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We analyze the influence of an unconventional symmetry order parameter on the dynamical properties of the
interface in a grain boundary bicrystal Josephson junction. The self-resonance modes, known as Fiske steps,
are calculated by assuming the presence of an arbitrary number of 0-� singularities in the phase difference
between the two superconducting films. Simple expressions are obtained useful to fit experimental data.
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I. INTRODUCTION AND BACKGROUND

It is now well established that the properties of
YBa2Cu3O7−� �YBCO� grain boundary Josephson junctions
�GBJJ� in films depend on the presence of “facets,”
50–100 nm long, in the border with a variety of
orientations.1 The d-wave symmetry of the order parameter
coupled with the latter circumstance results in a critical cur-
rent density J1 whose value differs discontinuously, possibly
also in sign, from one facet to another. In such cases, the
static dependence of the critical current on the external mag-
netic field becomes highly anomalous.2 Moreover, in some
special cases, as for istance in �001� tilt 0°–45° GBJJs the
critical current density is alternating in sign from one facet to
the next. Its influence on the magnetic field dependence of
the junction critical current Ic�H� was observed by Hilgen-
kamp et al.,3 Smilde et al.4 and then it was theoretically
analyzed by Mints and Kogan.5

So far, attention has been mainly dedicated to static prop-
erties of high temperature GBJJs, characterizing this type of
interface and how the symmetry of the order parameter has
an influence on them. Dynamical aspects have been also con-
sidered specifically by Chesca6 and Chesca and Kleiner7 in
the case of SQUIDs �superconducting quantum interference
device� made by two GBJJ or in connection with nonlinear
propagation in long junctions by Goldobin et al.8 Chesca et
al. also gave earlier experimental evidence that unconven-
tional superconductivity puts its signature on the Josephson
dynamics.9

More generally, the effects of an unconventional symme-
try of the order parameter on the Josephson effect and the
rich variety of implications connected with them have been
now the subject of several review papers which give quite a
complete perspective on the argument.10–13

In this paper we carry out a derivation of the self-
resonances occurring in the current-voltage characteristic of
a Josephson junction in which the critical current density is a
discontinous, changing sign, function of the position along

the boundary line. It is well known that some of the struc-
tures, or “steps,” appearing in the �I-V� characteristics of
HTS GBJJs have been identified as Fiske resonances.14 Al-
though the conventional theory of Fiske steps,15 derived for
junctions with uniform current density, has been successfully
used for a restricted class of HTS junctions,14 a specific
theory of Fiske steps in HTS GBJJs, accounting for the main
peculiarity of this junction, i.e., presence of faceting and a
predominantly “d-wave” order parameter symmetry, is lack-
ing. Here we derive the dependence on the magnetic field of
the maximum amplitude of the nth self-resonance in a GBJJ.
We base our analysis on the choice of a simple invariant
gauge phase difference between the two superconductors, in-
globing both a number of 0-� discontinuities, regularly or
randomly distributed, and the effect of a uniform external
magnetic field. In so doing we assume that the elementary
two facet 0-� junctions present in the GBJJ have a size much
smaller than the local Josephson penetration depth so that the
magnetic flux induced by the discontinuity can be ignored.

In such considered regime of “flat phase state,” i.e., one in
which no spontaneous flux is allowed, by using a perturba-
tive scheme, we calculate the phase dynamics and the result-
ing resonances appearing in the current voltage characteristic
of a finite length junction. We also predict some characteris-
tic behaviors expected in the experiments and give simple
expressions useful to fit experimental data. The paper is or-
ganized as follows. In Sec. II we establish the base of our
model theory. In Sec. III the calculations leading to the ex-
pressions for the Fiske step amplitudes are presented. Section
IV uses the results to predict the resonance behaviors in the
case of few and many 0-� singularities, respectively. Section
V draws briefly the conclusions.

