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We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent
scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport
properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low
temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering
present in real physical systems at room temperature. It is found that disorder scattering increases the amount
of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a
reduction of conductance through the domain wall as compared to a uniformly magnetized region which is
similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together
with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the
domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a
nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-
dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect
found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall
limit, but remains significant for wide walls.
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I. INTRODUCTION

The interplay between magnetic structure and electrical
resistance in mesoscopic ferromagnetic systems is interesting
from both technological and fundamental points of view.
Magnetoresistance properties of domain walls represent a
particularly striking example of this rich physical problem,
and have been intensively studied in recent years. Experi-
ments on ferromagnetic thin films originally found that do-
main walls contribute to an enhancement of conductance,1,2

although this was later understood to be due to anisotropic
magnetoresistance �AMR� effects.3 Further experiments on
cylindrical Co nanowires4 and thin polycrystalline Co films5

have yielded a reduction in conductance, distinct from the
positive AMR contribution, which has been attributed to
scattering from magnetic domain walls.

From the theoretical side two main approaches exist to
address this problem. On one hand, first-principle calcula-
tions take into account realistic band structures to study equi-
librium properties. Assuming that the resulting one-body
wave functions are a good description of the many-body
wave functions, a calculational scheme to study electronic
transport can be developed. According to the details of the
model, large domain wall magnetoresistances may be
found.6,7 On the other hand, phenomenological models in-
cluding only the essential features of the band structure are
extremely useful as they give insight into important physical
mechanisms. The most widely used approach is the sd
model, originally due to Mott,8 which separates the conduc-
tion �s� electrons from those responsible for the magnetic
structure �d�. The exchange interaction between s and d elec-
trons is incorporated in the spin-splitting � of the conduction
band. An important advantage of this model is that it can be
readily extended to include impurity scattering through a dis-

order potential, making it particularly suitable for the topic
of the present work.

The simplest approach is to treat transport through the
domain wall and the leads as ballistic, where the only scat-
tering is due to the rotating spin-dependent potential in the
wall. The resulting magnetoconductance is very small for
typical domain wall widths,9,10 although it becomes signifi-
cant in the special case of domain walls trapped in magnetic
nanocontacts.11–13 In general, the most important effect of a
domain wall on ballistic electron transport is a mixing of the
up and down spin channels, which arises from the inability
of electrons to follow adiabatically the local magnetization
direction, referred to as “mistracking.”14,15 When spin-
dependent scattering in the regions adjacent to the domain
wall is taken into account,16 this mistracking of spin in a
ballistic wall leads to a significant magnetoconductance
analogous to the giant magnetoresistance effect.17

However, treating the domain wall as a completely ballis-
tic �disorder-free� system is not realistic for experimentally
relevant systems. For instance, the cobalt nanowires of Ref.
4 have an estimated elastic mean free path of �7 nm, while
the wall width in cobalt is �15 nm. Since these two charac-
teristic length scales are of the same order, the transport
through the domain wall cannot be described as either bal-
listic or diffusive. For other materials, such as iron or nickel,
the wall widths are larger and, depending on the amount of
disorder, the diffusive regime may be reached.

A number of works have focused on the role of disorder
scattering inside the domain wall. Viret et al.14 used the bal-
listic mistracking of spin mentioned above to develop an
intuitive picture based on a weighted average of up and
down resistances. The estimated relative magnetoresistance
decreases with the width of the domain wall and agrees with
measurements on domain wall arrays in thin films. Similar
results were found using models based on the Boltzmann
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equation18 and the Kubo formula.19 Phase coherence effects
have also been studied,20,21 and in the case of spin-
independent disorder a negative contribution to domain wall
magnetoconductance has been predicted.20,22

In this work we develop a model for transport through a
disordered domain wall based on combining scattering ma-
trices for individual impurity scatterers, which improves on
existing treatments in several key aspects. First, the model is
nonperturbative in wall width and disorder strength, which
allows us to study walls of arbitrary width and consider both
ballistic and diffusive transport regimes. It is found that im-
purity scattering inside the domain wall causes an increase in
transmission and reflection with spin-mistracking, or equiva-
lently a reduction in the adiabaticity of spin transport through
the wall. Second, we can treat both phase-coherent and inco-
herent transport regimes within the same model. This permits
a quantitative determination of the contribution of phase co-
herence effects to domain wall magnetoconductance. In this
way we find that for incoherent transport a domain wall
gives rise to a positive magnetoconductance effect �i.e., a
reduction of conductance�, which depends on the relative
impurity scattering strength for up and down electrons and
scales linearly with the number of conductance channels. In
constrast, for coherent transport in the case of strong disor-
der, the domain wall magnetoconductance is negative and
does not depend on the relative up/down scattering strength
or the system size. Finally, spin-dependent scattering in the
regions adjacent to the domain wall can be incorporated di-
rectly into the model, allowing us to calculate the total mag-
netoconductance effect of a domain wall in a nanowire using
an approach similar to the circuit model developed in Ref.
16. It is found that scattering in the uniformly magnetized
regions on either side of the wall causes an enhancement of
the magnetoconductance effect which is largest for narrow
walls but is also significant in the wide wall limit.

The layout of this paper is as follows. In Sec. II we
introduce our physical model and describe the numerical
method which we use to calculate conductance through a
disordered region. In Sec. III we study the intrinsic transport
properties of a disordered domain wall in both coherent
and incoherent regimes. In Sec. IV we incorporate
spin-dependent scattering in the regions adjacent to the wall.
Finally, in Sec. V we discuss the experimental relevance of
our findings, presenting our conclusions and outlook.

II. PHYSICAL MODEL

We consider a quasi-one-dimensional �quasi-1D� wire
with the longitudinal axis lying along the z axis and a single
transverse dimension of length Ly �see Fig. 1�. The position r�
denotes the two-dimensional vector �y ,z�. The extension
to a two-dimensional cross section is straightforward, but
complicates the notation and numerical calculations without
adding new physics. Within the sd model, the conduction
electrons in the wire are described by a free-electron
one-body Hamiltonian with spin-dependent potential

H = −
�2

2m
�2 +

�

2
f��r�� · �� + V�r�� . �1�

Here f��r�� is a unit vector in the direction of the effective field
representing the magnetic moment due to the d electrons, ��

is the Pauli spin operator of the s electrons, and � is the
spin-split energy gap between up and down s electrons. The
potential V�r�� represents impurities and leads to scattering. It
is discussed in detail in Sec. II C.

For a wire uniformly magnetized in the z direction we

have f��r��= �0,0 ,−1� for all r�. When the wire contains a do-
main wall separating regions of opposite magnetization

along the z axis, we have f��r��= �0,0 ,−1� for z�0 and

f��r��= �0,0 ,1� for z��, with the length � defining the wall
region 0	z	�.

For simplicity we assume a square well potential with
infinite walls at y=0,Ly for the transverse confinement. In
the disorder-free regions of constant magnetization at either
end of the system �i.e., the leads�, electrons then occupy
well-defined modes �channels�:


n�y� =� 2

Ly
sin�n�y

Ly
� , �2�

where n is a positive integer.
The eigenstates in the leads �which constitute the

asymptotic states in a scattering approach to the domain
wall� are characterized by a longitudinal wave vector k,
transverse mode number n, and spin eigenvalue �=± �repre-
senting spin states which are, respectively, antiparallel and

FIG. 1. Schematic illustration of the scattering processes occur-
ring in our model of a disordered wire with �a� uniform magnetiza-
tion and �b� a domain wall. Above and below the wire are arrows

indicating the magnetization direction, f��r��, as well as the scattering
matrices describing the transport through the wire in each case. The
impurities are represented by point scatterers randomly located at r��
��=1, . . . ,Ni�, with corresponding scattering matrices s� �uniform�
and s̃� �domain wall�. The matrices q� and q̃� represent the ballistic
propagation between successive scatterers, while s̃�L,R� represent the
scattering from the domain wall interfaces �case �b� only�. These
matrices can be combined in a coherent or incoherent way to give
the total scattering matrix for the system �Eqs. �12� and �13�, re-
spectively�. The incident and scattered fluxes, ain, bin and aout, bout,
are also shown.
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parallel to the local direction of f��r���. The corresponding
dispersion relation is

E =
�2k2

2m
+
�2

2m
�n�

Ly
�2

−
��

2
. �3�

The relevant states for transport are those with energy E at
the Fermi energy EF, and corresponding wave vectors

k�n =�k�,F
2 − �n�

Ly
�2

. �4�

Here k�,F=�kF
2 +�k�

2 /2 is the spin-dependent Fermi wave
vector, defined in terms of kF=�2mEF /�2 and k�
=�2m� /�2. The number of propagating modes in each lead
and for each spin subband, N�, is given by the largest value
of n for which k�n is real �N�	k�,FLy /��.

