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Transition from synchronous to asynchronous superfluid phase slippage in an aperture array
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We have investigated the dynamics of superfluid phase slippage in an array of apertures. The magnitude of
the dissipative phase slips shows that they occur simultaneously in all the apertures when the temperature is
near 7\ — T~ 10 mK and subsequently lose their simultaneity as the temperature is lowered. We describe three
experiments to probe the mechanisms underlying the synchronous behavior. The results raise fundamental
questions about the dynamics of phase slippage in a multiply connected geometry.
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I. INTRODUCTION

Superfluid “He is described by a complex order parameter
xe'®. Phase differences are proportional to superfluid ve-
locity and vary as d(A¢)/dt=—Apn/h. Superflow is driven by
chemical potential differences, Au=my,(AP/p—sAT), where
AP and AT are differences in pressure and temperature, p is
the mass density, s is the specific entropy, and m, is the “He
atomic mass."> Whenever the flow through a submicron-size
aperture reaches a critical velocity v,., dissipation occurs in a
discrete event wherein the quantum phase difference across
the aperture drops by 2.3~ Since superfluid velocity is pro-
portional to phase gradient, this 27 “slip” corresponds to a
discrete drop in velocity, vy;,=«/l,;; where k=h/m, is the
quantum of circulation and [, is the effective hydrodynamic
length of the aperture.

If one applies a constant chemical potential difference Au
across an aperture, the superfluid velocity increases linearly
to the critical velocity, followed by an abrupt drop (if the
duration of the slip is short compared to the acceleration
time) and followed again by a linear increase. The waveform
of superfluid velocity v (¢) then resembles a sawtooth in
which the phase slip events take place at an average rate
equal to the Josephson frequency f;=Au/h (Ref. 6). For
single apertures, stochastic fluctuations in the critical veloc-
ity usually obscure the periodic nature of this process.’

Recent work® has shown that in superfluid *He periodic
phase slip oscillations at frequency f; exist in an array of N
(=4225) apertures. The oscillation amplitude near the super-
fluid transition temperature implies that the phase slips occur
synchronously (i.e., simultaneously) among all the N aper-
tures. Josephson oscillations can be used as a phase differ-
ence sensor in superfluid gyroscopes and interferometers.”!!
It is necessary to understand the origin of the synchronicity
mechanism in order to optimize the design of such devices.

To investigate the nature of phase slips within the array,
we have performed three kinds of experiments. In the first,
we drive phase slip oscillations by applying a chemical po-
tential difference across an aperture array and measure the
phase slip oscillation amplitude down to 7, —7=160 mK. We
find that the amplitude decreases rather dramatically as the
temperature is lowered, as compared to what would be ex-
pected for synchronous behavior. In a second experiment, we
excite transient Josephson oscillations lasting from one cycle
to thousands of cycles. We find that the phase slip size does
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not change over many cycles of oscillation, indicating that
when phase slips are synchronous, they are synchronous
from the very first slip. In the third experiment, we give the
system an initial excitation energy, allow it to decay through
the dissipative phase slips, then record the amplitude of the
subcritical current oscillation (the so-called Helmholtz
mode) that occurs after the last phase slip. We find that as the
temperature decreases, phase slips within the array seem to
occur in a less abrupt manner implying that a phase slip
event is no longer a single simultaneous array-wide event but
rather a collection of uncorrelated events localized to indi-
vidual apertures. We present these three findings in the first
part of this paper and discuss possible interpretations in the
second.

II. TYPE 1 EXPERIMENT

Our experimental apparatus is shown in Fig. 1. Two vol-
umes filled with superfluid “He are separated by a diaphragm
and an array of N (=4225) apertures that are ~30 nm in
diameter and spaced 3 um apart in a 50 nm thick silicon
nitride chip. A thin, flexible, metal-coated diaphragm can be
pulled toward an electrode by the application of a voltage
between them. A SQUID-based displacement sensor!? is used
to monitor the position of the diaphragm that serves as a
microphone to determine the magnitude of the phase slip
oscillation.

