (Color online) Estimates of the improved quantity (45)
in the case of the Binder cumulant U, at R;=0.3202 and R
=0.5925 (above), and of Ry at R;=0.3202 (below), vs L.

expected due to the presence of several irrelevant perturba-
tions with y=~-2, as discussed in Sec. III. In particular, this
provides robust evidence of the absence of 1/L analytic cor-
rections (see the discussion at the end of Sec. III).

We first construct improved variables for U, R,=0.32025

Ul R=0.5925> and Ry| ®,=0.3202» Which do not have leading scal-
ing corrections. In the ddXY model (analogous formulas hold
in the ¢* model by replacing D with \) we consider

Rimp = R(D)'R(D,)" ™. (45)

Expanding R as in Eq. (35.) and using a linear approximation
for ¢(D), c¢(D)=¢,;(D-D"), as in the previous section, we
obtain for L—

5 —x C N
I-\’imsz(1+_*l [xD1+(1—x)D2_D]+...>'
R L?

(46)

Thus, if we take x=x"=(D"-D,)/(D,-D,), the leading scal-
ing correction cancels. In the ddXY model we use the data at
D;=1.02 and D,=1.2, while in the ¢* model we combine
our data for Ay=1.9 and \,=2.3.

In Fig. 4 we show the improved combination (45) in the

case of the Binder cumulant U, as a function of L2. For
Uy R=0.5025 We observe straight lines to a good approxima-
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tion. On the other hand, for 174| R,=0.3202 there is a clear bend-
ing of the curves, indicating that, in the given range of lattice
sizes, corrections with exponent w’>2 are contributing sig-
nificantly. We should note that these results do not provide
completely independent information, since we have already
used w, =2 as input in the determination of D" and \" in the
previous section. Therefore, they only provide a consistency
check. This is not the case for Ry =YL, since it was not used

for the determination of D* and \*. In Fig. 4, EY| R,=0.3202 is
plotted as a function of L™2. We clearly observe a straight
line. Hence corrections with w,=~2 clearly dominate in the
whole range of lattice sizes that are shown. There are no
leading corrections to scaling and, as expected from general
RG arguments, also no corrections proportional to L', If
there were a correction proportional to L~!, the ratio of its
amplitude with the amplitude of the correction proportional
to L™ (i.e., the leading one) would not be the same in dif-
ferent quantities. In other words, if corrections proportional
to L' and L~ effectively cancel for U, at our estimates of
D*,\" and for the range of values of L considered, there is no
reason why this should also happen for Ry. Hence we con-
clude that our numerical results confirm the theoretical argu-
ment that no L™! corrections are present in FSS for periodic
boundary conditions.

H. The critical exponent v

Here, we compute the critical exponent v from a FSS
analysis of the derivative S;=JR,/Jf3 at a fixed value of
another (or the same) phenomenological coupling R,.

For this purpose we define an improved quantity that does
not have leading scaling corrections. Since S; behaves as

S =a(NLYL+c(NL ™+ -+ ] (47)

for L—oo, if we take A=\", so that ¢(\) is small and the
linear approximation c(\)=~¢;(A=\") works well, an im-
proved variable is simply

Stimp(N) = Si V[T = ¢; (A= N)L™]. (48)
We compute ¢; using
dc c(N) —c(N
N (YRS ) o)
(9)\ }\z}\* )\1 - )\2

where \; and \, are sufficiently close to A" so that the linear
approximation works well. We estimate the difference
c¢(\;)—c(\,) from fits of

Sl ()\2) |R2=c0nst
Sl ()\1) ‘Rzzconst

_ a()\z)
a(\y)

AS (NN, =

{T+[c\) —cN)IL™+ -]

(50)

In the ¢4 model we take A\;=1.9, \,=2.3, and A=2.07 and
fix w=0.785. The same formulas hold in the ddXY model:
we take D1=0.9, D,=1.2, D=1.02.
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TABLE V. Fits to Ansatz (50) of Sy, at R;=0.3202 for the ddXY
model, where we have used D;=0.9 and D,=1.2. We fix o
=0.785. L, and L, are the minimal and maximal lattice sizes
included in the fit.