These eigenstates can be projected over a position basis,
yielding:


r��̃�n
� � =� �

mv�n
e±ik�nz
n�y���� , �5�

where � denotes propagation to the right/left, and the spinor
basis states ��� represent spin eigenstates parallel or antipar-

allel to the local value of f��r��. The states are normalized to
unit flux, where the velocity factor for a plane-wave state is
v�n=�k�n /m.

Defining the spin states ��� with respect to the local mag-
netization direction allows us to treat both of the leads �as
well as the uniform case� within the same notation. Inside the
wall �0	z	��, ��� depend on r�, and hence the relevant
electron eigenstates are more complicated than the states in
Eq. �5�. They are described in Sec. II B.

The parameters EF and � characterize the structure of the
parabolic s band in the sd model, and must be estimated to
approximate the spin polarization obtained from realistic
band structure calculations. This approximation introduces
considerable uncertainty, and we therefore consider a broad
range of parameter values in order to understand the possible
types of behavior. The situation is simplified considerably by
the fact that, in our model, the dependence on the individual
parameters EF, �, and � can be encapsulated in a dimension-
less “effective” wall width pF �Eq. �19b��. We therefore fix
EF and � and explore the different possible physical regimes
by varying �. For definiteness, we choose values for EF and
� which may be considered reasonable for Co. Band struc-
ture calculations23,24 find that EF	10 eV while the splitting
between up and down bands is approximately 1 eV. How-
ever, the parameter � in our model refers to the splitting of
the s band, which may be considerably weaker than that of
the d band. We therefore take �=0.1 eV in this work, while
emphasizing that this is a highly uncertain quantity in our
model.

A. Scattering matrix approach to conductance

Since we assume noninteracting electrons, the
conductance g �in units of e2 /h� may be described by the
Landauer-Büttiker formula:25

g = 
��,�=±

� 
n�=1

N��


n=1

N�

T��n�;�n�EF�� , �6�

where T��n�;�n�EF� is the probability of an electron at energy
EF to be transmitted from the state with spin and transverse
mode �� ,n� in the left lead to the one with ��� ,n�� in the
right lead. The use of the sd model is crucial in this approach
since the treatment of s and d electrons on the same footing
would prevent us from using Eq. �6�.

To calculate the transmission amplitudes and probabili-
ties, we use an approach based on combining the scattering
matrices of all the scatterers in the system, which was devel-
oped to treat transport in spin-independent disordered sys-
tems by Cahay et al.26

Our composition of scattering matrices neglects the
effect of evanescent modes, which have an imaginary
wave vector and are assumed to decay between successive
scattering events. This approximation has been widely used
in the so-called local approach for the random matrix de-
scription of quasi-1D wires.27–29 The impressive success of
random matrix theory in explaining the universal features of
quantum transport, as well as its agreement with numerical
simulations and microscopic theories, relies on the hypoth-
esis of a quasi-1D geometry �Lz�Ly� and weak scattering
�l��L�kF

−1, where �L is the size of the scattering blocks�.
In our case these two hypotheses are valid, since the mean
distance between scatterers is much larger than the Fermi
wavelength.

For the problem of spin-dependent transport our method
offers several important advantages over the spin-dependent
extension of the recursive Green’s function �RGF� technique.
The latter calculates the phase-coherent conductance with a
tight-binding approximation for Eq. �1� in which the rotating
magnetization and the impurity potential are incorporated
through spin-dependent on-site potential energies.15,30 In par-
ticular, the scattering matrix approach allows the conduc-
tance to be calculated either coherently or incoherently,
which is useful for identifying and understanding phenomena
arising from phase coherence. Additionally, because scatter-
ing matrices are expressed in terms of local basis states, we
are able to avoid the coarse-grained discretization inherent in
the tight-binding description of the domain wall magnetiza-
tion. Finally, because only propagating states are included in
the scattering matrices, the computational effort required for
a system with a given number of conducting channels is
significantly lower than with the RGF technique. In the case
of coherent transport through a disordered domain wall, we
have verified that results using the scattering matrix ap-
proach are in quantitative agreement with those obtained
using the RGF technique.48

The scattering matrix of a system relates incoming
�ain ,bin� and outgoing �aout ,bout� flux amplitudes from the
left and right �Fig. 1� through

�bout

aout
� = s�ain

bin
� = � t r�

r t�
��ain

bin
� . �7�

Here t ,r �t� ,r�� are transmission and reflection matrices for
states incident from the left �right�. The elements of these
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submatrices are the scattering amplitudes between individual
modes �� ,n� and ��� ,n��, which we write generically as
���n�;�n, where � stands for one of t, r, t�, or r�. The dimen-
sion of these submatrices of s is determined by the number of
propagating modes of each spin on either side of the
scatterer.

Throughout this work we will denote amplitudes and their
matrices by lower-case letters and the corresponding prob-
abilities �given by the absolute square of the amplitudes� by
upper-case letters. We therefore use s to denote scattering
matrices containing amplitudes and S to denote the corre-
sponding matrix of probabilities. This convention differs
from the standard notation in which S denotes the scattering
matrix of amplitudes, but we adopt it here for notational
consistency. The submatrices of S are the transmission and
reflection probability matrices T, R, T�, and R�. We refer to
these matrices generically as �, and the corresponding indi-
vidual probabilities as ���n�;�n= ����n�;�n�2. We will also
make use of the following notation for sums of transmission
and reflection probabilities summed over transverse modes
and spin:

���� = 
n�n

���n�;�n, �8a�

�� = 
��

����. �8b�

Here ���� represents the total scattering probability from
spin subband � to ��, and �� the total scattering probability
�into both spin subbands� for states incident with spin �.

For two scatterers described by the individual scattering
matrices s1 and s2, the resultant scattering matrix obtained by
combining them in series is written as s12=s1�s2, where the
� stands for the composition law

t12 = t2�1 − r1�r2�−1t1, �9a�

r12 = r1 + t1�r2�1 − r1�r2�−1t1, �9b�

t12� = t1��1 + r2�1 − r1�r2�−1r1��t2�, �9c�

r12� = r2� + t2�1 − r1�r2�−1r1�t2�. �9d�

Here 1 denotes the identity matrix with the same number of
rows as r1� and the same number of columns as r2. The ap-
plication of this composition law to include many scatterers
forms the basis of the approach used in this work.

Coherent and incoherent transport through a disordered region

In this work we are interested in the conductance through
a disordered region with either a domain wall or uniform
magnetization. As we shall discuss in Sec. II C, the effect of
disorder is represented in our model by the potential V�r��,
which is comprised of Ni delta function scatterers at ran-
domly distributed positions r��. The indices are ordered so
that z��z�+1 for �=1, . . . ,Ni.

Within the scattering matrix approach, the phase-coherent
transmission from z=0 to � is calculated by combining the

scattering matrices of each delta function scatterer with those
for ballistic propagation between the scatterers. We denote
these matrices, respectively, by s�, q� for uniform magneti-
zation, and s̃�, q̃� for a domain wall. In the case of a domain
wall, we also require scattering matrices s̃�L,R� to describe the
scattering at the interfaces between the domain wall and uni-
form regions. These matrices, and the basis states inside the
domain wall, are discussed in detail in the next subsection
and in Appendix A.

