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We investigate the thermodynamic properties of the frustrated bilayer quantum Heisenberg antiferromagnet
at low temperatures in the vicinity of the saturation magnetic field. The low-energy degrees of freedom of the
spin model are mapped onto a hard-square gas on a square lattice. We use exact diagonalization data for finite
spin systems to check the validity of such a description. Using a classical Monte Carlo method we give a
quantitative description of the thermodynamics of the spin model at low temperatures around the saturation
field. The main peculiarity of the considered two-dimensional Heisenberg antiferromagnet is related to a phase
transition of the hard-square model on the square lattice, which belongs to the two-dimensional Ising model
universality class. It manifests itself in a logarithmic �low-� temperature singularity of the specific heat of the
spin system observed for magnetic fields just below the saturation field.
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I. INTRODUCTION

The quantum Heisenberg antiferromagnet �HAFM� on
geometrically frustrated lattices has attracted much attention
during the last years.1,2 Besides intriguing quantum ground-
state phases at zero magnetic field those systems often show
unconventional properties in finite magnetic fields such as
plateaus and jumps in the magnetization curve, see, e.g., Ref.
3. The recent finding that a wide class of geometrically frus-
trated quantum spin antiferromagnets �including the kagomé,
checkerboard, and pyrochlore lattices� has quite simple
ground states in the vicinity of the saturation field,4 namely
independent localized-magnon states, has further stimulated
studies of the corresponding frustrated quantum antiferro-
magnets at high magnetic fields.5–9 In particular, the low-
temperature high-field thermodynamics of various one- and
two-dimensional frustrated quantum antiferromagnets which
support localized-magnon states, can be discussed from a
quite universal point of view by mapping the low-energy
degrees of freedom of the quantum HAFM onto lattice gases
of hard-core objects.6–10 For instance, the kagomé �checker-
board� HAFM in the vicinity of the saturation field can be
mapped onto a gas of hard hexagons �squares� on a triangular
�square� lattice.7–10 The exactly soluble hard-hexagon model
exhibits an order-disorder second-order phase transition.11

The hard-core lattice-gas model corresponding to the check-
erboard HAFM consists of large hard squares on the square
lattice with edge vectors a�1= �2,0� and a�2= �0,2� �i.e., there
is a nearest-neighbor and next-nearest-neighbor exclusion�.
For the latter model no exact solution is available, but most
likely there is also an order-disorder phase transition.12 The
existence of a phase transition in the hard-hexagon �large-
hard-square� model would imply a corresponding finite-
temperature transition of the corresponding spin model near
saturation provided the low-temperature physics is correctly
described by the hard-core lattice-gas model. However, at the
present state of the investigations no conclusive statements
for the kagomé and checkerboard antiferromagnets are avail-

able, since both models admit additional degenerate eigen-
states not described by the hard-hexagon/large-hard-square
model.13,14 Furthermore, for these spin models precise state-
ments on the gap between the localized-magnon ground
states and the excitations are not available. Therefore the
effect of additional ground states and the excited states on
the low-temperature thermodynamics remains unclear.

The motivation for the present paper is to find and discuss
another two-dimensional frustrated quantum HAFM, for
which a hard-core lattice gas completely covers all low-
energy states of the spin model in the vicinity of the satura-
tion field and where all excitations are separated by a finite
energy gap. For such a spin model one can expect that an
order-disorder phase transition inherent in the hard-core
lattice-gas model can be observed as a finite-temperature
phase transition in the spin model. It might be worth noting
that such a phase transition of course does not contradict the
Mermin-Wagner theorem15 that forbids magnetic long-range
order �breaking the rotational symmetry� for the two-
dimensional Heisenberg model at any nonzero temperature
and at zero field.