Luin Lmax a(D=1.2)/a(D=0.9) c¢(D=1.2)-c(D=0.9) x*DOF

6 12 0.9811(4) -0.0735(18) 1.4

24 0.9809(2) -0.0723(12) 1.0
8 24 0.9806(3) —0.0699(21) 0.9
10 24 0.9803(5) —0.0677(33) 1.1
12 24 0.9803(7) ~0.0672(54) 0.3

As an example, let us discuss the determination of the
linear coefficient ¢; for S v, at Rz=0.3202. In Table V we
report some results of fits with Ansarz (50). They are quite
stable when L.;, and L, are varied. This indicates that
leading scaling corrections dominate in the difference and
that subleading corrections vary little with D. As our final
result we take

c(D=12)-c(D=0.9)=-0.067(7), (51)

which should take into account both statistical and system-
atic errors. The error due to the uncertainty on w as well as
the error due to the linear approximation are negligible. We
repeat this procedure for all quantities of interest. Typically,
the amplitude differences analogous to (51) can be deter-

_ ]0.67181(12) - 0.0022(3) X (\ - 2.07)
~10.67195(13) = 0.0061(9) X (D - 1.02)

The N and D dependence is that corresponding to the fit
without corrections with L ;,=16. The error on the linear
coefficient is due to the error on ¢; [cf. Eq. (48)]. Using the
estimates \"=2.15(5) and D*=1.06(2), we obtain the results

0.671 63(12)[11]  for the ¢* model, (56)
~10.67171(13)[12]  for the ddXY model, (57)

where the first error is statistical and the second one is due to
the uncertainty on N\ and D". The analysis of Sy, at R
=0.5925 gives analogous results. Other quantities provide
consistent, but less precise, estimates.

Finally, we analyze the derivative SRYEﬁRY/ dB of the
helicity modulus. In this case subleading corrections are
smaller when considering the data at 8=/, rather than at a
fixed phenomenological coupling. Since we have only a few
data for the ¢* model at A\=2.07, we give results only for the
ddXY model. We first compute the improved slopes S Ryimp
by using Eq. (48). Fits to the Ansatz S=aL'” have a small
X>/DOF already from rather small L, indicating that sub-
leading corrections are rather small in this quantity. Fitting
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mined with an error of approximately 10% for the ddXY
model and 15% for the ¢* model.

To determine v, we fitted the data of SI:SU4 at R,=R,
=0.3202 to

R,

=al'” (52)
(9:8 R2=consl

Sl |R2=const =

and
1| ryzcons = aL (1 +eL™2), (53)

where we consider either w,=1.8 or w,=2. Assuming that
there are no leading scaling corrections, the fits of the origi-
nal data at AN=2.07 and D=1.02 give the result v
=0.671 81(12) and 0.67195(13) for A=2.07 and D=1.02,
respectively. The errors take into account the results obtained
by using the two Ansdtze and the L, dependence.

In order to evaluate the effect of the residual leading cor-
rections to scaling, we repeat the same fits for § ;n, com-
puted by using Eq. (48). We obtain estimates of v that are
smaller by roughly 0.0002. This change depends slightly on
the Ansatz and L,;,. These results allow us to give an effec-
tive estimate of v as a function of D and A\, the N\ and D
dependence being due to the residual leading corrections to
scaling that are not taken into account in the fit. Since the
estimates of the improved quantities correspond approxi-
mately to those that would be obtained by using data at A
=\" or D=D", we obtain

for the ¢* model, (54)
for the ddXY model. (55)

the data with 16 <L =128, we obtain v=0.672 00(15) at D
=1.02 and v=0.67173(15) at D=1.06 (more precisely, for
the improved quantity SRY,imp). Therefore, taking also into
account the error on D", we might quote ¥=0.6717(3) as a
final result of this analysis, which agrees with the results (56)
and (57). We have also checked the dependence of this result
on the estimate of 3,, finding that the error due the uncer-
tainty of (. is definitely smaller than the error on v quoted
above.

I. Eliminating leading scaling corrections from the derivative
of phenomenological couplings

We now consider a combination of the derivative S,
=JR;/ dp of two phenomenological couplings R;, at 3. or at
fixed R;,

S, (VIS ()], (58)

and show that one can choose a value p such that this quan-
tity is improved—no leading corrections to scaling—for any
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N\ or D. Moreover, the computation of p does not rely on any
estimate of w.
For L—o, S; at B. or at a fixed R;, behaves as

SN =a;NLY1 + ;WL + -+ 1. (59)
Therefore, we have
1S (V)PS0
=la, (V) Play(M)|' 7
XL"{1 +[pe;(N) + (1= p)e;(WIL™+ -}
(60)
An improved quantity is obtained by taking p= p*, where
pei(N) +(1=pHe(N) =0. (61)

Note that, since the ratios c¢;(N)/c,(\) are universal, thus
independent of \ (or D), also the optimal value p” is univer-
sal.

Now we show how p” can be accurately computed. We
consider ratios of S;(\) at different values of \:

Si(\2) _ ai(\y)

Si(N\y) - ai()\l){l +leha) -

NI+ -} (62)

Due to the universality of the amplitude ratios we have

c(\y) _ c2(N\p) _ c2(\p) = ¢5(N\y)
caN) () (\y) —C1(7\1).