The matrices q� and q̃� contain the phase shifts
acquired by electrons propagating ballistically between scat-
terers at r��−1 and r��. We write the longitudinal propagation
distances as �z�=z�−z�−1, where z1 , . . .zNi

are the longitudi-
nal components of the impurity positions and we define
z0=0, zNi+1=�. For the uniform case we have

q� = ��� 0

0 ��
� , �10�

where

������n�;�n = �����n�n exp�ik�n�z�� . �11�

The matrices q̃� for the domain wall case are defined in
exactly the same way within the basis of domain wall
functions �defined in Eq. �17��, with the domain wall wave

vectors k̃�n �Eq. �18a�� in place of k�n.
The total scattering matrices for coherent propagation

through the disordered region in the case of a domain wall
and uniform magnetization can be written, respectively, as

sco
�dw� = s̃�L� � q̃1 � s̃1 � q̃2 � ¯ � s̃Ni

� q̃Ni+1 � s̃�R�,

�12a�

sco
�uni� = q1 � s1 � q2 � ¯ � sNi

� qNi+1. �12b�

For the incoherent conductance, the phase coherence be-
tween successive scattering events is assumed to be lost. The
resulting scattering matrices for the domain wall and uniform
cases are obtained from the combination law of Eq. �9�, but
using probabilities ��� instead of amplitudes ���. We then
write

Sinc
�dw� = S̃�L� � S̃1 � S̃2 � ¯ � S̃Ni

� S̃�R�, �13a�

Sinc
�uni� = S1 � S2 � ¯ � SNi

. �13b�

The matrices q� and q̃� do not appear in this case since they
contain a pure phase shift and the associated transmission
probabilities are simply unity.

In the quasiballistic regime, the elastic mean free path is
much larger than the system size and only first-order scatter-
ing processes are important. For the uniformly magnetized
case the incoherent and coherent conductances become equal
in this regime. In the diffusive regime, on the other hand,
constructive interference of time-reversed paths with identi-
cal starting and end points leads to an enhancement of the
coherent reflection known as weak localization.31 In the limit
of large disorder, the coherent conductance enters the
strongly localized regime, where g decreases exponentially
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with length and the system becomes insulating.32 By
constrast, the incoherent conductance scales like the classical
Drude conductance �g�1/L�, even for arbitrarily large
disorder.

A characteristic feature of phase coherence effects in the
diffusive regime �such as weak localization or conductance
fluctuations� is their universality, or independence of system
size, which means that their relative importance is largest for
small system sizes. In our model this is particularly signifi-
cant since we are constrained to work with system sizes that
are smaller than typical systems on which experiments are
performed. Therefore the relative importance of coherence
effects appears overemphasized. On the other hand, the in-
coherent conductance scales with the system size and our
numerical results can be safely extrapolated to larger sizes.
Furthermore, in the incoherent case the fluctuations of con-
ductance decrease with increasing disorder, which allows av-
erage quantities to be computed accurately with relatively
small numbers of samples.

A fundamental limitation with finite numerical models
of coherent transport is that, for a given width Ly and impu-
rity density, there is a maximum value of the system length
Lz beyond which the system enters the strongly localized
regime. However, if Lz is larger than the phase coherence
length L
 then the localized behavior obtained in the coher-
ent model is not relevant. A comparison between coherent
and incoherent results permits us to determine those features
which are due to coherence and which will disappear with
increasing temperature. At nonzero temperature the presence
of phase-breaking scattering means that the relevant regime
for transport is intermediate between the coherent and inco-
herent limits. It is in general very difficult to treat this re-
gime, but by considering both coherent and incoherent limits
we are able to gain some insight into the behavior of experi-
mentally relevant cases.

B. Electronic states in a ballistic domain wall

For our model of a domain wall we assume a linear rota-

tion of f��r��� f��z� in the yz plane over the region 0	z	�,
described by

f��z� = ��0,sin���z��,− cos���z��� , 0 	 z 	 � ,

�0,0,sgn�z�� , otherwise,
� �14�

where ��z�=�z /� is the angle between the magnetization
inside the wall and the z axis. Using this profile, one can
describe the qualitative features of transport through a do-
main wall, which have been shown to be independent of the
detailed form of the wall.15 In addition, the profile of Eq.
�14� has the advantage that the corresponding basis states can
be found in closed form.15,19 The local spin eigenstates ���
�parallel and antiparallel to the direction of f��z�� are position-
dependent inside the domain wall. Denoting the spin basis
states with respect to the fixed z axis as �± �z, we have

��� = R���z�����z, �15�

where

R���z�� = � cos���z�/2� − i sin���z�/2�
− i sin���z�/2� cos���z�/2�

� �16�

is the spinor rotation operator containing the amplitudes

�� ���z representing the transformation from fixed to local
basis. Because the states ��� are position-dependent inside
the wall, the eigenfunctions of Eq. �1� in this region are not
spin eigenstates, but a combination of both up and down
components that projects over a position basis as:


r��̃�n
� � =� �

mṽ�n

e±ik̃�nz
n�y����� ± iA�n�− ��� . �17�

Here the symbols � denote the direction of electron propa-
gation �i.e., right or left�, while �=± is a quantum number

representing the spin of the state ��n� to which �̃�n�
reduces in the limit �→�. The other parameters are

k̃�n =�k0n
2 + k�

2 +
�

2
�k�

4 + 16k�
2k0n

2 , �18a�

A�n = �
2k�k̃�n

k̃�n
2 + k�

2 − k−�n
2

, �18b�

ṽ�n =
�k̃�n

m �1 + A�n
2 − �

2k�A�n

k̃�n
� , �18c�

with k0n=��k+,n
2 +k−,n

2 � /2 and k�=� /2�. The velocity ṽ�n is
defined in the usual way as the longitudinal probability flux33

corresponding to the state ̃�n
� �r��. In calculating this quantity,

it is necessary to note that the derivative operator in the local
spin basis has a nondiagonal form

�

�z
=�

�

�z
− k�

k�
�

�z
�

inside the domain wall. As a result, the relation between the

velocity factor ṽ�n and wave vector k̃�n is more complicated
than for the uniform basis states in Eq. �5�.

The number of propagating modes per spin quantum num-

ber inside the domain wall region, Ñ�, is given by the maxi-

mum value of n for which k̃�n is real-valued. For parameter

values of interest we generally have Ñ�=N�. However, for
very small � the rotating potential can lead to effective band
gaps �analogous to those occurring in spin-independent peri-

odic potentials�, leading to Ñ��N�. An additional complica-

tion for small � is that states with complex k̃�n, which are
inconvenient to treat within our scattering matrix approach,
may become relevant.49 In the special cases of a ballistic
wall or an abrupt wall ��=0�, this phenomenon does not
affect the calculation of transmission through the wall. How-
ever, for the parameter values used in this work �EF=10 eV,
�=0.1 eV� our method breaks down for wall widths in the
range 0���0.5 nm. Fortunately, this represents a very

ELECTRON TRANSPORT THROUGH DISORDERED… PHYSICAL REVIEW B 74, 144425 �2006�

144425-5



narrow range of parameter values, and the behavior can be
readily inferred by interpolating between the values at �=0
and 0.5 nm �which we have done in generating Figs. 9, 11,
and 12.

In the domain wall model defined by Eq. �14�, electrons
incident from the left at z=0 or from the right at z=� are
scattered due to the change from uniform to rotating magne-
tization. The scattering matrices for these interfaces, which
we write s̃�L� and s̃�R�, can be calculated using the standard
method of matching incident and scattered wave-function
components. Since the domain wall potential is uniform in
the transverse direction �i.e., has no y dependence�, the in-
terface does not mix different transverse modes. We thus
have �

��n�;�n
�L,R� =0 if n��n, for �= t ,r , t� ,r�. The diagonal am-

plitudes �
��n;�n
�L,R� are determined by calculating the appropriate

scattering state solutions for states incident on the interface,
leading to 4�4 sets of linear equations which we present in
Appendix A �Eqs. �A1� and �A2��.

For general parameter values it is most convenient to
solve Eqs. �A1� and �A2� numerically. However, simple
asymptotic expansions can be found in the limits of wide34

and narrow15 walls which provide useful insight. In the ex-
perimentally relevant case of small spin-splitting and large �,
a particularly simple solution can be found by expanding to
second order in the inverse of the dimensionless parameters

pn = k�
2 /2k0nk�, �19a�

pF = k�
2 /2kFk�. �19b�

These parameters characterize the effective “width” of the
domain wall for an electron in transverse channel n �pn� and
for the wire as a whole �pF�. The latter can be expressed as
pF=� /RL with the Larmor precession length34

RL=�EF /kF� ��20 nm for our choice of parameters� which
is related to the distance over which an electron at the Fermi
energy travels during one Larmor precession of its spin. For
an individual channel n, the adiabatic limit corresponds to
pn�1 and is most readily obtained for channels with large n
�and hence small k0n�. As discussed in Ref. 15, the degree of
adiabaticity is in general channel-dependent. Nevertheless,
pF permits a characterization of adiabaticity for all states: for
a wide wall we have pF�1, and hence pn�1 for all chan-
nels. Within this assumption we solve Eqs. �A1� and �A2� to
O�1/ pn

2� for each n, obtaining

r̃ ��n�;�n
�L,R� = r̃ ���n�;�n

�L,R� = 0, �20a�

t̃ �n�;�n
�L,R� = t̃ ��n�;�n

�L,R� = �n�n�1 −
1

2pn
2� , �20b�

t̃ −�n�;�n
�L,R� = − t̃ �−�n�;�n

�L,R� = � �n�n
i

pn
. �20c�

Equations �20� show that there is essentially no reflection for
electrons incident on the domain wall, but that the main ef-
fect of the interfaces is to scatter electrons into a superposi-
tion of up and down transmitted channels �conserving the
mode number�, with amplitude determined by pn.