II. JOSEPHSON JUNCTIONS WITH 0-�
DISCONTINUITIES

A. Discontinuities in the phase difference

As stated in the preceding section, properties of HTS Jo-
sephson junctions are influenced by d-wave symmetry of the
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order parameter. One of the main consequences is the possi-
bility of 0-� discontinuities in the phase difference along the
junction. These are obtained either artificially, by appropriate
junction fabrication techniques, or because of the intrinsic
random mechanism of growth of the junction interface. In
the former case, we may indicate artificial superconducting
�ferromagnetic� superconductor �SFS� junctions,17 or
YBCO/Au/Nb ramp-edge junctions.18 In this latter case we
find GBJJs techniques, obtained by using both bicrystal19 or
biepitaxial methods.20 The theory that we have developed
may be applied to both cases. For GBJJs a degree of rando-
micity has also been included. Indeed, the presence of facets
with various orientations with respect to the nominal misori-
entation angle � �0° ���45° �, makes GBJJs the place
where a random presence of 0-� discontinuities may be
found, especially for high values of �. In this work the un-
derlying physics is derived considering the real interface ori-
entation, either artificially made or due to microscopic ran-
dom oriented facets. The nominal misorientation angle only
describes the relative orientations in the two electrodes form-
ing the junction.

As stated above, the possibility of 0-� discontinuities in
the phase difference is related to the d-wave symmetry of
pairing wave function in HTS Josephson junctions coupled
with the complex structure of their interface. This is charac-
terized by “facets” variously rotated with respect to the mis-
orientation angle, e.g., 0°–45° and across which the current
transport takes place. The critical current density strongly
depends on this local orientation. When the misorientation
angle is sufficiently high the d-wave symmetry permits the
existence of 0-� adjacent facets �see Fig. 1�. Here the critical
current density has a sign inversion, positive/negative, in go-
ing from “0” facet to the “�” one. The sign inversion mecha-
nism is illustrated in Fig. 1: the phase sign difference of
facing lobes of the dx2−y2-wave order parameter causes �
local jumps of the phase difference across the junction,
which for the Josephson current j=J1 sin��+�� is equivalent
to a negative J1. The most noteworthy case, from this point
of view, is the asymmetric 0°–45° �001� tilt grain boundary
in which the alternate orientation of the faceting produces a
regular alternating sign of the tunnelling current density
when many facets are present. Remarkably this natural

mechanism of “phase jump” can be also reproduced in ordi-
nary s-wave material junctions, by applying a strongly local-
ized magnetic field �a “� Dirac” field� in a chosen point of
the junction barrier, by using a localized current injection.8

The intensity of the current can be regulated so that the local
bending of the phase obtained mimics a 0-� phase jump.

B. The phase in the presence of 0-� discontinuities and
magnetic field

In this section, we derive the expressions for the junction
phase difference and the magnetic field in the presence of
0-� discontinuities. As shown hereafter, such quantities are
substantially affected by the presence of discontinuities and
their analytical expressions are modified. In this paper we
analyze specifically the case 0°–45° �001� tilt grain bound-
ary. We will refer to the system depicted in Fig. 2: a planar
junction between two superconducting films asymmetrically
rotated by 45° of each other. The grain boundary line is along
the y coordinate. The gradient of the total phase difference �
and the magnetic field H in the junction are related by

d�

dy
=

2�deff�0

	0
H�y� , �1�

where deff�2
 is the effective junction magnetic penetration
depth and 
 is the London length. In Eq. �1� we will take H
as the assigned externally applied magnetic field He. We also
assume that the total length L of the junction is the sum of a
number of facets whose length is smaller than the typical
local Josephson penetration depth 
 j = �	0 /2��0J12
�1/2. In
this limit the spontaneous flux generated by a 0-� disconti-
nuity is vanishingly small,21 or even absent,22 while the ex-
ternal magnetic field fully penetrates the junction so that the
static phase can be written as

��y� = ��
k=1

Ns

�k��y − Lk� +
2�deff�0He

	0
y + � �2�

which accounts for the presence of Ns 0-� discontinuities.
��y� is the Heaviside unit step function, Li the location, on
the y coordinate, of the ith 0-� discontinuity, � an arbitrary
constant phase and �k= ±1. Thus in the presence of an ex-
ternal uniform magnetic field He, the phase is uniformly
tilted besides displaying an arbitrary number Ns of ±� jumps
�see Fig. 3�. Introducing 
�y�=��k=1

Ns �k��y−Lk� and k
=2�deff �0He /	0 we can write Eq. �2� concisely as

FIG. 1. Schematic drawing of the meandering interface in
0°–45° GBJJ. The dx2−y2 symmetry of the order parameter, coupled
with the varying orientation of the interface, causes the formation of
�-facets. Arrows indicate the direction of tunneling.