(63)

Therefore,

[s (7\2)] {52()\2)}
S0 ] LS00

_ {611()\2)}[){M} l_p(l +{plei(Ny) = ci(\)]

ay(\y) ay(\y)
+(1=pllea(Ny) = eca(W)BL™ + +++). (64)
We can obtain the desired value of p* by imposing that the
combination
S1(\) 7] Sa(ny) |17
{ i »} [ A »] 65
Si\) 1 LS2(N)

is L independent. This procedure does not require any

knowledge of @ and assumes only that leading scaling cor-

rections dominate in the considered range of lattice sizes.
The optimal pair of slopes §; turns out to be

R aU.
z . S,= oYy

Sl_ﬁ_ =
B B

essentially because the amplitudes of their leading scaling
corrections have opposite signs. In order to determine the
corresponding value of p*, we perform fits with Ansatz (65)
using the data at \,=1.9 and \,=2.3 for the ¢* model, and at
D{=0.9 and D,=1.2 for the ddXY model. Some results are
reported in Table VI. The estimates of p” from the two mod-
els are consistent, as required by universality. We take p”
=0.72(3) as our final estimate (from fits with L;,=8, while
the error is estimated by varying the fit range).

. (66)

R,=0.3202 R;=0.3202
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TABLE VI. Fits to Ansatz (65) of the improved combination of
SU4 and SR at R;=0.3202. L.;, and L, are the minimal and
maximal lattlce sizes included in the fit. For a detailed discussion,
see the text.

Model Linin Linax P X*/DOF
ot 6 12 0.703(11) 0.93
8 24 0.718(11) 1.37
12 24 0.744(30) 1.61
ddxy 6 12 0.736(6) 1.87
8 24 0.720(8) 1.29
12 24 0.702(19) 0.02

Using this estimate for p*, we construct the improved
combinations (60) at A=2.07 for the ¢* model and at D
=1.02 for the ddXY model. Since these values of A and D are
close to the optimal values \* and D", leading scaling cor-
rections are quite small. Therefore, the uncertainty on p” is
negligible with respect to the final error of our estimate for .
In Fig. 5 we show results for the exponent v obtained by fits
to the functions aL'” and to aL'"(1+eL™“2) with w,=1.8,
for several values of L;,. Guided by Fig. 5, we take

_]0.6718(2)
~10.6717(3)

for the ¢* model, (67)
for the ddXY model (68)

as our final estimates. Moreover, combined fits applied to
both ¢* and ddXY models give the estimate v=0.6718(2).
As a further check, we apply this method to the standard
XY model, where leading corrections to scaling are large. In
Fig. 6 we show results for the critical exponent v from MC
simulations of the standard XY model up to L=96, as ob-
tained by fits to the simple Ansatz S=aL!” of the data of § R,
at RZ—O 3202, Sy, at Rz=0.3202, and their combination (60)
at p=p"=0.72. The first two sets of results clearly disagree
with the estimate of v from improved Hamiltonians and also
between themselves (thus, they are inconsistent). Instead, the
analysis of their improved combination provides perfectly
consistent results, giving further support for the validity of
the method and confirming the accurate determination of p*.

J. The critical exponent v from the finite-size scaling
of the energy density

We also derive estimates of v from the FSS of the energy
density. On finite lattices of size L?, the free energy density
behaves as

J(B.L) = fu(B) + f(B.L), (69)

where the nonsingular part of the free energy density f,,; does
not depend on L, apart from exponentially small contribu-
tions. The singular part is expected to behave as

f(B,L) =L g(tL"" us L7, ...).

The energy density is obtained by taking the derivative with
respect to f3,

(70)
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FIG. 5. (Color online) Results for the exponent v obtained by
fits of the improved combination (58) using the quantities (66), for
several values of L,: (a) to aL'” and (b) to aL""(1+eL~“2) with
Wy = 1.8.

E(B,L)=E,(B) + L™ g (tL"" ,usL7™, ... ) + -~
(71)

Setting 8=p,,* we obtain for L— o the expansion
E(B.,L)=E,(B,) +aL™ ™" (1 +cL™®) + ---.  (72)

In Fig. 7 we show the results of the fits to Eq. (72) without
correction terms (i.e., with ¢=0) for the ¢* and ddXY mod-
els, respectively, at A\=2.07 and D=1.02. Our final estimates
of v from the scaling of the energy density (obtained from
fits of data for 12=L=128) are
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0674 — 4
I * ? $ { ]
0672 ]
v I 4 % t { _
0670 — —
0.668- % { } .