In the regime of small splitting, ��EF, the transport
properties of the domain wall are determined primarily by
the parameter pF, while the dependence on EF, �, and �
individually can, to a good approximation, be neglected. This
is true both for the intrinsic domain wall scattering shown in
Eqs. �20� and for the impurity scattering to be discussed
below. For large splitting, the dependence on � becomes
important as the difference in the number of up and down
conducting channels, N+−N−, becomes significant. In this
work, however, we are interested only in the case of weak
splitting which is relevant for transition metal ferromagnets.

1. Coherent and incoherent transmission for a
ballistic wall

Before introducing disorder in the following section, we
now briefly consider the case of a disorder-free ballistic do-
main wall �V�r��=0�, which can be treated by setting Ni=0 in
Eq. �12a� �coherent case� or Eq. �13a� �incoherent case�. An
incoherent ballistic system represents an idealized scenario
in which electrons are subject to phase-breaking events
which do not affect momentum.35 As such, it is a useful way
to treat the effects of decoherence in mesoscopic transport. In
the case of a domain wall, it is important to understand the
differences between incoherent and coherent transmission in
the ballistic case, as this gives insight into effects which are
also relevant for the disordered case.

Within the asymptotic approximation of Eqs. �20�, the
transmission probabilities for coherent and incoherent
ballistic walls are, to O�1/ pn

2�, given by

T−�n�;�n = ��n�n
4

pn
2 sin2� pn�

4
� , coherent,

�n�n
2

pn
2 , incoherent,� �21a�

T�n�;�n = �n�n − T−�n�;�n. �21b�

From Eqs. �21� the basic difference between the coherent and
incoherent cases is a suppression of the oscillatory compo-
nent of the spin-dependent transmission in the latter case.
This occurs because the oscillations observed in the coherent
case arise from the phase interference between up and down
wall basis state components comprising the electron scatter-
ing state, which is suppressed in the incoherent case. This
result implies that the oscillatory torques exerted by a spin-
polarized current on a domain wall predicted in Ref. 34
would be suppressed if the transport were incoherent.

In Fig. 2 we show the exact total spin-dependent trans-
mission probabilities T++ and T−+ �defined in Eq. �8a�� as a
function of pF, for both coherent and incoherent ballistic
walls. The agreement with the asymptotic results from Eqs.
�21� is shown in the inset; it can be seen that these are accu-
rate for moderate to large pF values, but for small pF they
diverge significantly. We also note that, although not explic-
itly shown in Fig. 2, the total reflection from the ballistic
domain wall is negligible except near the abrupt limit
��=0�. In the limit of many channels when N+�N−, the
channel blocking mechanism occurring for an abrupt wall15
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leads to a relative change in conductance of the order of
� /EF ��0.01 in this case�. However, we have chosen param-
eters such that N+=N−. Then, the channel blocking is
irrelevant.

In the limit pF→0, the exact solutions show that the in-
coherent transmission goes to N� /2, which is somewhat sur-
prising since we expect complete mistracking �i.e., T��=0�
in this limit, as is observed for the coherent case. The origin
of this result can be understood as follows. By combining
scattering matrices incoherently we are effectively “measur-
ing” the individual path taken by an electron going through
the wall, so that is projected onto one of the right-moving
wall basis states �±

��. Since each of these states comprises
an equal weighting of local up and down components as
pF→0, the incoherent combination must also yield an equal
weighting. It is clear that the incoherent result is unphysical
for small pF, since there will always be some nonzero dis-
tance over which transport is coherent. We therefore need to
be careful when interpreting the incoherent results for
small pF.

C. Delta function model of scattering

In transition metal ferromagnets the elastic spin-
conserving scattering of conduction electrons arises from a
variety of mechanisms, including impurities, defects, and
grain boundaries. These scattering rates depend on the under-
lying details of band structure, and are in general strongly
spin-dependent. In spite of this complex situation, the

strength of elastic scattering can be characterized by only
two parameters, namely, the spin-dependent elastic mean
free paths l±. The precise microscopic model leading to a
given value of l± is then of minor importance. In the sd
model the spin dependence of l� arises from two sources:36

the intrinsic spin dependence of the electron wave vectors
k�n and a difference in the number of available d states of
each spin into which the conducting s electrons can be scat-
tered. The former effect is due to the spin-splitting of the s
band, which makes k+,n�k−,n. Therefore electrons with spin
up are generally less strongly scattered than those with spin
down, which in the absence of other sources of spin depen-
dence leads to l+� l−. However, since we work in the regime
of small splitting, ��EF, this difference is rather small. The
dominant contribution then comes from scattering into the d
band. The resulting spin dependence can lead to l+� l− or
l+� l− depending on the form of the up and down d subbands
at the Fermi energy. For definiteness, we assume that the spin
down d subband has a greater number of states at EF than the
spin up subband, which implies that spin down electrons are
the more strongly scattered ones, leading to l+� l−. To rep-
resent scattering processes, we adopt a simplified picture in
which s electrons are scattered by the static potential V�r��.
The degrees of freedom corresponding to the d electrons are
therefore not explicitly included and, in particular, we ignore
the possibility that electrons scattered into d states might not
return to the s band. However, one might expect that the
behavior of the system depends essentially on the spin-
dependent mean free paths l+ and l−, and that the microscopic
details of the model leading to their values are of minor
importance.

The potential V�r�� is defined as a random array of delta
functions with spin-dependent amplitudes u±, where the ori-
entations are defined with respect to the local magnetization

direction f��z�. The delta function model is a convenient phe-
nomenological approach to impurity scattering which has
been widely used in spin-independent mesoscopic transport
theories26,37 as well as in ferromagnetic systems.18,20 The
spin dependence of scattering in the ferromagnet is deter-
mined by the ratio of up and down amplitudes, which we
write as �=u− /u+. For spin-dependent impurity scattering we
take ��1, which corresponds to l+� l−. For completeness,
we will also consider the case of spin-independent impurity
scattering, �=1.

We write the up and down components of V�r�� in the local
spin basis as

V��r�� = u�
�=1

Ni

��r� − r��� , �22�

where there are Ni impurities with positions r�� randomly
distributed in a region of area Ly�Lz. In general, Lz may be
different from the domain wall length �. The impurity den-
sity is ni=Ni /LyLz. The total impurity potential can then be
written as a sum of spin-independent and dependent terms:

V�r�� =
V+�r�� + V−�r��

2
1 +

V+�r�� − V−�r��
2

f��z� · �� . �23�

Alternatively, the potential can be written in a diagonal form

FIG. 2. Spin-dependent transmission per incoming channel,
T��� /N�, for a ballistic domain wall as a function of the dimension-
less effective wall width pF �bottom axis�. For comparison, the cor-
responding actual wall width � for parameter values EF=10 eV and
�=0.1 eV is also shown �top axis�. The curves presented are for
�=+, with ��= ±�, and are indistinguishable from the correspond-
ing ones for �=− �for the parameter values used�. Solid and dashed
lines indicate, respectively, coherent and incoherent combinations
of scattering matrices. The actual wire width used is Ly =5 nm,
corresponding to N±=25, but the curves are indistinguishable from
their form in the limit of large Ly. Inset: comparison of the
asymptotic solutions for T�� from Eq. �21b� �thick lines� with the
exact values �thin lines� over a larger range of pF.
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V�r�� = R−1���z���V+�r�� 0

0 V−�r��
�R���z�� , �24�

in terms of the rotation matrix R���z�� defined in Eq. �16�.
As shown in Eqs. �12� and �13�, the transmission through

the disorder potential can be calculated by combining the
scattering matrices s�, s̃� of the individual delta function
scatterers located at r��, together with the matrices q� and q̃�
for propagation between successive scatterers. The depen-
dence on the longitudinal component of the scatterer posi-
tion, z�, is contained in q� and q̃�, while the dependence on
the transverse component, y�, is contained in s� and s̃�. We
therefore write the scattering matrix for a delta function scat-
terer located at r�� as s����y�� �uniform� and s̃����y�� �domain
wall�. We describe the calculation of these scattering matri-
ces in Appendix B and present solutions valid in the Born
approximation in Appendix C.