In our first type of measurement, we apply a DC step
voltage between the diaphragm and the electrode at #=0.
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FIG. 1. Experimental apparatus. E: Fixed electrode. D: Soft dia-
phragm. R: Heater. A: Aperture array. P: a SQUID-based transducer
which monitors the position of the diaphragm.
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FIG. 2. (a) Typical diaphragm transient response. This data was
taken at 7\ —7T=11 mK. The pressure across the array is directly
proportional to the displacement of the diaphragm from equilib-
rium. The initial steep rise after the pressure step at t=0 is a linear
relaxation during which the fluid is exhibiting phase slips at fre-
quency f;. The lightly damped Helmholtz oscillation begins when
the system reaches Au=0 near r=0.72 sec. The curvature in the
mean of the Helmholtz oscillation (between r=0.72 sec and ¢
=10 sec) reflects changes in pressure head in response to a relaxing
thermomechanical temperature differential, such that the mean Au
remains zero. The dotted circle shows when the phase slip oscilla-
tion ends and the Helmholtz mode begins. The close-up of this
region is shown in (b).

This pulls the flexible diaphragm toward the electrode creat-
ing a pressure head (and therefore a chemical potential dif-
ference) across the array. If the initial pull is large enough,
the flow velocity inside the apertures reaches v, and the fluid
undergoes 27 phase slips at the Josephson frequency.® These
dissipative events continue until there is no energy left to
drive the fluid up to the critical velocity. The phase slip os-
cillation ends, and the system begins to oscillate about Ay
=0 at a different frequency—the Helmholtz frequency. The
restoring force of the diaphragm, the inertia of the fluid mov-
ing in the apertures, and the heat capacity of the fluid in the
inner volume determine the frequency of this resonant
mode.'3 Figure 2(a) shows a typical diaphragm displacement
x(¢) during one of these relaxation transients. The disconti-
nuities in fluid velocity due to phase slip events show up as
sudden slope changes in x(f). These can be seen in the first
half of Fig. 2(b).

To determine whether or not phase slips are occurring
synchronously throughout the array, we measure the peak-to-
peak amplitude of the phase slip current oscillations, Ig;,,
and compare this number to the expected magnitude if all ¥
apertures are locked together, Izip. This expected magnitude
is determined by directly measuring the current phase
relation'* I(¢) for the array during periods of subcritical flow
(i.e., the Helmholtz oscillation) where the flow is synchro-
nous across the array. We are concerned with the strong cou-
pling regime 7T)\—T=10 mK, where I(¢) is linear. The ex-
pected magnitude of the current oscillation for synchronous
21 phase slips is then,
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FIG. 3. Measured phase slip current oscillation amplitude 7, as
a function of oscillation frequency f;. Cell resonances affect the
value of Iy;, at higher frequencies. This particular data was ob-
tained at 7),— 7= 10 mK. The line is a guide to the eye.

di(¢)
Izip=277 dd (1)
If the phase slips are synchronous, le,»p=lxip and if the array

loses synchror}icity, Islip<1fv\;[p' .
We determine mass currents through the array by moni-
toring the diaphragm position x(¢). The current through the

array is given by,
I=pAx, ()

where p is the total fluid density, and A is the diaphragm
area.

When a chemical potential differential exits across the
array, the diaphragm exhibits oscillations® at the Josephson
period, f; ! If the amplitude of such diaphragm oscillations is
X4, the magnitude of the mass current oscillations at fre-
quency f; is given by,
27fpAxy

slip = (3)

where 1y is the Fourier coefficient of the first harmonic of the
displacement sensor signal. We assume here that the current
exhibits a sawtooth waveform, a case where y=2/1.