A spin model which satisfies these requirements is a frus-
trated bilayer quantum HAFM. The investigation of the bi-
layer quantum HAFM was initially motivated by bilayer
high-Tc superconductors16 and has been continued until the
present time, see, e.g., Ref. 17 and references therein. Below
we will illustrate that the corresponding hard-core lattice-gas
model is a model of hard squares on a square lattice, how-
ever, in difference to the checkerboard lattice with smaller
hard squares with edge vectors a�1= �1,1� and a�2= �−1,1�
�i.e., there is a nearest-neighbor exclusion, only, cf. Fig. 1�.
This hard-square model exhibits an order-disorder phase
transition.11,18,19 In the context of different universality
classes discussed in Ref. 9 the frustrated bilayer quantum
HAFM is the first example of a spin system which belongs to
the universality class of �small� hard squares.

The paper is organized as follows. First, we specify the
frustrated bilayer model and illustrate the corresponding
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localized-magnon states �Sec. II�. Then in Sec. III we calcu-
late the contribution of the independent localized-magnon
states to the thermodynamic quantities using the hard-square
model. We compare our results with exact diagonalization
data for finite spin-1 /2 Heisenberg systems of up to N=32
sites. Finally, in Sec. IV we report the low-temperature high-
field thermodynamic quantities obtained on the basis of
Monte Carlo simulations for hard squares focusing on the
�low-� temperature dependence of the specific heat in the
vicinity of the saturation field.

II. THE FRUSTRATED BILAYER ANTIFERROMAGNET
AND INDEPENDENT LOCALIZED MAGNONS

To be specific, we consider the nearest-neighbor Heisen-
berg antiferromagnet in an external magnetic field on the
lattice shown in Fig. 1. This lattice may be viewed as a
two-dimensional version of the frustrated two-leg ladder
considered in Refs. 20–22 �for some similar models see Ref.
23�. The Heisenberg Hamiltonian of N quantum spins of
length s reads

H = �
�nm�

Jnm�1

2
�sn

+sm
− + sn

−sm
+ � + �sn

zsm
z � − hSz. �1�

Here the sum runs over the bonds �edges� which connect the
neighboring sites �vertices� on the spin lattice shown in Fig.
1. Jnm�0 are the antiferromagnetic exchange constants be-
tween the sites n and m which take two values, namely, J2
for the vertical bonds and J1 for all other bonds. ��0 is the
exchange interaction anisotropy parameter, h is the external
magnetic field, and Sz=�nsn

z is the z-component of the total
spin. In our exact diagonalization studies reported below we
will focus on s=1/2 and �=1.

We note that the Hamiltonian �1� commutes with the op-
erator Sz and hence we may consider the subspaces of its
eigenstates with different values of Sz separately. Evidently,
the fully polarized state �0�= �s , . . . ,s� is the eigenstate of the
Hamiltonian �1� with Sz=Ns and can be considered as the
vacuum state with respect to the number of excited magnons.
This state is the ground state for high magnetic fields.

Consider next the one-magnon subspace with
Sz=Ns−1. The one-particle energy is given by �k

�1�

=−s�J2+��8J1+J2�	+h and �k
�2�=s�4J1�cos kx+cos ky�+J2

−��8J1+J2�	+h �here k�=2�n� /M�, n�=1,2 , . . . ,M�,
�=x ,y, MxMy =N /2�. Obviously, the excitation branch �k

�1�

is dispersionless and it becomes the lower one when
J2�4J1. Throughout this paper we assume J2�4J1. Then
the saturation field is given by h1=s�J2+��8J1+J2�	.

The N /2 dispersionless one-magnon excitations can be
written as localized excitations on the N /2 vertical bonds,
i.e., �1�= �lm�v�s , . . . ,s�e is an eigenstate of Eq. �1� in the
subspace with Sz=Ns−1 with the zero-field eigenvalue
EFM−�1, where EFM=4N�s2J1+N�s2J2 /2 and �1
=s�J2+��8J1+J2�	. In �1� the first part is the localized one-
magnon excitation on the vertical bond number v, i.e.,
�lm�v=2−1/2��s ,s−1�− �s−1,s��v and the second part
�s , . . . ,s�e is the fully polarized environment.