To understand the scattering from a delta function with
spin-dependent amplitudes u�, it is useful to consider the
total spin-dependent reflection for the uniform case, R��

���.
Figure 3 shows 
R��

����, the reflection averaged over transverse
positions y� of the scatterer, as a function of u� for several
values of �. For small u�, we see that 
R��

���� goes as u�
2 ,

which can also be seen directly from the Born
approximation.38 The ratio of up to down backscattering thus
goes as �2 for small u�. For larger u�, however, 
R��

���� is
bounded above by 1, attaining this value in the limit u�
→�. This occurs because a delta function scatterer can
“block” at most one channel.39 The spin dependence of re-
flection is then dramatically reduced for large u�. Since our
goal in this work is a model with spin-dependent scattering,
we must therefore work in the regime of small u�. However,
we cannot take u� arbitrarily small, since decreasing u�
means that a larger N� is required to achieve a given disorder

density, leading to an increase in computation time. In prac-
tice we have found u+�EF /5 to be a useful compromise for
parameters in the range 1	�	2.

III. TRANSPORT THROUGH A DISORDERED DOMAIN
WALL: INTRINSIC PROPERTIES

In this section we consider the intrinsic conductance prop-
erties of a disordered domain wall. Here the domain wall
constitutes the entire system of interest, i.e., Lz=�, and is
therefore assumed to be connected on either side to perfect
�disorder-free� leads. By comparing with a uniformly mag-
netized disordered region of the same length, we calculate an
intrinsic domain wall magnetoconductance which measures
the difference in conductance due to the presence of a do-
main wall. We consider both coherent and incoherent re-
gimes; the corresponding scattering matrices for the system
are obtained from Eqs. �12� and �13�. Our primary aim in this
section is to study the role of impurity scattering inside the
domain wall. The case of most interest is spin-dependent
disorder ���1�, however, in order to relate our model to
previous works and more clearly understand aspects of the
spin-dependent case, we also consider spin-independent dis-
order, �=1.

In the uniform case, the two spin subbands of conduction
electrons are uncoupled, so there is no spin mixing. All off-
diagonal �in spin quantum numbers� transmission and reflec-
tion amplitudes are therefore zero, i.e., �−�n�;�n=0 for
�= t ,r , t� ,r�. The total spin-dependent transmission and re-
flection probabilities �defined in Eqs. �8�� satisfy

�−��
�uni� = 0, ��

�uni� = ���
�uni�, �25�

for �=T ,R ,T� ,R�.
The conductance properties of the up and down subbands

of the uniform system are well-described by random matrix
theory,27,40 whose expressions for the average transmission
and its moments are in excellent quantitative agreement with
the calculations performed with our model. For a system of
length Lz, the total transmission for spin subband � in the
incoherent case is given by


T�,inc
�uni� � = N�/�1 + Lz/l�� , �26�

where N� is the number of channels and l� is the spin-
dependent elastic mean free path. Equation �26� expresses
the transmission as a series combination of the ballistic con-
tact transmission, N�, with the Drude conductance, N�l� /Lz.
In the diffusive regime, l��Lz, the Drude term dominates
and 
T�,inc

�uni� � displays an ohmic 1/Lz dependence. In the qua-
siballistic regime, l��Lz, Eq. �26� is only approximately cor-
rect, but is within several percent of the value obtained by a
more precise calculation.41

For delta function scatterers in a two-dimensional
quasi-1D geometry, the mean free path l� appearing in Eq.
�26� is given by

l� =
2�3v�,F

mniu�
2 , �27�

where v�,F=�k�,F /m is the Fermi velocity in spin subband �.
This definition is a factor of 2 larger than the two-

FIG. 3. Total spin-dependent reflection from a delta function
scatterer with spin-dependent amplitudes u� in the uniformly mag-
netized case, 
R��

���� �averaged over transverse positions y��. Curves
are shown as a function of �u+ /EF�2 for different values of the
up/down scattering ratio �=u− /u+. For �=1 the only spin depen-
dence of scattering is due to the small difference between k+,n and
k−,n, and hence 
R−−

����	
R++
����. For small u�, 
R��

���� goes as u�
2 �Eq.

�C4a��, while for large u� it approaches a maximum value of 1. The
particular system used in this calculation has Ly =2 nm, giving
N±=10.
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dimensional form42 since in a quasi-1D geometry forward
scattering processes do not reduce transmission.43

The mean free path l� can be interpreted intuitively as
the typical distance traveled by an electron of spin � before
undergoing a momentum randomizing scattering event.
However, it should be noted that such a conceptual scattering
event does not correspond to the scattering from an
individual delta function scatterer in our model: the length l�
typically corresponds to a large number of individual
scatterers.

The coherent transmission, 
T±,co
�uni��, is reduced with

respect to 
T±,inc
�uni�� by the weak localization correction, which

in a quasi-1D system has the limiting value −1/3 in the
diffusive regime Lz / l��1.27,40

A. Disorder-induced enhancement of spin-mistracking in
domain wall transport coefficients

We first consider how the transport coefficients of a do-
main wall vary as a function of disorder. It is most instruc-
tive to study the total spin-dependent transmission and re-
flection, summed over all transverse channels and averaged
over impurity configurations, 
T

���
�dw�� and 
R

���
�dw��. In Fig. 4

these quantities are shown for a relatively wide wall
�pF=5� with spin-dependent disorder ��=2� as a function of
disorder strength �1/ l+ in units of 1 /��. Both coherent �Eq.
�12a�� and incoherent cases �Eq. �13a�� are shown.

At zero disorder, 1 / l+=0, transport through the ballistic
wall is highly adiabatic, so that 
T��

�dw��� 
T−��
�dw��. With in-

creasing disorder, the dominant transmission coefficient,

T��

�dw��, decreases quite rapidly, with a form similar to that of
the transmission in the uniform case, 
T��

�uni�� �Eq. �26��. Also,
we observe that 
T−−

�dw�� decreases more rapidly than 
T++
�dw��,

since l−� l+. These initial decays can be quantitatively de-
scribed by the Born approximation of Appendix C, and the
coherent and incoherent cases yield very similar results.

The off-diagonal �in spin� coefficients 
T−��
�dw�� also exhibit

a linear decrease with 1/ l+ in the quasiballistic regime. How-
ever, for a relatively weak disorder �� / l+	1� the behavior of
off-diagonal coefficients begins to differ considerably from
that of the diagonal ones. As we can see in the inset of the
upper graph in Fig. 4, the negative slope of the coherent

T−��

�dw�� levels off, and the incoherent 
T−��
�dw�� increases with

disorder.
In both cases �coherent and incoherent�, the magnitude

of 
T−��
�dw�� remains relatively constant as a function of

disorder. This means that the relative transmission with
spin-mistracking, 
T−��

�dw�� / �
T��
�dw��+ 
T−��

�dw���, increases dra-
matically as a function of disorder. Furthermore, since

T−−

�dw��� 
T++
�dw�� while 
T+−

�dw��= 
T−+
�dw��, the proportion of

transmission with mistracking is greater for the spin down
than for the spin up subband.

The case of spin-independent disorder, �=1 �not shown�,
is qualitatively similar to the spin-dependent case just
discussed, with the difference that 
T++�	
T−−� and

R++�	
R−−�. This is because in this case the only spin de-

pendence of the scattering arises from the small spin depen-
dence of the wave vectors k̃�n.