FIG. 2. Schematic drawing of a short YBCO bicrystal GBJJ and
coordinate system.
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��y� = 
�y� + ky + � . �3�

Following this approach we are neglecting any influence of
the meandering of the facets on the electromagnetic propa-
gation along the junction and, as far as this aspect is con-
cerned, we consider either an effective propagation direction
along the y coordinate or, at most, in the case of few facets,
a propagation along the faceting line, a curvilinear coordi-
nate, which ignores “corners.” From this point of view the
length L of the junction should be interpreted as an effective
length. Hence we retain, as the main effect, the influence of
the facet meandering is the determination of a discontinuous
Josephson critical current density distribution.

It is interesting to observe that the magnetic field associ-
ated to a discontinuous phase jump of magnitude � at y
=y0 and from which the phase jump itself can be thought to
be generated, can be represented as a delta function,

H� = ±
	0

2deff�0
��y − y0� . �4�

More in general, in the case of Ns 0-� singularities we
formally write

d
�y�
dy

= ��
k=1

Ns

�k��y − Lk� �5�

so that the singular part of the field, which however does not
contribute to the magnetic flux, is

H� =
	0

2�deff�0

d
�y�
dy

�6�

from which Eq. �2� can formally be derived.

C. The Josephson current density

Also the Josephson current density J is substantially
modified because of the presence of nonconventional order
parameter symmetry. Indeed, any relative orientation of the
d-wave lobes associated to the crystal lattice of the elec-
trodes induces in turn a change in J.23 Considering the stan-
dard definition of J, the Josephson current density takes the
form

J = J1 sin�
�y� + ky + ��

= J1 sin�
�y��cos�ky + �� + J1 cos�
�y��sin�ky + ��
�7�

with J1 the maximum Josephson current density. Equation
�7� implies J= ±J1 sin�ky+�0�, i.e., a sign inversion in J1

occurring at each 0-� discontinuity position Lk.
Apart from its sign inversions, J1 is in general a function

of the y coordinate. Indeed, J1�y� will assume a constant
value in each of the N intervals corresponding to the N facets
with alternating orientations forming the grain boundary.
Thus J1�y� is a random discontinuous function, taking
constant values �positive or negative�, in the ith facet
li=yi−yi−1 along the junction length. We can write J1�y� as

J1�y� =�
j1, y0 � y � y1,

j2, y1 � y � y2,

¯ ,

ji, yi−1 � y � yi,

¯ ,

jN, yN−1 � y � yN.

� �8�

In Eq. �8� y0=0, yN=L and the amplitudes of the ji, in the
interval �yi−1 ,yi�, of size li=yi−yi−1, i=1, . . . ,N, are all de-
termined by the orientation of the facets. In this way the
number of discontinuities Ns is at most N−1. They are ob-
tained directly by the microscopic structure �length and ori-
entation of the single facet� and are related to the order pa-
rameter symmetry through the Sigrist-Rice expression.23 In
the case referred in the present paper, that of a 0°–45° tilt
asymmetric �001� GBJJ, ji �amplitude and sign� is given by

ji = J0�cos2��i� − sin2��i��	cos2
�i −
�

4
�

− sin2
�i −
�

4
�� , �9�

where �i is the angle between the interface normal of the ith
facet and the crystallographic axis �Fig. 1�. In what follows
we will almost invariably preserve the information on the
sign inversion points of J1, e.g., the positions Lk’s, by keep-
ing the function 
�y� in the argument of the sine in Eq. �7�.
In this case the ji’s in Eq. �8� or �9� are taken in absolute
value.