To determine x,, we record the signal x(r) preceding the
Helmbholtz mode and compute the Fourier transform of the
diaphragm oscillations. By analyzing the spectral content in
small time intervals, we extract the frequency and the ampli-
tude of the phase slip oscillations as a function of time
throughout the transient. Once we obtain the amplitude of
the diaphragm oscillations x,, we use Eq. (3) to compute ;.
The mass current oscillation amplitude Iy, varies with fre-
quency due to cell resonances but levels off at lower frequen-
cies (typically below 300 Hz). We use this limiting value for
Iy, An example of this frequency dependence of I, is
shown in Fig. 3.

The Fourier analysis becomes more difficult at lower tem-
peratures because the duration of the phase slip flow be-
comes shorter due to increasing critical velocity.'> To extend
the duration of phase slip flow, we use a heater installed

lip
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FIG. 4. Measured phase slip current oscillation amplitude 7;,
(for f;<<300 Hz) and the expected value for a fully synchronous
case I?;ip. The lines are a guide to the eye.
inside of the inner cell. First, we apply a step voltage to the
heater which creates a temperature differential AT across the
array and starts the phase slip oscillation. We then continu-
ously increase the heater power during the transient to coun-
teract cooling due to net superfluid flow through the array
(the thermomechanical effect). In this way, we slow the rate
at which the chemical potential goes to zero. The extended
transient allows us to apply the Fourier analysis described
above and find the amplitude of oscillations at lower tem-
peratures.

Figure 4 shows the variation of I
comparison, we also plot Ils\;ip
derived from Ref. 14.

As seen in the figure, at the highest temperatures where
the phase slips appear, (T\—7T=9 mK), we find Islipzlls\;ips
which implies that phase slips are occurring synchronously
among all the N apertures. However, as the temperature de-
creases, the amplitude of current oscillation starts to rapidly
decrease (relative to IZip) showing a loss of synchronicity
among apertures. This is the central finding of this experi-
ment.

1ip With temperature. For
defined by Eq. (1) using data

III. TYPE 2 EXPERIMENT

Neither the mechanism for the initial synchronization nor
the reason for its subsequent loss is yet fully understood.
However, systems of interacting nonlinear oscillators often
exhibit synchronization after multiple cycles.!'® If such non-
linear mode locking is present in the array, one would expect
the size of first phase slip to be smaller than that of the n’
where n>1. Our second type of experiment is directed to-
ward determining if there is a change in overall slip size
between the first and nth phase slip oscillation.

Equation (2) shows that when a dissipative phase slip oc-
curs, the sudden current drop in the aperture array is reflected
by a sudden change in the slope of the diaphragm position
curve x(f). By adjusting the voltage step applied to the dia-
phragm we vary the length of the phase slip oscillation train
from as little as one slip to as many as several thousands of
slips. We then compare the abrupt slope changes, shown in
Fig. 2(b), at the first slip and the n™ slip.
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FIG. 5. Typical parabolic fits. The cusp shown is the last phase
slip before the Helmholtz oscillation in Fig. 2(b). Dots are the data,
and solid lines are the fits. We fit two parabolas at the cusp and find
the change in the slope.

The change in the slope, Ax(r) is determined as follows.
The fluid acceleration is proportional to the chemical poten-
tial difference Au across the array. If Au is constant in the
vicinity of a slip, the current increases linearly in time and
the displacement of the diaphragm follows a parabola. We fit
two parabolas at the cusp in the diaphragm position x() (one
before the phase slip and another right after) and find the
change in the slope Ax(¢). An example of this parabolic fit is
shown in Fig. 5.

The measured slope changes at the first slip and the n'
slip are plotted in Fig. 6. We find that the phase slip size does
not change over many cycles. This result shows that when
the oscillations are synchronous, they are synchronous from
the very first slip. We conclude then that the synchronization
is not due to a typical nonlinear mode locking process.