The preceding observations imply that the adiabaticity
which applies to ballistic domain wall transport no longer
applies in the presence of disorder. In particular, a wall
which is highly adiabatic in the regime of ballistic transport
becomes less so in the presence of disorder. For spin-
independent disorder, a similar result was recently obtained
in the context of transport through disordered wires in the
presence of inhomogeneous magnetic fields.44 For spin-
dependent disorder, the reduction in adiabaticity depends on
the spin direction, so the wall can no longer be characterized
by a single adiabaticity parameter as it was in the ballistic
case.16 The origin of the enhancement of mistracking with
increasing disorder can be understood intuitively as the cu-
mulative effect of small amounts of mistracking acquired in
scattering from each individual delta function �see Eqs.
�C2b� and �C2d��. We illustrate this important idea with a
simple one-dimensional toy model in Appendix D.

Finally, we note several differences between the coherent
and incoherent cases in Fig. 4. In the ballistic case, 1 / l+=0,

FIG. 4. Spin-dependent domain wall transmission and reflection,

T���� and 
R���� �normalized by the number of conducting modes
per incident spin channel, N��, as a function of disorder, measured
by 1/ l+ �shown in units of 1 /��. Coherent �solid lines� and inco-
herent �dashed lines� cases are shown �the arrows connect corre-
sponding values�. The wall width is pF=5, which corresponds to a
wide wall close to the adiabatic limit �T���T−�� for the ballistic
wall at 1 / l+=0�. The parameters for the delta function scatterers are
u+=EF /5 and �=2, and the averages are performed using
NS=2000 impurity configurations. The wire width is Ly =10 nm,
leading to N±=51.
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there is a small difference between 
T
���,co
�dw� � and 
T

���,inc
�dw� �.

This is due to suppression of the oscillatory component of
the coherent transmission, which was discussed in Sec.
II B 1 and illustrated in Fig. 2. This difference may be posi-
tive or negative, depending on pF, and becomes increasingly
significant as pF→0. The effect persists for small 1 / l+, but
disappears for larger disorder since the phase information
corresponding to the precessional component is lost after
many scattering events.

A second difference between the coherent and incoherent
cases is that for large disorder the scattering coefficients with
mistracking, 
T−��

�dw�� and 
R−��
�dw��, are smaller for the coherent

case than for the incoherent one. The precise origin of this
difference is not clear, but we can eliminate several possible
reasons. First, by looking at the equivalent curves for differ-
ent values of pF, it is found that the difference has a constant
sign for all �. This suggests that it cannot be explained by the
suppression of the precessional component of transmission in
the incoherent case, as invoked in the discussion of the pre-
vious paragraph. Furthermore, it is found that the difference
scales linearly with the number of channels N� �or equiva-
lently Ly�. It cannot, therefore, be explained as a weak local-
ization effect, which should be characterized by a constant
magnitude, independent of Ly.

B. Intrinsic domain wall magnetoconductance: sign reversal in
coherent case

We define the intrinsic domain wall magnetoconductance
as the difference between the conductance of a uniformly
magnetized region �“uni”� and that of a domain wall �“dw”�
of equal length with identical impurity configurations

�g = guni − gdw. �28�

Assuming that we can contact the wall directly, the impurity
average 
�g� could be associated with the change in the
measured conductance when an external magnetic field along
the z direction is applied in such a way as to destroy the
domain wall and arrive at a magnetically homogeneous con-
figuration. Although they are not of direct experimental rel-
evance, we also define the differences in spin-dependent
transmission, �T�=T�

�uni�−T�
�dw� in order to guide our physi-

cal discussion. With the above notations we obviously have
�g=�T++�T−.

In Fig. 5 we show the disorder-averaged 
�g� �thick lines,
filled symbols� and 
�T±� �thin lines, empty symbols� as a
function of disorder, for spin-independent ��=1� and spin-
dependent ��=2� disorder, in both coherent and incoherent
cases.

In the spin-independent case ��=1, Fig. 5�a��, the main
feature is a negative coherent magnetoconductance, which
becomes positive and very small in the incoherent regime.
For the spin-dependent case ��=2, Fig. 5�b�� the negative
coherent magnetoconductance is obtained above a threshold
disorder, and a positive 
�g� appears in the incoherent re-
gime. Below we comment on the generality of these basic
findings, their relationship with previously found effects, and
their physical relevance.

A negative coherent magnetoconductance was predicted
by Tatara and Fukuyama20,45 for the case of spin-independent
disorder, and interpreted as a weak localization effect. Such
an effect has, however, eluded experimental confirmation.
The underlying reason for the putative reduction of weak
localization in a domain wall is a suppression of backscatter-
ing processes which conserve spin. That is, r�n�;�n is reduced
due to the possibility of scattering into the opposite spin
channel, r−�n�;�n. Since weak localization stems from an en-
hancement of the diagonal spin-conserving reflection ampli-
tudes r�n;�n �coherent backscattering�, it follows that the ef-
fect will be reduced in a domain wall as compared to a
uniformly magnetized region.

Our numerical results suggest that a suppression of weak
localization by the domain wall is indeed the dominant
mechanism responsible for the coherent magnetoconduc-
tance in the regime of large disorder. First, the limiting value

�gco�	−0.1, obtained in the diffusive regime, is of the or-
der of the quasi-1D weak localization value of −1/3 for the
uniform case.27,40 Furthermore, this limiting value is approxi-
mately independent of system size �Ly and ��,46 which is a
general characteristic of coherence effects such as weak
localization.

FIG. 5. Coherent �solid lines� and incoherent �dashed lines� do-
main wall magnetoconductance 
�g� �filled symbols� as a function
of 1/ l+ �in units of 1 /�� for a domain wall with pF=5, in the case of
�a� spin-independent disorder ��=1� and �b� spin-dependent disor-
der ��=2�. The differences in spin-dependent transmission 
�T±�
are also shown �empty symbols�. The system parameters are as for
Fig. 4, with NS=3000 impurity configurations.
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From the point of view of physically measurable effects,
it is important to note that the coherent magnetoconductance

�gco� is characterized by relatively large fluctuations. In-
deed, in the diffusive regime �gco follows approximately a
normal distribution with fluctuations characterized by
�Var��gco�= �
�gco

2 �− 
�gco�2�1/2	0.3, as illustrated in Fig.
6. For large disorder, the magnitude of these fluctuations is
independent of system size �Ly� and up/down scattering ratio
���, and is related to the universal fluctuations of gdw and
guni. We discuss these aspects in more detail in the following
section. We notice that �Var��gco�	3�
�gco�� for large dis-
order. For an individual disorder configuration, there is thus a
significant probability for �gco to be positive as well as nega-
tive. This could make it difficult for a negative 
�gco� to be
detected experimentally �even in the coherent regime�
beyond statistical uncertainty.

Another significant factor concerning the coherent mag-
netoconductance is that in the case of spin-dependent disor-
der 
�gco� is positive for small disorder. The value of 1 / l+ at
which it changes sign increases with the system width Ly. In
our calculations, numerical constraints limit us to systems
containing on the order of 102 channels. However, the nano-
wires of experiments such as Ref. 4 contain on the order of
104 channels. The region in which 
�gco� is negative would
then correspond to an unrealistically large disorder, particu-
larly for the cobalt nanowires of Ref. 4, in which domain
walls are relatively narrow ��	15 nm�. For materials with
wider walls, such as nickel ��	100 nm�, the necessary den-
sity of impurity scatterers would be smaller, although it
would be more difficult to have phase coherence across the
greater length of the wall. Thus to access the regime of nega-
tive 
�gco� experimentally it would be necessary to work
with very small, highly disordered nanowires at low
temperature.

In the incoherent regime, the magnetoconductance 
�ginc�
in the case of spin-independent disorder is positive but ex-
tremely small �approximately two orders of magnitude
smaller than �
�T±,inc���. For spin-dependent disorder 
�ginc�

is much larger. Although not shown in Fig. 5, we note that
the incoherent quantities scale linearly with increasing Ly,
while for fixed 1/ l+ they decrease with increasing � �see Fig.
9�.

The behavior of 
�ginc� can be understood as a combina-
tion of spin-mistracking with spin-dependent scattering.
As we saw in Sec. III A, successive scattering events in
the domain wall enhance spin-mistracking. This means
that the electron is sensitive not only to the impurity
potential associated with its incoming spin, but also to the
one with the opposite orientation. Since the scattering
strengths are spin-dependent, this leads either to a reduction
or enhancement of transmission compared to the uniform
case, according to the spin direction: 
�T+,inc��0 and

�T−,inc��0. For spin-independent disorder, these differ-
ences are small and almost equal in magnitude, so that

�ginc� is negligibly small. For spin-dependent disorder,
however, we have �
�T+,inc��� �
�T−,inc��, which leads to a
positive and much larger value of 
�ginc�. In this case there is
thus a significant magnetoconductance arising from an en-
hancement of back-scattering due to the exposure of elec-
trons in a superposition of spin states to spin-dependent scat-
tering. This idea was used at a phenomenological level in
Ref. 14, where transport through a diffusive domain wall in
the almost adiabatic limit of small spin-mistracking was de-
scribed by a reduced effective mean free path representing a
weighted average between spin up and down mean free
paths.