An important quantity is the average maximum Josephson
current density 
J1�=1/L�0

L�J1�y��. In the present case J1�y�
is a steplike function of y and 
J1� writes


J1� =
1

L
�
i=1

N

�ji�li, �10�

where �i=1
N li=L. Then it is also convenient to introduce the

effective Josephson penetration depth 

 j�,

FIG. 3. Representation of the static phase difference ��y� �gray�
corresponding to the critical current density �black� along the grain
boundary line. An inversion point of the critical current density is
signaled by a 0-� phase-jump discontinuity.
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 j�2 =
	0

�2��0
J1�2
�
. �11�

Finally, also of interest, for a proper normalization of the
current, is 
J1

*�=1/L�0
LJ1�y�, which in the discrete case, re-

duces to


J1
*� =

1

L
�
i=1

N

jili. �12�

D. The magnetic field dependence of the critical current

As stated above we assume short facet junctions, i.e., li

�
 j
�i� with 
 j

�i�= �	0 /2��0ji2
�1/2. Then the critical current
of a junction of length L can be written as

Ic�H�
I1

= max
 1

LI1
�

0

L

�J1�y��sin�
�y� + ky + ��dy� ,

�13�

where I1= 
J1�L, to be distinguished from Ic�0�= 
J1
*�L, the

critical current in zero field, and the maximum value is ob-
tained by varying 0���2� for each value of He. It is easily
seen that it can be represented by

Ic�H�
I1

= �A2 + B2,

A =
1

L
�
i=1

N �j1�

J1��yi−1

yi

sin�
�y� + ky�dy ,

B =
1

L
�
i=1

N �j1�

J1��yi−1

yi

cos�
�y� + ky�dy . �14�

This expression reduces to that obtained in Ref. 5 when the
critical current density alternates between only two values
� j̄ all along the many facets of the grain boundary and to
Ic / I1=sin2��	 /2	0� / ��	 /2	0� for the symmetric 0-�
junction,24 where 2�	 /	0=kL is the total magnetic flux,
respectively. An anomalous dependence of the critical cur-
rent on the external magnetic field is the typical result of the
presence of one, or many, 0-� junctions �see Fig. 8�.

III. THEORY

In the presence of a steady voltage V0 between the elec-
trodes, the phase difference � increases with time as
2�V0t /	0 and the current oscillates with the Josephson fre-
quency �=2�V0 /	0. The Josephson current density, at finite
voltages V0, has the form of an exciting wave propagating
along the y direction �see Fig. 2�. Standing electromagnetic
wave modes can build up between 0 and L as in a plane
resonator. Within the Kulik15 �and Eck, Scalapino, and
Taylor16� theoretical explanation of Fiske steps the Josephson
junction simultaneously experiences a steady magnetic field
and a steady potential difference. The origin of Fiske steps
observed in the current-voltage characteristic of a conven-

tional Josephson junction is ascribed to the ac Josephson
effect cavity mode interaction. Standing wave modes of elec-
tromagnetic radiation can be determined in GBJJs if the
grain boundary is seen as a plate resonator, where the junc-
tion barrier forms the effective dielectric medium and the
two interconnecting grains the resonator walls, respectively.
In the specific case of �001� tilt 45° asymmetric GBJJ a
regular faceting causes the maximum Josephson current den-
sity J1 to alternate sign along the y direction. The case of
nonuniform �but continuous� maximum Josephson current
distribution was studied in Ref. 25. Hereafter, retracing that
analysis, we mainly specialize to the case of a nonuniform
discrete inverting sign distribution and show that neither sign
changes nor discontinuities introduce particular difficulties in
the new derivation. In the following, for the sake of clarity,
we will separate the continuous part of the Josephson phase,
��y , t�, from the discontinous one. The relevant equation for
��y , t�, takes the form

�2�

�y2 −
1

c̄2

�2�

�t2 −
�

c̄2

��

�t
=

�J1�y��

J1�

 j�2 sin�
�y� + �� −

jbias


J1�

 j�2 ,

�15�

where c̄ is the Swihart velocity and � the quasiparticle tun-
nell loss coefficient. The phase ��y , t� can be obtained by
solving Eq. �15� under the boundary conditions26

� ��

�y
�

0
= � ��

�y
�

L
= −

2�deff�0

	0
He. �16�

The junction current-voltage characteristics can be in turn
derived starting from J=J1 sin ��y , t�, where ��y , t�=
�y�
+��y , t� is the overall phase difference.