[ } + (a)

L F e (b)
0.6~ A (0 A

10 20 30 20
L min

FIG. 6. (Color online) Results for the critical exponent v from
MC simulations of the standard XY model, as obtained by fits of the
data of the derivative of R, at R;=0.3202 (a), the derivative of U,
at R;=0.3202 (b), and by using the method that combines them to
eliminate the residual leading scaling corrections (c). The two
dashed lines correspond to our final estimate v=0.6717(1).

for the ¢* model, (73)

0.6717(2)
- for the ddXY model. (74)

0.6715(3)

Our data at A=1.9,2.3 in the case of the ¢4 model and D
=0.9,1.2 for the ddXY model are not sufficient to get a reli-
able estimate of the systematic error due to the leading scal-
ing corrections. However, we can estimate it by a compari-
son with the standard XY model. Fitting the data of the
standard XY model to the simplest Ansatz without scaling
corrections (using the value of B, reported in Table II and
data for 8 =L =96), we obtain »=0.6701(2), i.e., the expo-
nent is underestimated by approximately 0.0015. We may
use this difference to estimate the leading scaling-correction
amplitude in the improved model. Taking into account that
the largest lattice for the XY model has L=96 instead of L
=128, we obtain ¢~0.0015 X (128/96)~°785=0.0012, where
we have also taken into account the difference of the sizes L
used in the fits. Since the leading correction amplitudes at
D=1.02 and A=2.07 should be smaller by a factor of ap-
proximately 20 than in the standard XY model, we may have

0.6720 &
0.6718- =
0.6716 [ + + + ﬂ -

v.roo# ]
0.6714 +

0.6712

T
e
|

0.6710 =

0.6708

T
[ ]
=
Q
>
=

I

FIG. 7. (Color online) Results of fits for the FSS of the energy
for the ¢* model at A=2.07 and the ddXY model at D=1.02.
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FIG. 8. (Color online) Results for the exponent 7 obtained by
fits of Ximp for several values of Ly, (a) to aL'’ and (b) to
aLV"(1+eL™2) with w,=1.8. The dashed lines indicate our final
FSS estimate 7=0.0381(3).

a shift by 0.000 06 in our estimates (73) and (74) for v due to
leading corrections, which is much smaller than their errors.

K. The critical exponent 7

We compute the critical exponent 7 from the FSS behav-
ior of the magnetic susceptibility y either at R,=0.3202 or at
R=0.5925. As in the analyses of the derivatives Sg, we first
compute an improved quantity for y that does not have lead-
ing scaling corrections. Since

x=al* (1 +cL™®+ ), (75)

close to the improved value \* where ¢ is small and a linear
approximation c(\)=c;(A\=\") suffices, we can take

Ximp = X(W[1 = c)L™] = x(N[1 = e)(A = N)L™].
(76)

To compute ¢; we consider the ratio

X(A2)|RT—OA3202 a(\,)

XN |r=0.3202 - a()\,){1 +leMy) —cNDIL™+ -}

(77)
with \;=1.9 and \,=2.3. Fits to Eq. (77) allow us to esti-
mate
dc _c(A=23)-c(\=19)
PYNK 23-19 '

¢ = (78)

Analogous equations can be written for the ddXY model and
at fixed Rg.

Then, we fitted the data for the improved y [we use A
=2.07 in Eq. (76)] using the Anscitze

Ximp| R ~0.3202 = AL*7, (79)

Ximp| R ~0.3202 = AL*™ (1 + eL™2), (80)

where we fix either w,=1.8 or w,=2. In Fig. 8 we show the
results of the fits of )(imp| R,=0.3202 for the ¢* model vs the
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minimum value L,;, of L allowed in the fits. Similar results
are obtained for the ddXY model, using D=1.02 in Eq. (76).
In all cases, the fits with Ansatz (79) have a large x*/DOF
for L;,=40. Moreover, the resulting values of # appear to
slightly increase with increasing L,,;,. In contrast, the fits
allowing for subleading corrections are more stable and give
a x*/DOF close to 1 already for L., = 10. We also mention
that fixing R instead of R gives slightly lower values for 7,
by about 0.000 05 for the fit to (79), and 0.000 15 for the fits
to (80). A comparison of A=2.07 and A=2.15 indicates that a
possible error due to the uncertainty of \* should be approxi-
mately 0.000 05. Our final FSS estimate obtained from both
¢* and ddXY models is

7=0.0381(3). (81)

V. CRITICAL EXPONENTS FROM IMPROVED
HIGH-TEMPERATURE EXPANSIONS

A. High-temperature expansions

High-temperature expansion in powers of the inverse tem-
perature 3 is one of the most effective lattice approaches to
investigate the critical behavior in the HT phase. We consider
a general class of models defined on a simple cubic lattice by
the Hamiltonian

H=- 182 &x ' (r?;y+ E V(‘ZZ)’ (82)

(xy) x

where B=1/T, (xy) indicates nearest-neighbor sites, g?)x

:(decl), d)iz)) is a two-component real variable, and V(¢?) is a
generic potential satisfying appropriate stability constraints.