In the ballistic limit, 1 / l+→0, there is no impurity scat-
tering inside the wall. The backscattering is then entirely due
to reflection from the wall interfaces, which is extremely
weak. Both 
�gco� and 
�ginc� therefore become negligible in
this limit.

In the diffusive regime �� / l+�1�, we believe that two
primary mechanisms explain the different behavior of 
�gco�
and 
�ginc�. First, the limiting value of 
�gco� for large dis-
order appears to be due to a reduction of weak localization
by the domain wall, which does not apply in the incoherent
case. Second, as we discussed in Sec. III A, the spin-
mistracking transmission and reflection, 
T−��,co

�dw� � and

R−��,co

�dw� �, are reduced in the coherent regime with respect to
the incoherent one. We propose that this leads to a suppres-
sion of the enhanced backscattering in the domain
wall which is dominant in the incoherent case. For large
disorder, the positive magnetoconductance present in the in-
coherent case is then canceled out in the coherent case, leav-
ing only the negative component from the weak localization
reduction.

As stated in the presentation of our physical model �Sec.
II�, reducing the transverse cross section of the wire from
two to one dimensions is not expected to change the physics
of the problem. This is true as long as we are in a quasi-1D
geometry where the length of the disordered system is much
larger than its transverse dimensions. In this situation only
the lowest transverse diffusion modes are relevant40 and the
universal quasi-1D value of −1/3 is obtained for the weak
localization correction in the absence of a domain wall.

FIG. 6. Distribution of the coherent intrinsic magnetoconduc-
tance, �gco, for spin-independent ��=1,� � and spin-dependent
��=2, + � disorder. The curves in the center show 
�gco�, while the
upper and lower curves show 
�gco�±Var��gco�1/2, respectively.
All parameters are as for Fig. 5.
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C. Reduction of universal conductance fluctuations for
coherent domain wall

An important feature of quantum transport through
diffusive coherent systems is that the conductance fluctua-
tions, ��g2�1/2=Var�g�1/2, are universal, with a magnitude of
order e2 /h independent of the system size or mean free
path.47 For a spinless quasi-1D disordered system, the con-
ductance fluctuations have the value �2/15 in units of e2 /h.
In our model this applies to each spin subband in the
uniformly magnetized case, so that

���T±
�uni��2�1/2 = �2/15. �29�

For a nonmagnetic system �“nm”�, there is no spin-
splitting of the s band �which would correspond to �=0 in
our model� and the transport of up and down electrons is
identical. In that case we have T+

�nm�=T−
�nm� and hence

���T+
�nm�+T−

�nm��2�1/2=2���T+
�nm��2�1/2. The conductance

fluctuations are then

��gnm
2 �1/2 = 2���T+

�nm��2�1/2 = �8/15. �30�

In a ferromagnetic system ���0�, on the other hand,
the spin dependence of the wave vectors k�n suppresses
the correlation between T+

�uni� and T−
�uni�. In this case we

have ���T+
�uni�+T−

�uni��2�1/2= �2��T+
�uni��2�1/2, so the conduc-

tance fluctuations are reduced as compared to those of a
nonmagnetic system:

��guni
2 �1/2 = �2��T+

�uni��2�1/2 = �4/15. �31�

This reduction due to the nondegeneracy of spin states is
directly analogous to the experimentally observed reduction
of conductance fluctuations due to Zeeman splitting in an
applied magnetic field.27

In Fig. 7�a� we show the conductance fluctuations ob-
tained from our model in the uniform case, ��guni

2 �1/2 and
���T±

�uni��2�1/2, as a function of 1/ l+. They are in excellent
agreement with the theoretical values from Eqs. �29� and
�31� for � / l+�2.

Figure 7�a� also shows the conductance fluctuations for a
domain wall region, ��gdw

2 �1/2, together with ���T±
�dw��2�1/2.

We see that the conductance fluctuations in a disordered do-
main wall are reduced with respect to those of a uniformly
magnetized region. Moreover, the conductance fluctuations
are no longer universal since a slow decrease is observed as
a function of 1/ l+ in the diffusive regime.

This result can be understood as arising from statistical
decorrelation between the components of T�

�dw�. For the do-
main wall coefficients T

���
�dw� we do not have a way of esti-

mating the fluctuations analogous to Eq. �29�. However, we
can make the hypothesis that the relative fluctuations for
each component are the same as in the uniform case:

���T���
�dw��2�1/2


T���
�dw��

	
���T�

�uni��2�1/2


T�
�uni��

. �32�

Furthermore, we can expect that T��
�dw� and T−��

�dw� will be un-
correlated in the diffusive regime, so that

���T�
�dw��2�1/2 	 ���T��

�dw��2 + ��T−��
�dw��2�1/2. �33�

Using the fact that 
T�
�dw��= 
T��

�dw��+ 
T−��
�dw��, Eqs. �32� and

�33� then give

���T�
�dw��2�1/2 	


T�
�dw��


T�
�uni��

�1 −
2
T��

�dw��
T−��
�dw��


T�
�dw��2 �1/2

���T�
�uni��2�1/2.

�34�

The first factor on the right-hand side �rhs� is approximately
unity since 
T�

�dw��	
T�
�uni��. We thus see that ���T�

�dw��2�1/2 is
reduced with respect to ���T�

�uni��2�1/2 by the second term on
the rhs of Eq. �34�. This reduction factor is most important
when the two transmission coefficients 
T��

�dw�� and 
T−��
�dw�� are

of the same order, which is the situation approached with
increasing disorder.

FIG. 7. �a� Fluctuations of conductance, ��g2�1/2 �solid lines�,
and spin-dependent transmission, ��T+

2�1/2 �dashed lines�, for a
uniformly magnetized region ��� and domain wall ���, in the case
of spin-independent disorder ��=1�. The fluctuations of spin-down
transmission ��T−

2�1/2 are not shown, but agree with ��T+
2�1/2

to within the statistical error of the calculation. The dotted horizon-
tal lines indicate the theoretical values in the uniform case,
��guni

2 �1/2=�4/15 and ���T±
�uni��2�1/2=�2/15, which are in good

agreement with our numerical results for � / l+�2. �b� Fluctuations
of the spin-dependent domain wall transmission coefficients:
���T+

�dw��2�1/2 ���, ���T++
�dw��2�1/2 ���, and ���T−+

�dw��2�1/2 ���. The
corresponding estimated values, based on the approximation in Eqs.
�32�–�34�, are also shown �solid lines�. System parameters are
pF=5 and Ly =10 nm, with 3000 impurity configurations.
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In Fig. 7�b� we compare the actual fluctuations
���T�

�dw��2�1/2 and ���T
���
�dw��2�1/2 with the corresponding pre-

dictions of Eq. �34�. The two agree reasonably well and,
significantly, the approximate values reproduce the decreas-
ing behavior of ���T�

�dw��2�1/2 for 1 / l+ large. The simple hy-
potheses contained in Eqs. �32� and �33� thus explain quali-
titatively the two essential features of ���T�

�dw��2�1/2, which
are an overall reduction with respect to ���T�

�uni��2�1/2 and a
loss of universality represented by a slow decrease with
increasing disorder.

D. Nonmonotonic �-dependence of incoherent relative
magnetoconductance

We now consider the relative intrinsic domain wall
magnetoconductance, defined as

��g/g�dw =
guni − gdw

guni
. �35�

For disordered systems this is a more useful quantity than the
magnetoconductance �g discussed in Sec. III B, as it mea-
sures the relative importance of the magnetoconductance ef-
fect inside the wall. In this section we consider only the
incoherent regime; for this case, ��g /g�dw is independent of
Ly since 
�ginc� scales linearly with transverse system size.