In the limit of low-Q junctions, where Q indicates the
quality factor, the Kulik approximation consists of writing
the unknown part of the phase � as a sum of two terms �
=�0+�1 where �1��0 and v=	0 /2�d�1 /dt is the pertur-
bation to the steady voltage V0,

��y,t� = �0�y,t� + �1�y,t� = �t − ky + �1�y,t� . �17�

To the first order we obtain

�2�1

�y2 −
1

c̄2

�2�1

�t2 −
�

c̄2

��1

�t
�

�J1�li��

J1�

 j�2 sin�
�y� + �t − ky� ,

�18�

where the perturbation term �1�y , t� in the argument of sine,
on the right-hand side, has been neglected. The boundary
conditions �16� for �1�y , t� complements equation �18�,

� ��1

�y
�

0
= � ��1

�y
�

L
= 0. �19�

In this case, following a standard procedure,15 we seek
�1�y , t� in the form
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�1�y,t� = �
n=0

�

an cos
n�y

L
cos �t + �

n=0

�

bn cos
n�y

L
sin �t .

�20�

The coefficients are straightforward obtained by substituting
Eq. �20� in Eq. �18�. They are given by

an = −
c̄2

�2
jc�

 j�2

	
1 −
�n

2

�2�Bn −
1

Q
Cn�

	
1 −
�n

2

�2� +
1

Q2�
, �21�

bn =
c̄2

�2
jc�

 j�2

	
1 −
�n

2

�2�Cn +
1

Q
Bn�

	
1 −
�n

2

�2� +
1

Q2�
, �22�

where

Bn =
2

L
�
i=1

N �ji�

J1��yi−1

yi

sin�ky − 
�y��cos
n�y

L
dy , �23�

Cn =
2

L
�
i=1

N �ji�

J1��yi−1

yi

cos�ky − 
�y��cos
n�y

L
dy . �24�

The net Josephson current is given by J=J1 sin�
�y�+�0

+�1�. This is frequency modulated and contains a nonzero dc
term which can be extracted by a time, 
¯�, and space,
1
L�0

L
¯dy, average procedure, Jdc� 1

L�0
LJ1
�1 cos�
�y�+�t

−ky��dy. The result is

Jdc =
c̄2
J1�

4�2

 j�2 �
n=1

�
1/Qn

1/Qn
2 + �1 − �n

2/�2�2 �Bn
2 + Cn

2� . �25�

We define Fn
2���=Bn

2+Cn
2 and calculate the maximum am-

plitude ��=�n=n�c̄ /L� of the nth step as

Jn
M��� =


J1�L2

4

 j�2

Qn

n2�2Fn
2��� . �26�

We explicitly note that the voltage positions Vn
= �	0 /2���n, at which the resonances appear, are the same
of those expected in a conventional junction of the same
length and are by no means affected, in the present approxi-
mation, by the modifications introduced to account for the
presence of 0-� singularities. Also we note that the result
obtained, Eqs. �23�–�26�, consists of substituting the critical
current density Eq. �8� in the final result of the conventional
case. On the contrary, the presence of Fiske steps in the
absence of an external magnetic field, as well as their ampli-
tude modulation in magnetic field are radically modified by
the existance of 0-� discontinuities as predicted by Eq. �26�.

Finally it is interesting to note that the magnetic behaviors
predicted by Eq. �26�, in the case in which the singularities
are equally spaced �see Figs. 4, 5, and 9�, coincide, as can be
easily shown, with those predicted by Eq. �2� of Ref. 7 which
was derived for a SQUID made of two GBJJ. This is ob-

tained in the limit in which the “system” SQUID reduces,
as far as resonances are concerned, to only one junction
�n1=0 or n2=0 in the notation of Ref. 7�. However all re-
maining cases of irregularly spaced singularities fall exclu-
sively in the domain of Eqs. �23�–�26�.

IV. RESULTS AND DISCUSSION

A. Few singularities

In this section we study the self-resonance modes of a
GBJJ containing one �or two singularities�. This case is an
important point of reference useful both to familiarize with
the results and in view of possible experiments on submicron
GBJJ27 or on low Tc small junctions with injected current. In
the latter case possible deviations from the dependencies
hereafter illustrated is a new probe of the influence of the
spontaneous flux influence.