Using the linked-cluster expansion technique (see Refs. 5
and 39 for details), we extended the HT computations of Ref.
5 by adding a few terms in the HT series. The two main steps
of the algorithm are the generation of the graphs and the
evaluation of the contribution of each graph. The first step is
limited by memory, and was performed on a computer with
16 Gbytes of RAM. The second step is limited by processing
time; it was parallelized and required approximately 4 years
of CPU time on a single 2.0 GHz Opteron processor. We
computed the 22nd-order HT expansion of the magnetic sus-
ceptibility and of the second moment of the two-point func-
tion

X =2 (ha(0)h(x)),

my= 2x2<¢a(0)¢a(x)>, (83)

and therefore, of the second-moment correlation length

my

o (84)

52

Moreover, we computed the HT expansion of some zero-
momentum connected 2j-point Green’s functions x;,

144506-13



CAMPOSTRINI et al.

X2j = 2 <¢a1(0)¢a1(x2)‘“¢aj(x2j—1)¢aj(xzj)>c

X2 2j

(85)

(x=x2). We computed y, to 20th order, ys and yg to 18th
order.

The HT series for the general model (82) are reported in
Ref. 14. In the following we will restrict ourselves to the ¢*
and ddXY models [cf. Egs. (9) and (10)].

B. Critical exponents from the analysis of the HT expansion
of improved models

In our analysis of the HT series we consider quasidiagonal
first-, second-, and third-order integral approximants (IA1’s,
IA2’s, and TA3’s, respectively), and in particular biased TA
n’s (bIAn’s) using the most precise available estimate of ..
The FSS estimates of 3, are reported in Table II. We refer to
Ref. 5, and in particular to its Appendix B, for details on the
HT analysis and the precise definition of the various integral
approximants. A review of methods for the analysis of HT
series can be found in Ref. 41.

The leading nonanalytic corrections are the dominant
source of systematic errors in HT studies. Indeed, nonana-
lytic corrections introduce large and dangerously undetect-
able systematic deviations in the results of the analysis. In-
tegral approximants can in principle cope with an asymptotic
behavior of the form (13); however, in practice, they are not
very effective when applied to the series of moderate length
available today. As shown in Refs. 5, 23, and 25, analyses of
the HT series for the improved models lead to a significant
improvement in the estimates of the critical exponents and of
other infinite-volume HT quantities. The crux of the method
is a precise determination of the improved value of the pa-
rameter appearing in the Hamiltonian. In this respect FSS
techniques appear quite effective, as we have shown in the
preceding section. A further improvement is achieved by bi-
asing the HT analysis using the available estimates of f3,.

Our working hypothesis is that, with the series of current
length, the systematic errors, i.e., the systematic deviations
that are not taken into account in the HT analysis, are largely
due to the leading nonanalytic corrections, especially when
they are characterized by a relatively small exponent, as is
the case in the 3D XY universality class where A=wv
~(.53. Therefore, improved models are expected to give
results with smaller and, more importantly, reliable error es-
timates. The systematic errors in our analyses are related
either to next-to-leading nonanalytic scaling corrections or to
our approximate knowledge of A" and D". Since A,=w,v
=~ 1.2, we will assume that next-to-leading corrections do not
play much role, and we will take into account only the re-
sidual leading corrections proportional to \=\" (D—D" for
the ddXY model). Of course, this hypothesis requires strin-
gent checks. A nontrivial check is achieved by comparing the
results obtained using different improved models: If the hy-
pothesis is correct, they should agree within error bars.

As an additional check of our results we compare [A1’s of
the 22nd-order HT series of y and & with high-statistics MC
results. We simulated the d>4 model at N\=2.1,2.2 and the
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FIG. 9. (Color online) High-temperature MC data for the corre-
lation length of the ¢* model at N=2.1, and the result of the fit
using bIA1 of the 22nd-order HT series of &2.

ddXY model at D=1.02,1.2 in the HT phase (8<p,). We
alternate single-cluster updates and local Metropolis and
overrelaxation updates. In order to obtain negligible finite-
size effects (i.e., orders of magnitude smaller than the statis-
tical errors), we used lattices of size L > 10¢ throughout. We
obtained infinite-volume estimates up to £€=~30 on a 3503
lattice.