We pass to the subspaces with Sz=Ns−2,Ns−3, . . . ,Ns
−nmax, where nmax=N /4. We can easily construct many-
particle states in these subspaces using the localized-magnon
states. Explicitly the wave function of n independent local-
ized magnons has the form

�n� = �lm�v1
¯ �lm�vi

¯ �lm�vn
�s, . . . ,s�e. �2�

It is important to note that any two vertical bonds vi and v j in
Eq. �2� where localized magnons live are not allowed to be
direct neighbors. The energy of the n independent localized-
magnon state �2� in zero field h=0 is En=EFM−n�1. Since n
independent localized magnons can be put on the bilayer in
many ways, the eigenstates �2� are highly degenerate. We
denote this degeneracy by gN�n�, that is the number of ways
to put n hard squares on a lattice of N=N /2 sites �see Fig.
1�. According to Refs. 4 and 24 the independent localized-
magnon states �2� are the states with the lowest energy in the
corresponding subspaces. Moreover, they are linearly inde-
pendent �orthogonal type in the nomenclature of Ref. 14� and
form an orthogonal basis in each subspace.14 Due to their
linear independence they all contribute to the partition func-
tion of the spin system.

In the presence of an external field the eigenstates �2�
have the energy En�h�=EFM−hsN−n��1−h�. At the satura-
tion field, h=h1=�1, they all are ground states and the
ground-state energy En�h1� does not depend on n. As a result
the ground-state magnetization curve exhibits a jump at the
saturation field. This jump is accompanied by a preceding
wide plateau, where the width of this plateau can be obtained
following the arguments given in Ref. 22 and from finite-size
data. We find for s=1/2, �=1 a plateau width of h1−h2
=4J1. This plateau belongs to the twofold degenerate ground
state with maximum density nmax=N /4 of localized mag-
nons, the so-called magnon crystal,4 where all localized mag-
nons occupy only one of the two sublattices of the underly-
ing square lattice.

Furthermore, the degeneracy of independent localized-
magnon states at the saturation field W=�n=0

nmaxgN�n� grows
exponentially with the system size N that implies a nonzero
ground-state residual entropy S=k limN→	�ln W /N�
=0.2037. . .k �see Ref. 19 and also below�. Due to their high
degeneracy the independent localized-magnon states are also

FIG. 1. �Color online� The frustrated bilayer antiferromagnet
�black lines�. The vertical bonds have the strength J2 whereas all
other bonds have the strength J1. The trapping cells �vertical bonds�
occupied by localized magnons are shown by fat lines. The auxil-
iary square lattice is a simple square lattice filled by hard squares
�indicated as red squares� which correspond to localized magnons.
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dominating the thermodynamic properties at low tempera-
tures for magnetic fields around the saturation field as we
will discuss in detail below.

III. HARD-SQUARE MODEL

We want to calculate the contribution of the independent
localized magnons to the canonical partition function of the
spin system,

Zlm�T,h,N� = �
n=0

nmax

gN�n�exp�−
En�h�

kT
�

= exp�−
EFM − hsN

kT
��

n=0

nmax

gN�n�exp� 


kT
n� ,

�3�

where 
=�1−h=h1−h. It is apparent that gN�n� is the ca-
nonical partition function Z�n ,N� of n hard squares on a
square lattice of N=N /2 sites, whereas ��T ,
 ,N�
=�n=0

nmaxgN�n�exp�
n /kT� is the grand canonical partition
function of hard squares on a square lattice of N=N /2 sites
and 
 is the chemical potential of the hard squares. As a
result we arrive at the basic relation between the localized-
magnon contribution to the canonical partition function of
the spin model and the grand canonical partition function of
the hard-square model,

Zlm�T,h,N� = exp�−
EFM − hsN

kT
���T,
,N� . �4�

Equation �4� yields the Helmholtz free energy of the spin
system Flm�T ,h ,N�=−kT ln Zlm�T ,h ,N�, whereas the
entropy S, the specific heat C, and the magnetization
M = 
Sz� are given by the usual formulas, Slm�T ,h ,N�
=−�Flm�T ,h ,N� /�T, Clm�T ,h ,N�=T�Slm�T ,h ,N� /�T, and
Mlm�T ,h ,N�=sN−kT� ln ��T ,
 ,N� /�
.