1. Self-resonant modes in a junction with one 0-� singularity

We begin to illustrate the results, Eq. �25�, by considering
the case of a two-facet junction, with a single 0-� disconti-
nuity positioned at L1, characterized by two current densities
�j1� and �j2�, respectively. In this case the amplitude of the nth
function Fn

2��� depends on the following analytical expres-
sions for Bn and Cn, respectively,

Bn =
2

k2L2 − n2�2
 �j1�

J1�

kL +
�j2�

J1�

kL cos kL cos n�

−
�j1� + �j2�


J1�
kL cos

L1

L
n� cos kL1

−
�j1� + �j2�


J1�
n� sin kL1 sin

L1

L
n�� , �27�

Cn =
2

k2L2 − n2�2
−
�j2�

J1�

kL sin kL cos n�

+
�j1� + �j2�


J1�
kL cos

L1

L
n� sin kL1

−
�j1� + �j2�


J1�
n� cos kL1 sin

L1

L
n�� . �28�

In particular in zero field, k=0,

Fn
2�0� =

4
 �j1� + �j2�

J1�

sin n�
L1

L
�2

n2�2 �29�

which shows that in the case of symmetric �L1=0.5� 0-�
singularity, only odd steps exist in zero external field. Figure
4 shows the function Fn

2��� /n2=Jn
M��� / �
J1�L2Qn /4

 j�2�2�

for n=1,2 ,3 in the case �j1�= �j2�. The dashed curve illus-
trates, for n=1 and L1=0.65, the effect of a small deviation
from the symmetric case. It is worth noting that the ratio
between the theoretical amplitude of the third step and the
first step �symmetric 0-� singularity� at zero field is
�F3

2�0� /32� / �F1
2�0� /12�=0.012, where we assumed Q1�Q3.

FISKE MODES IN 0-� JOSEPHSON JUNCTIONS PHYSICAL REVIEW B 74, 144504 �2006�

144504-5



This means that in a possible experiment with a single 0-�
junction, aimed to observe resonances in the current voltage
characteristic, only the first Fiske step at V1=	0c̄ /2L should
be clearly measurable. Then it is interesting to compare these
results with the observations made in Ref. 8. In that experi-
ment, once the conditions of a 0-� junction are realized �as
shown by the magnetic field critical current pattern� the ex-
ternal magnetic field is turned off �k=0� and the current volt-
age characteristic measured. The single semi-integer ZFS ob-
served under these conditions, at the position V1, has many
points of contact with the argumentations here developed.
More precisely, it seems quite reasonable that such structure
would persist as a resonant current singularity in the current-
voltage characteristic, when the size of the junction is made
shorter than 
 j. The spontaneous flux would tend in that case
to disappear,21 and the semi-integer ZFS dynamics simply
reduces to the first Fiske step dynamics here described. From
this point of view what is essential in that kind of dynamics
is the 0-� discontinuity rather than the presence of sponta-
neous flux.

2. Self-resonant modes in two 0-� singularity junction

For the sake of further illustration we have calculated the
effect of a double 0-� singularity �0-�-0 or, which is the
same, 0-�-2�� positioned at L1 and L2 so that the junction is
divided in three equal size phase zones, L1=L /3, L2=2L /3,
or it is divided such that the overall Josephson critical cur-
rent density is zero, L1=L /4 and L2=3L /4. The sign of j1, j2,

j3 being positive, negative, positive, respectively. In these
simulations the condition of equal current densities has been
chosen for simplicities, i.e., �j1�= �j2�= �j3�. The results are
shown in Figs. 5 and 6.

B. Many singularities

In this section we are concerned with the effect caused by
the presence of a high number of facets typically encoun-
tered in GBJJs at a micrometer scale. First, generalizing Eq.
�29�, we obtain the maximum amplitude of the Fiske reso-
nances in zero magnetic field in the case of N singularities
distributed at L1 ,L2 , . . . ,LN,

Fn
2�0� =

4

n2�2
�
i=1

N

�− 1�i+1 �ji� + �ji+1�

J1�

sin
Li

L
n��2

. �30�

From now on we will focus the attention on the case of just
two-value alternating critical current density of the type de-
scribed by Eq. �8�, i.e., J1= ± j̄ in the presence of many fac-
ets. To demonstrate the main features of the function Fn���
we first treat the indicative simple case of a continuous sine
current density distribution �Fig. 7�, then we turn to the case
of a discontinuous alternating current introducing also the
effect of an increasing degree of disorder �Figs. 9–11�. We
finally illustrate the effect of a many-facet junction, in which
the facets are equal in length and randomly oriented �Fig.
12�. The current density amplitude in all such cases is deter-
mined through Eqs. �8� and �9�.