In Fig. 9 we show MC data for the ¢* model at \=2.1
from B8=0.493, where £=4.1825(2), to the largest B value
B£=0.5083, where £=30.453(10). bIA1’s using the FSS esti-
mate 8,=0.509 150 3(5) provide perfectly consistent results,
for example £=30.449(1)[7], where the first error is related
to the spread of the approximants and the second one to the
uncertainty on .. We also obtain an independent estimate of
B. by fitting the MC data of ¢ to bIA1’s with . taken as a
free parameter. The resulting estimate B.=0.509 150 4(4)
(with x?/DOF=0.9) is perfectly consistent with the FSS es-
timate. The corresponding curve is drawn in Fig. 9. An iden-
tical result, i.e., B8,=0.509 150 4(4), is found by fitting the
MC data of y, which shows that the agreement with the FSS
analysis is not just by chance. We performed similar analyses
also for A=2.2, and in the case of the ddXY model for D
=1.02 and 1.20. The results denoted by MC+HT are reported
in Table II. The comparison with the FSS estimates is satis-
factory overall. This successful analysis should be contrasted
with the case of the standard XY model, where the fit of the
MC results in the HT phase by bIA1 does not provide ac-
ceptable results: indeed, most of the approximants are defec-
tive. This fact may be explained by the presence of sizable
leading scaling corrections.

In order to determine the critical exponents vy and v, we
analyze the 22nd-order series of y and 21st-order series of
&/ B, respectively, using bIAn’s with n=1,2,3 biased at the
best available estimate of B.. Estimates of the exponent 7
can be obtained by using the scaling relation 7=2-y/v.
More precise estimates of the product 7 can be obtained by
using the so-called critical-point renormalization method
(CPRM) applied to the series of y and £/ (see Ref. 5 for
details). For the ¢* and ddXY models we performed analyses
at different values of the A and D to determine the depen-
dence of the effective exponents on N and D due to the
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Model Be Approximants y v nv from CPRM
¢*, A=1.90 0.5105799(7) bIA1 1.31718(3)[10] 0.67116(10)[3] 0.02531(4)
bIA2 1.31726(8)[12] 0.67119(5)[3] 0.02527(10)
bIA3 1.31723(3)[11] 0.67118(14)[4] 0.02528(5)
¢*, N=2.07 0.5093835(5) bIA1 1.31757(2)[7] 0.67153(4)[3] 0.02553(5)
bIA2 1.31759(4)[7] 0.67155(6)[3] 0.02552(12)
bIA3 1.31758(2)[7] 0.67153(5)[3] 0.02552(4)
¢*, A=2.10 0.5091504(4) bIA1 1.31767(3)[6] 0.67160(3)[2] 0.02557(5)
bIA2 1.31769(5)[5] 0.67163(6)[2] 0.02556(12)
bIA3 1.31767(3)[5] 0.67160(4)[2] 0.02556(5)
¢*, N=2.20 0.5083355(7) bIA1 1.31787(2)(8] 0.67178(2)[5] 0.02569(6)
bIA2 1.31789(5)[10] 0.67181(7)[5] 0.02567(12)
bIA3 1.31788(5)[9] 0.67179(4)[4] 0.02569(5)
ddXY, D=1.02  0.5637963(4) bIA1 1.31757(15)[5] 0.67141(4)[3] 0.02547(5)
bIA2 1.31746(9)[4] 0.67143(6)[2] 0.02550(23)
bIA3 1.31745(12)[5] 0.67149(9)[3] 0.02533(19)
ddXY, D=1.03  0.5627975(13) bIA1 1.31767(15)[15]  0.67148(4)[7] 0.02550(4)
bIA2 1.31756(9)[ 14] 0.67150(5)[6] 0.02552(23)
bIA3 1.31755(10)[15]  0.67155(8)[9] 0.02537(18)
ddXY, D=1.20 0.5470388(11) bIA1 1.31871(5)[14] 0.67227(8)[7] 0.02602(4)
bIA2 1.31872(11)[13]  0.67232(10)[6] 0.02597(28)
bIA3 1.31868(13)[13]  0.67224(10)[8] 0.02575(52)

residual leading corrections to scaling that are not taken into
account in the analysis. In Table VII we report some inter-
mediate results, i.e., the results for each blAn analysis, which
will then lead us to our final estimates reported below. We
closely follow Ref. 5, so we refer to it for details. We only
mention that the set of bIAn’s that we consider are those with
q=2, s=1/2, n,=2 in the definitions reported in Ref. 5.