We use exact diagonalization data to check this picture for
the s=1/2 isotropic Heisenberg system �1� of N=16 and
N=20 sites �full diagonalization� and N=32 �only in the sub-
spaces with Sz=16, . . . ,11� imposing periodic boundary con-
ditions. We fix the energy scale by putting J1=1. For the
vertical exchange bonds we consider J2=4, 5, and 10.

First we compare the degeneracies gN�n� of the localized
n-magnon states calculated for spin systems of sizes N=16,
20, and 32 with the corresponding values Z�n ,N /2� of the
hard-square model. As expected we find complete agreement
between both models for J2�4J1. As an example we give
here the numbers for N=20: g20�n�=1, 10, 25, 20, 10, and 2
for n=0, 1, 2, 3, 4, and 5. For J2=4J1 the spin system has
one extra state for n=1, i.e., in the one-magnon sector, since
the dispersive mode �k

�2� and the dispersionless mode �k
�1�

are degenerate at k= �� ,��.
To estimate the relevance of excited states, not described

by the localized-magnon scenario, we have determined the
thermodynamically relevant energy separation �DOS between
the localized-magnon states and the other states of the spin
system by calculating the integrated low-energy density of

states at saturation field. We define �DOS as that energy value
above the localized-magnon ground-state energy, where the
contribution of the higher-energy states to the integrated den-
sity of states becomes as large as the contribution of the
localized-magnon states. For both values J2=5 and 10 we
find �DOS�1 independent of the size of the system N. We
can expect that the contribution of the localized-magnon
states to the partition function is dominating for temperatures
kT significantly smaller than �DOS.

In Fig. 2 we present our results for the magnetization, the
specific heat, and the entropy �panels from top to bottom� for

FIG. 2. �Color online� The magnetization �sN−M�T ,h ,N�	 /N
�a�, the specific heat C�T ,h ,N� /kN �b�, and the entropy
S�T ,h ,N� /kN �c� as functions of �h−h1� /kT. Symbols correspond
to the exact diagonalization data �N=20, J2=5, kT=0.2 �triangles�,
and kT=0.3 �diamonds�	. Thin lines correspond to the results for a
small hard-square system N=10 �thin dotted lines� and N=64 �thin
solid lines�. The exact diagonalization data for the temperatures up
to kT=0.1 coincide with the corresponding data for the N=10 hard-
square system. We also show by thick lines the Monte Carlo simu-
lation results for the magnetization and the specific heat for a hard-
square system of sizes up to 800�800 sites.
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the spin system of size N=20 �triangles and diamonds�. We
compare those data with the corresponding data taking into
account only the contribution of independent localized-
magnon states, described by the finite hard-square model of
N=10 sites �thin dotted lines�. Up to kT�0.1 both data sets
coincide, demonstrating that the hard-square description per-
fectly works at low temperatures. But we observe good
agreement also for higher temperatures up to kT�0.3, indi-
cating that the independent localized magnons still dominate
the thermodynamic quantities. Further increasing kT, the
high-energy states more and more contribute to the partition
function and the hard-square description loses its validity.
Note that an identical statement can be made for N=16
�N=8�.

IV. LOW-TEMPERATURE THERMODYNAMICS AROUND
THE SATURATION FIELD

Now we discuss the low-temperature high-field thermody-
namics of the frustrated bilayer quantum HAFM using the
results for the hard-square model. From Fig. 2�b� it is obvi-
ous that fixing the temperature to a sufficiently low value the
spin system can be driven through a phase transition by in-
creasing the magnetic field h towards the saturation field h1.
On the other hand, we can fix the magnetic field slightly
below the saturation field and vary the temperature. Then the
phase transition is driven by the temperature and the specific
heat exhibits a singularity at a critical temperature Tc�h�, see
Fig. 3, where we show the results of a Monte Carlo simula-
tion for large hard-square systems �periodic cells with up to
800�800 sites and 3�106 steps� for the specific heat for
two values of the magnetic field. The data clearly indicate a
phase transition which occurs in the hard-square model at
zc=3.7962. . ., i.e., at ��h1−h� /kT	c=ln zc�1.3340 which
yields kTc�h���h1−h� /1.3340. The corresponding order pa-
rameter is the difference of the density �of hard squares or
localized magnons in hard-square or spin language, respec-
tively� on the A- and B-sublattices of the underlying square
lattice.11 For ��h1−h� /kT	c ln zc �i.e., for T�Tc�h�, hh1	
both sublattices are equally occupied, but for ��h1−h� /kT	c