IV. TYPE 3 EXPERIMENT

Our third experiment sheds additional light on the nature
of collective phase slippage in the array. We apply a small
step voltage, V, between the diaphragm and the electrode to
create chemical potential differentials which are sufficiently
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FIG. 6. Diaphragm velocity change at the first and the n™ slip
where n is on the order of 1000. The temperature dependence
comes from the increasing superfluid density as the temperature
decreases.
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FIG. 7. Measured xi versus V*. Temperatures shown are Ty—T
in mK.

small to keep the fluid velocity inside the apertures subcriti-
cal. In the subsequent flow transient, the chemical potential
reaches zero without inducing any phase slips and the dia-
phragm oscillates at the Helmholtz frequency with an initial
amplitude x,. In the absence of phase slippage, the initial
energy in the Helmholtz oscillation, E;, should be propor-
tional to E;, which is the energy that we put into the system
by the application of a voltage step. As we increase the initial
kick on the diaphragm and plot E, versus E,, we expect a
line with constant slope until E, is large enough to accelerate
the fluid up to v, triggering a phase slip. At that point, en-
ergy is dissipated. If phase slips occur simultaneously in all
the N apertures, E;, should then drop discontinuously due to
the abrupt extraction of energy. After such an event, as we
increase E, further, E, should increase linearly again until
the process repeats.

Since the equilibrium diaphragm displacement is propor-
tional to V?, the energy that we put into the system, E,,
scales as V*. The initial energy in the Helmholtz oscillation,
E,, is proportional to the square of the initial Helmholtz dia-
phragm oscillation amplitude, x,%. Thus a plot of xi versus V*
(which corresponds to E;, versus E;) should be a sawtooth if
the phase slippage occurs abruptly and simultaneously
throughout the array. If the phase slippage process is distrib-
uted in time, as individual apertures slip independently of
others, the sawtooth would be rounded.

Figure 7 shows our measurements of x; vs V* at various
temperatures. As the temperature is lowered below T), the
shape of xﬁ vs V* evolves from a sharp sawtooth indicative of
an abrupt collective phase slip event to a smoother curve that
implies a continuous “phase slide” process. This suggests
that some apertures are experiencing a phase slip before the
others, allowing the array to dissipate energy in a more con-
tinuous manner.
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Figure 7 also illustrates the striking crossover from a dis-
sipative phase slip regime to the nondissipative Josephson
regime.'*!7:18 The critical velocity v, (or Helmholtz ampli-
tude) at which a slip occurs increases as the temperature
decreases. At T\—T~15 mK, v.~vy,, and a single array
phase slip event removes almost all the energy in the fluid
and leaves none for the Helmholtz mode. Therefore, the
Helmbholtz oscillation amplitude goes to 0 every time a phase
slip occurs. As one gets closer to T, v, becomes smaller than
Uylip» and a phase slip event causes a reversal in the flow
direction. Phase slips are no longer fully dissipative—the
system retrieves some of the energy involved in the reversal
of flow. At T\ —T=5 mK, where vy;,~2v,, dissipation due
to the oscillations, which are still present as Josephson oscil-
lations instead of phase slips, ceases. One can view this to be
the complete transition into a weakly coupled Josephson re-
gime. In the weakly coupled regime the dominant dissipation
occurs through thermal conduction and normal flow—
Josephson oscillations cease and Helmholtz oscillations be-
gin when there is no longer enough energy (the flat limiting
value in the 5 mK data) to reach the critical current and drive
Josephson oscillations. This alternate form of dissipation, al-
though small compared to the phase slips, explains why (in
the phase slip regime) the period of the x,% versus V* curves
increases with V*: for larger initial energy, the system takes
longer to reach the Helmholtz mode and more energy is dis-
sipated through thermal conduction and normal flow.