FIG. 4. Theoretical magnetic field dependence of the Fiske steps

in a 0-� junction.
F2���

n2 vs 	

	0
, first three steps, n=1,2 ,3 for �j1�

= �j2�, L1 /L=0.5. Dashed line, L1 /L=0.65.

FIG. 5. Theoretical magnetic field dependence of the Fiske steps
in a 0-�-2�, junction. The phase is discontinuous at L1=L /3, L2

=2L /3.
F2���

n2 vs 	

	0
, first three steps, n=1,2 ,3.
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1. Sine periodical distribution of the critical current density

As in Ref. 5 we start by considering the simple periodic
sine dependence model

J1�y� = j0 + j1 sin��Ny/L� �31�

corresponding to a critical current in zero magnetic field
Ic�0�= j0L. In Eq. �31�, N can still be identified with the
number of facets with alternating current density between 0
and L as in �8�. Figure 7 shows the field dependence of J1

M

for N=50 and j0=0 �a�, j0=0.4j1 �b�. These values are the
same as in Ref. 5. We also show for a quick comparison in
Fig. 8 the corresponding result obtained for the Ic��� by Eq.
�13� which coincides with the result previously obtained in
Ref. 5. The two-lobe structure of the first Fiske step occurs at
�= ±25 �one flux quantum for sign inversion�. Its position is
shifted from the central position �=0 in the same way as the
main peak in the critical current pattern. However, for the
nonzero average critical current density �Fig. 7�b�� the cur-

rent of the first step also displays a standard two-lobe
structure28 at �=0.

2. Discontinuous alternating current density and effect of
disorder

Now we illustrate the effect of disorder in the spatial dis-
tribution of 0-� discontinuities and hence in the spatial dis-
tribution of J1�y� on the field dependence of step current Jn

M.
We will consider the self-resonances excited in a junction

with alternating critical current density due to the presence of
distributed singularities. The critical current density alter-
nates sequentially along y taking two values j1 and −j1, re-
spectively, in �ai ,bi� and �bi ,ai+1�, where i=1,2 , . . . ,N. Thus
J1= j1 within N intervals with lengths li

+=bi−ai and J1=−j1
within N intervals li

−=ai+1−bi. In this simplified case the
calculation of the nth step consists of the evaluation of the
coefficients

Bn =
2

L
�
i=1

� �
ai

bi

sin�ky�cos
n�y

L
dy − �

bi

ai+1

sin�ky�cos
n�y

L
dy ,

�32�

Cn =
2

L
�
i=1

� �
ai

bi

cos�ky�cos
n�y

L
dy − �

bi

ai+1

cos�ky�cos
n�y

L
dy ,

�33�

We consider a GBJJ such that the facet angle just alternates
between two values while the size of the facets is randomly
distributed. In this way Eq. �9� gives only two possible val-
ues for the current. More precisely, the simulation starts with
the generation of a long bicrystal structure, characterized by
the presence of random length facets. Then, a bicrystal junc-
tion of assigned micrometer length is cut from the long bic-
rystal. Before disorder is added, the facets have all the same

size l̄ and their orientation alternates regularly between two
fixed angles � and �-�, such that a zig-zag perfect junction
is obtained along the y coordinate �see Fig. 9�a��. With the
choice �=22.5° one obtain from Eq. �9� for the maximum
value of j̄, J1= ±0.5. Figure 9�a� shows the “grain boundary,”

2 �m long, each facet l̄=100 nm, to which corresponds the
current density distribution of Fig. 9�b�. Figures 9�c� and
9�d� show the critical current and the first Fiske step maxi-
mum amplitude dependence on the magnetic flux, respec-
tively.

Then disorder is added progressively and the effect on the
critical current diffraction pattern and the first Fiske step

FIG. 6. Theoretical magnetic field dependence of the Fiske steps
in a 0-�-2� junction. The phase is discontinuous at L1=L /4, L2

=3L /4.
F2���

n2 vs 	

	0
, first three steps, n=1,2 ,3.