In the case of the ¢* model, using the results of the bIAn
analysis at A=2.10 and A=2.20, and assuming a linear de-
pendence on \ in between, we obtain the IHT results

»=0.671 61(4)[2] +0.0018(\ — 2.10),
y=1.317 68(3)[5] + 0.0021(\ - 2.10),

v =0.025 56(5) + 0.0013(\ — 2.10). (86)

The central value at A=2.1 is taken from the bIA2 and bIA3
analyses, the number in parentheses is basically the spread of
the approximants at A\=2.10 using the central value of 3, [we
use B8,=0.509 150 4(4)], while the number in brackets gives
the systematic error due to the uncertainty on .. The depen-
dence of the results on the chosen value of A is estimated by
assuming a linear dependence, and evaluating the coefficient
from the results for A=2.2 and A=2.1, i.e., from the ratio
[O(N=2.2)-0(N=2.1)]/0.1, where Q represents the quantity
at hand. Consistent results are obtained by using the pair of
values 2.07,2.20 or 1.90,2.10 instead of 2.10,2.20. In the
case of the ddXY model, using the results of the bIAn analy-
sis at D=1.02 and 1.20, we obtain

v=0.67145(6)[2] + 0.0046(D - 1.02),

y=1.31746(11)[5] + 0.0070(D - 1.02),

v =0.025 47(14) + 0.0031(D — 1.02). (87)

An alternative and more straightforward analysis of HT
series is represented by the matching method, which was
applied in Refs. 23 and 42 for the two- and three-
dimensional Ising models. The idea is to generate sequences
of estimates by fitting the expansion coefficients with their
asymptotic form. By adding a sufficiently large number of
terms one may improve the convergence, although, of
course, the procedure becomes unstable if the number of
terms included is too large compared to the number of avail-
able terms. The estimates of the critical exponents from this
analysis are consistent with the bIAn results and with the fact
that the ¢* model at A=2.1 and the ddXY model at D
~1.1 are approximately improved, i.e., the coefficients of
the leading scaling corrections are consistent with zero.
However, the results of this analysis are not sufficiently
stable and precise to improve the estimates already obtained.

Estimates of the critical exponents can be then obtained
by evaluating Eqs. (86) and (87) at the FSS estimates of \",
ie., N'=2.15(5), and D", i.e., D"=1.06(2), where the residual
effect of the leading scaling correction should vanish. We
refer to these results as MC+IHT estimates. For the ¢*
theory we obtain
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v=0.67170(4)[2{9},
y=1.317793)[5K11},

7=0.038 16(7){10} (88)
and using the scaling and hyperscaling relations

a=2-3v=-0.01510(12)[6 {27},

n=2-y/v=0.038 13(15){10}. (89)

The error due to the uncertainty on \" is reported in braces.
For the ddXY model we obtain

v=0.671 63(6)[21{9},
y=131774(11)[5]{14},

7=0.038 11(20){9}, (90)
and

a=-0.014 89(18)[61{27},

n=2-y/v=0.038 00(25){6}. 01)

There is good agreement between the MC+IHT estimates
obtained from the ¢* and ddXY models. We stress that this
represents a nontrivial check of the hypotheses underlying
the IHT analysis. In particular, this supports our working
hypothesis that effects due to next-to-leading nonanalytic
corrections are negligible. Finally, estimates of the critical
exponents 6 and 3 can be obtained using the hyperscaling
relations 6=(5-7)/(1+ ) and B=v(1+7)/2.

C. Combining IHT and FSS analyses

Critical exponents can be also estimated by comparing
Egs. (86) and (87) with the analogous FSS results (54) and
(55) obtained from the MC data of Sy, We note that the
coefficients that give the dependence on A and D in the IHT
and FSS expressions have opposite signs. Therefore, the re-
sults of the two analyses agree only in a relatively small A
(or D) interval. This is shown in Fig. 10. This comparison
provides an estimate of v that is independent of the determi-
nation of the optimal values N, D*. Taking the values con-
sistent with both the IHT and FSS analyses as estimates of v,
we obtain the following FSS+IHT results

0.67168(10)  for the ¢* model, (92)
~10.67167(15)  for the ddXY model. (93)

The good agreement between the two results nicely supports
our estimates of the errors. The FSS+IHT results represent
our most precise estimates of the critical exponent v. Corre-
sponding estimates of a can be obtained using the scaling
relation a=2-3v.

Note that this analysis also provides alternative estimates
of A" and D". The intersection region in Fig. 10 indicates
N"=2.14(5) and D"=1.07(3), which are in good agreement
with those obtained in Sec. IV F.
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FIG. 10. (Color online) Comparison of the HT and FSS results
for the critical exponent v as a function of the parameters A, D
around their optimal values. The dotted lines correspond to the es-
timates of v that are consistent with both the IHT and FSS analyses.