V. INTERPRETATIONS

We have considered possible mechanisms for the ob-
served decrease in phase slip amplitude as exhibited in Fig.
4. Discrete phase slippage in superfluid *He is usually asso-
ciated with the passage of quantized vortices that are sto-
chastically nucleated near the aperture surface.>!'*?° The in-
trinsic fluctuations cause the critical velocity to be spread out
over a range Av,. This finite distribution width can cause the
phase slip oscillation to lose its well-defined periodicity.’
The critical velocity width Aw, is a function of temperature,
and the relevant quantity in determining the temporal coher-
ence of phase slip oscillations in a given aperture is
Av /vy, If Av./vy,,> 1, the periodicity at f; is lost. Previ-
ous work”?!?? suggests that this ratio Av./vy,, increases
with decreasing temperature near the superfluid transition
temperature. The observed decline in the oscillation ampli-
tude therefore could be a manifestation of loss of periodicity
in any individual aperture.

Another possible mechanism for the loss of synchronicity
at lower temperatures may involve variations in the surface
microstructure among the array apertures. With the fluid
flowing fastest near asperities, the critical velocity for an
aperture must be affected by the surface inhomogeneities.
Since the superfluid healing length £ is a function of tem-
perature, how much of these nanoscale inhomogeneities the
fluid actually “sees” should depend on temperature as well.
The healing length is given by

0.3 nm

(1 _ T/T}\)O'67 (4)

&1 =
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and it decreases from ~10 nm to ~1.5 nm as the tempera-
ture is lowered from 7y, —7~=10 mK to 7\ —-7= 160 mK. If
the surface variations are on the order of a few nanometers,
this could very well provide a critical velocity distribution
whose width increases with decreasing temperature while al-
lowing the individual apertures to maintain well-defined pe-
riodic oscillations.

Several overarching questions remain. Is it possible for
apertures to act independently in the presence of a macro-
scopic wave function? Circulation around every loop drawn
through the apertures must be quantized while minimizing
the energy associated with the phase gradient across the ar-
ray. It is not clear how this condition is satisfied when phase
slips are occurring in random positions within the array.

What are the dynamics of vortices near the transition tem-
perature when the energy removed in a single phase slip
becomes comparable to the flow energy itself? What is even
meant by a “vortex” when the vortex core ~&(7) is compa-
rable to the size of the apertures? Perhaps then phase slips
occur by collapse of the wave function rather than by vortex
dynamics.?? The superfluid order parameter may already be
so weakened that at v, the fluid in the aperture becomes
momentarily normal before superfluidity is restored to a state
in which the phase difference across the array has dropped
by 24r. This might lead to synchronicity if the wave function
is so weak in all of the apertures that an excitation that
causes the wave function to collapse in one aperture perturbs
the other apertures enough to cause them all to collapse.

VI. CONCLUSION

The experiments described above show that near T\ phase
slippage occurs collectively in all the apertures in an array
and the related oscillations at the Josephson frequency are
not due to nonlinear mode locking. The observed decline in
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phase slip oscillation amplitude and the rounding of the saw-
tooth in the xi versus V* plot both indicate that array phase
slippage loses its collective nature as the temperature is low-
ered. The results reported herein raise fundamental questions
about the phase slippage process and the nature of a weak-
ened superfluid confined in a multiply connected region.

Based on our experimental results, Pekker et al.?* have
recently constructed a model to understand the phase slip
dynamics through an aperture array. Their model couples all
the apertures through the bulk superfluid and allows one to
investigate how the critical velocity distribution among vari-
ous apertures affects the experimental observables. The re-
sults they obtain with a mean-field approximation and exact
numerical analysis for a small number of apertures seem to
capture the general features of our findings. An important
element that is made clear in their theoretical work is “the
competition between quenched disorder and interactions.” In
the case of our work presented here, the competition may be
between the critical velocity distribution and the interactions
among the aperture array. Physical systems with such com-
petitions are known to show a phase transition characterized
by a switching between avalanching and nonavalanching
states.”>27 Pekker et al. suggest that further investigations
with different numbers of apertures, sizes and spacing might
reveal a similar transition in superfluid phase slippage in an
aperture array.
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