� ln zc �i.e., for TTc�h�, hh1	 one of two sublattices is
more occupied than the other. Therefore in the ordered phase
the translational symmetry of the spin �hard-square� system
is broken. Finally, at T=0 only one sublattice is occupied and
the other is empty and the ground state of the spin system is
a magnon-crystal state, see Sec. II.

We can estimate the critical temperature for a fixed devia-
tion of the field from the saturation value using the above
given expression for kTc�h�. For 1−h /h1=0.02 we find
kTc /h1�0.0150, whereas for 1−h /h1=0.01 we have
kTc /h1�0.0075 and for the spin system with J2=5 we find
for h=8.91J1 �h=8.82J1� kTc�0.0675J1 �kTc�0.1349J1�.
Such temperatures are within a temperature range where the
hard-square description for finite systems works perfectly
well �see Figs. 2 and 3�. However, one may expect that the
scenario of the phase transition may hold also at tempera-
tures, for which the localized-magnon states are still domi-
nant but also higher-energy states of the spin system not

described by the hard-square model contribute to the parti-
tion function.

We mention that the hard-square model belongs to the
two-dimensional Ising model universality class11,25,26 with
the critical exponents �=1/8 for the order parameter and
�=0 for the specific heat, i.e., the specific heat shows a
logarithmic singularity at the critical point. Note that this
universality class is different from the one of the hard-
hexagon model.11 Thus the low-temperature peak �singular-
ity� in the temperature dependence of the specific heat in the
vicinity of the saturation field is a spectacular sign of highly
degenerate independent localized-magnon states of the frus-
trated bilayer quantum HAFM. Their ordering leads to the
hard-square type peculiarity just below the saturation field.

Another thermodynamic quantity of interest is the curve
of constant entropy as a function of magnetic field and tem-
perature. Since hard-square description implies the depen-
dence of the entropy only on �h1−h� /kT this curve is similar
to an ideal paramagnet. Therefore the considered spin system
is expected to exhibit a large magnetocaloric effect in the
vicinity of the saturation field.6,7,9

Finally we note that the effect of the localized magnons is
a pure quantum effect which disappears as s increasingly
approaches the classical limit s→	.4

FIG. 3. �Color online� The temperature dependence of the spe-
cific heat C�T ,h ,N� /kN for h=1.01h1 �broken lines, diamonds� and
h=1.02h1 �solid lines, triangles� �upper panel� and for h=0.99h1

�broken lines, diamonds� and h=0.98h1 �solid lines, triangles�
�lower panel�. The results of Monte Carlo simulations for a hard-
square system of sizes up to 800�800 sites are shown by lines. We
also report the corresponding results for the hard-square system
with N=10 �open symbols� and the exact diagonalization data for
the finite spin system with N=20, J2=5 �closed symbols�.
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From the experimental point of view it might be desirable
to go away from the assumed “perfect” condition when in-
plane bonds and interplane bonds �except the vertical bonds
J2� have the same strength J1. For slightly different in-layer
and interlayer J1 interactions the flat excitation branch be-
comes weakly dispersive and the mapping of the low-energy
degrees of freedom of the spin model onto the hard-square
model becomes approximative. An interesting problem is to
study the low-temperature strong-field properties of the spin
model in this case. This problem is out of the scope of the
present paper and we have left it for future studies. However,

we may expect �see Ref. 8� that the main features of “the
ideal model” survive for small deviations from the adopted
relation for the bond strengths.
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