D. Universal amplitude ratios

Using HT methods, it is possible to compute the first co-
efficients g,; and r,; appearing in the small-magnetization
expansion of the Helmholtz free energy and of the equation
of state.* Indeed, these quantities can be expressed in terms
of zero-momentum 2j correlation functions and of the corre-
lation length. They are defined as

3 Xa
84=-23 (94)
oy
and
10
re=10- _Xst,
9 Xa
560 35
rgszso——XG—)f+—X8—X§, 95)
9 xa 27 X
etc.

Using their extended HT series, we update the estimates
of g4, r¢, and rg obtained in Ref. 5. Consider a universal
amplitude ratio A which, for r=1-8/8,.—0, behaves as

AD=A"+c i+t 4 - vajt+at? + . (96)
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TABLE VIII. Estimates of the fixed-point value of g, from the
20th-order HT series of 8%?g,. The error due to the uncertainty of
B. is negligible.

Model g4 I4
¢, N=2.07 21.149(5) 1.13(6)
¢* N=2.10 21.153(4) 1.16(6)
¢, A=2.20 21.167(4) 1.28(7)
ddXY, D=0.90 21.13(7) 0.9(2)
ddxy, D=1.02 21.15(3) 1.1(4)
ddXxY, D=1.03 21.15(3) 1.13)
ddXYy, D=1.20 21.22(2) 2.5(1.1)

In order to determine A" from the HT series of A(f), we
consider bIA1’s, whose behavior at B, is given by>*!

F(B - BIB) +g(B). (97)

where f(B) and g(B) are regular at B3,, except when ( is a
nonnegative integer. In the case we are considering, { is posi-
tive and therefore A*=g(/3.). Moreover, for improved Hamil-
tonians we expect {=A,=~1.2, instead of {=A=0.53.

In the case of g, we analyze the series ,83/2g4=2?=()0a,~ﬂi. In
Table VIII we report some results for several values of A and
D. Assuming a linear dependence on \, D around their opti-
mal values, we find

2,=21.153(4) +0.14(\ — 2.10) (98)
for the ¢* model, and
2,=21.15(3) + 0.4(D — 1.03) (99)

for the ddXY model. We estimate the critical value of g, by
evaluating the above expressions at \* and D*. We obtain
respectively,

g.=21.160(4){7}, g,=21.16(3){1}, (100)

where the error in braces is related to the uncertainty on the
estimates of A" and D*. We consider g,=21.16(1) as our final
estimate. This significantly improves our earlier result® g,
=21.14(6) and is fully consistent with the FT estimate g,
=21.16(5) obtained from an analysis of six-loop perturbative
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series.®* Other results for g, can be found in Ref. 4. The
results for the nonanalytic exponent ¢, reported in Table VIII,
give

£=1.16(6) + 1.3(\ — 2.10) (101)

in the case of the ¢* model. Evaluating £ at A\=\" we obtain
an estimate of A,, i.e., A,=1.23(6){7}, corresponding to w,
=1.83(19). A consistent, but less precise, estimate can be
obtained from the results for the ddXY model.

It is worth mentioning some results obtained for the
analysis of the HT series of g, in the standard XY model.
Using bIAI’s, biased so that B.=0.454 1652(11) and A
=0.527(13) [corresponding to w=0.785(20)], we obtain g,
=21.12(5), which is in good agreement with the estimate
obtained from the improved models. Moreover, if we analyze
the same series biasing B.=0.4541652(11) and g,
=21.16(1) and taking scaling-correction exponent A as a free
parameter, we obtain the estimate A=0.56(5), which is in
agreement with the result obtained from the FSS analysis.

Similar analyses applied to the 18th-order HT series of rg
and rg provide the estimates rg=1.96(2) and rg=1.5(1),
which substantially confirm those obtained in Ref. 5. These
results can be used to compute approximations of the critical
equation of state, using the method outlined in Refs. 5 and
44, which is based on an appropriate analytic continuation in
the ¢,H space. Using our estimates of «, », rg, and rg, we
obtain results for the critical equation of state and universal
amplitude ratios that are substantially equivalent to those ob-
tained in Ref. 5, essentially because our HT results do not
significantly improve the estimates of r¢,7g, and no precise
and reliable estimates of the higher-order coefficients r,; are
available. Therefore we do not provide further details. We
only report the result R,=(1-A*/A")/@=4.3(2) which is
relevant for the superfluid transition in “He. For comparison,
we mention the FT result* R,=4.43(8), the numerical MC
results R,=4.20(5) (Ref. 46) and R,=4.01(5),*” and the ex-
perimental estimate R,=4.154(22) reported in Ref. 3.
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