FIG. 7. The dependence of the normalized
maximum amplitude of the first Fiske step J1

M / j1

on 	 /	0. �a� j0=0. �b� j0=0.4j1.
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amplitude dependence on the magnetic field is synthetically
illustrated in Figs. 10 and 11. Maintaining the choice
�=22.5° the length of the facets is considered a random
variable uniformly distributed in an interval �a ,b� centered

around l̄ so that its mean value is l̄ and the variance �2= �a
−b�2 /12. In Fig. 10 a=60 nm and b=140 nm were chosen
���23 nm�. Figures 10�a� and 10�b� show the obtained
“grain boundary” with the corresponding current density dis-
tribution. Figures 10�c� and 10�d� show the effects on the
critical current pattern and the first Fiske amplitude, respec-
tively. Figure 11 corresponds to even higer disorder, with a
=20 nm and b=180 nm ���46.1 nm�. Both the critical cur-
rent and the Fiske resonance amplitude dependencies are
strongly disturbed. Finally, Fig. 12, considers the comple-
mentary possibility to add disorder to the facet orientation by
keeping a constant length facet. In this case the current den-
sity distributions may assume different amplitudes from one
interval to another of the same size. The size of the intervals

is l̄=100 nm while the angle � is treated as a random vari-
able uniformly distributed in the interval �0°,45°� around the
value �=22.5°. Figure 12�b� shows the resulting current den-
sity distribution calculated through Eq. �9�.

V. CONCLUSIONS

In conclusion, we have developed a theory for describing
the magnetic field dependences of Josepshon junctions and
Fiske steps in “d-wave” grain boundary junctions. In particu-
lar, we have extended the theory developed by Kulik in the
case of conventional “s-wave” superconductors �“0”-type
junction� to “0-�” GBJJs. Our theory can be applied to
regular and randomly generated grain boundaries made
by “d-wave” superconductors. We stress that in the limit
L /
 j→0 there is no � vortex at the 0-� discontinuity and no
spontaneous flux associated. So the magnetic field modula-
tion of the critical current, as well as the resonance amplitude
modulations, just reflects the pairing state symmetry and the
only flux present is the flux generated by the external mag-
netic field. We have shown the main features of asymmetric
0°–45° “d-wave” grain boundary junctions, with one “0-�”
phase discontinuity. This structure can be made by employ-
ing deep submicron GBJJs or artificial low/high-Tc junction
technologies as the YBCO/Au/Nb or all low-Tc S /F /S de-
vices. We have addressed the differences that arise when the
singularity is in the middle of the junction or in a nonsym-
metric position. Also, the effect of facets with both random

FIG. 8. The dependence of the normalized
maximum amplitude of the critical current. J1 / j1

on 	 /	0. �a� j0=0. �b� j0=0.4j1.

FIG. 9. �a� Simulated meandering with zero variance. �b� Cor-
responding critical current density. �c� The dependence of the nor-
malized maximum amplitude of the critical current Ic / I1 on 	 /	0.
�d� The dependence of the maximum amplitude of the first Fiske
step J1

M on 	 /	0.

FIG. 10. �a� Simulated meandering ��=23 nm�. �b� Correspond-
ing critical current density. �c� The dependence of the normalized
maximum amplitude of the critical current Ic / I1 on 	 /	0. �d� The
dependence of the maximum amplitude of the first Fiske step J1

M on
	 /	0.
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length and orientation has been shown. Moreover consider-
ations on higher order Fiske steps have also been done. Fi-
nally, analytical expressions of the amplitude of the magnetic
field dependences of Fiske steps in the presence of single
symmetric 0-� discontinuity and the zero-field Fiske reso-
nances have been derived.
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FIG. 11. �a� Simulated meandering ��=46.1 nm�. �b� Corre-
sponding critical current density. �c� The dependence of the normal-
ized maximum amplitude of the critical current Ic / I1 on 	 /	0. �d�
The dependence of the maximum amplitude of the first Fiske step
J1

M on 	 /	0.

FIG. 12. �a� Simulated meandering with uniformly random
���=12.9° � facet orientation. �b� Corresponding critical current
density. �c� The dependence of the normalized maximum amplitude
of the critical current Ic / I1 on 	 /	0. �d� The dependence of the
maximum amplitude of the first Fiske step J1

M on 	 /	0.
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