In Fig. 8 we plot 
��g /g�dw� as a function of 1/ l+ �in units
of 1 /��. Various domain wall widths �pF=1,5� and up/down
scattering ratios ��=2,4� are shown. We see that 
��g /g�dw�
is a monotonically increasing function of disorder. This
shows that the decreasing behavior of 
�ginc� for large dis-
order is due simply to the overall decrease in conductance
with disorder. The monotonicity of 
��g /g�dw� occurs be-
cause the amount of spin-mistracking, and hence also the
enhancement of backscattering, is proportional to the amount
of impurity scattering, as discussed in Sec. III B. It can also

be seen from Fig. 8 that 
��g /g�dw� increases with � and
decreases with pF, which is consistent with the explanation
of the intrinsic magnetoconductance given in Sec. III B.

We note that the models of Refs. 14 and 18 assume dif-
fusive transport, so that the results obtained therein corre-
spond to the regime of large 1/ l+ in Fig. 8. The magnetocon-
ductance predicted in these works depends on the up/down
scattering ratio �, but is independent of l+ �provided it satis-
fies l+���. This is consistent with the leveling off of the
curves in Fig. 8 with increasing 1/ l+, and suggests that

��g /g�dw� approaches a finite limit for large disorder.

Figure 9 shows 
��g /g�dw� as a function of wall width �,
for �=2 and 4 and l+=10 and 40 nm. For large �, we find a
1/� dependence in agreement with Refs. 14 and 18. This can
be understood because with increasing wall width the
amount of spin-mistracking is reduced. In the limit �→0, on
the other hand, the domain wall becomes an abrupt interface
with no impurities and 
��g /g�dw� becomes negligible. As
discussed in Sec. II B 1, the channel blocking mechanism10,15

which typically yields �g /g�� /EF is not relevant in our
case since we have chosen N+=N−. In between the two ex-
treme cases, there must be a maximum value of 
��g /g�dw� at
a finite value of �. This value represents an optimum inter-
mediate situation: a wall which is wide enough to contain an
appreciable amount of impurity scattering, but narrow
enough to cause significant spin-mistracking. From Fig. 9 it
can be inferred that this value of � decreases with increasing
disorder �i.e., decreasing l��. On the other hand, the different
values of � affect the overall magnitude of 
��g /g�dw�, but
do not significantly change the position of its maximum
value.

IV. DOMAIN WALL IN A NANOWIRE: EFFECT OF
SCATTERING IN THE LEADS

To understand the effect of a domain wall on electron
transport in a nanowire, it is necessary to consider not only

FIG. 8. Intrinsic relative domain wall magnetoconductance,

��g /g�dw�, as a function of disorder strength, 1 / l+ �in units of
1 /��, in the incoherent case. The different curves illustrate the de-
pendence on wall width �pF=1,5� and spin dependence of scatter-
ing ��=2,4�. The arrows indicate the evolution of the curves upon
increasing these parameters. Other system parameters are as for Fig.
4.

FIG. 9. Intrinsic relative domain wall magnetoconductance,

��g /g�dw�, as a function of wall width, �, in the incoherent case.
Several values of mean free path �l+=10 and 40 nm� and spin de-
pendence of scattering ��=2,4� are shown. The arrows show the
direction in which the curves evolve upon increasing these param-
eters. The two values of wall width corresponding to Fig. 8
�pF=1,5� are indicated by dotted vertical lines. Other system pa-
rameters are as for Fig. 4.
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the intrinsic effects described in the previous section, but
also extrinsic effects arising from scattering in the regions
adjacent to the wall. In a previous work16 we analyzed such
effects in the special case of a ballistic domain wall, using a
circuit model which incorporates spin-dependent scattering
in the regions on either side of the wall using a generaliza-
tion of the two-resistor model of GMR.17 The essence of this
model is to treat transport of electrons with different spins in
the adjacent regions as independent over a distance equal to
the spin-diffusion length, lsd. This is the length scale over
which the distribution between the two spin subbands is
equilibriated through spin-flip scattering processes. In Ref.
16, transport in the adjacent regions was treated using clas-
sical spin-dependent resistors. Such an approach is valid un-
der the assumption that the phase coherence length, L
,
satisfies ��L
� lsd.

In this section we follow a similar method to incorporate
extrinsic scattering �outside the domain wall region� into our
model. However, in place of classical spin-dependent resis-
tors, we treat the impurity scattering in the regions adjacent
to the domain wall using the same delta function scatterer
model as inside the domain wall. The resulting model system
is illustrated in Fig. 10. This approach differs with respect to
Ref. 16 in that the adjacent regions are combined with the
domain wall using the scattering matrix combination formula
�Eqs. �9��, rather than combining spin-dependent conduc-
tances using Kirchhoff’s rules. We are interested in the limit
l±� lsd, for which the difference between these two ap-
proaches is not significant. This corresponds to the realistic
situation since only a small part of the processes leading to
momentum relaxation involve a spin-flip. However, the
present approach has the advantage that it remains valid in
principle for any value of l± / lsd. In addition, phase coherence
lengths L
�� can be considered within this approach
�although we do not do so in this paper�.

As in Sec. III, we consider conductance through the do-
main wall in both coherent and incoherent cases. In the co-
herent case we introduce a finite L
=�. The system is thus
partitioned into phase-coherent segments of length L
 which
are combined incoherently. For the incoherent case, our ap-
proach assumes a vanishing phase coherence length, so no
partitioning is necessary.

The physical system in Fig. 10 has total length
Lwire=2lsd+�. We will refer to this system as “the wire”
since, by assumption, the transport outside this region is in
equilibrium between the two spin channels and therefore

does not contribute to magnetoconductance effects. Our main
interest will be the relative magnetoconductance for the wire,
��g /g�wire, which is defined analogously to Eq. �35� by
changing the intrinsic domain wall conductances to com-
bined wire conductances.

A. Domain wall magnetoconductance in a wire: Effect of
disorder inside domain wall

In Fig. 11 �thick lines� we show 
��g /g�wire� as a function
of domain wall width � for both coherent and incoherent
cases. To illustrate the dependence on disorder, two values of
mean free path are shown �l+=10 and 40 nm�. In all cases we
fix �=2 and lsd=4l+. Results for other values of these param-
eters are qualitatively unchanged. A special case is the limit
�→1: here the scattering is independent of spin and hence,
as for the intrinsic case of Sec. III, the magnetoconductance
effect becomes very small. For comparison with our previous
work,16 in which the domain wall was treated as ballistic,
Fig. 11 also shows the magnetoconductance for the equiva-

FIG. 10. Diagram illustrating the physical region considered in
Sec. IV. On either side of the domain wall are uniformly magnetized
regions of length lsd representing the distance over which electrons
propagate before spin relaxation.

FIG. 11. Magnetoconductance of a domain wall in a nanowire,

��g /g�wire�, as a function of wall width � for �a� coherent and �b�
incoherent transport through the domain wall region. Two values of
mean free path are shown, l+=10 and 40 nm �thick lines�. The
magnetoconductance of an equivalent disordered wire with a ballis-
tic domain wall �i.e., no impurities inside the wall� is also shown
�thin lines�. The inset in the upper figure shows the coherent

��g /g�wire� in the small � region. Other parameter values are
Ly =5 nm, �=2, and lsd=4l+, with NS=3000 impurity
configurations.
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lent wire with no scatterers inside the domain wall �thin
lines�.

In the narrow wall limit, �→0, the coherent regime is the
physically relevant one. Figure 11�a� shows that the coherent

��g /g�wire� �solid lines� tends to a maximum value as
�→0. This is in contrast to the behavior of the intrinsic
magnetoconductance 
�g� studied in the previous section,
which �for both coherent and incoherent cases� goes to zero
in this limit. From our previous work,16 this result is ex-
pected since at �=0 the wall corresponds to a GMR
interface,17 for which there is complete mistracking of spin.
It is interesting to note, however, that for small but nonzero
�, 
��g /g�wire� is reduced for a coherent wall with disorder
�Fig. 11�a�, thick lines� compared to a ballistic wall �Fig. 11,
thin lines�. Therefore, when scattering in the surrounding re-
gions is taken into account, the presence of disorder inside
the wall reduces the magnetoconductance effect of narrow
domain walls.

In the incoherent regime, the magnetoconductance is sig-
nificantly reduced with respect to the coherent regime in the
limit �→0. Furthermore, it is a nonmonotonic function of
disorder in this limit, having a maximum value at a wall
width ��0. In fact, this behavior is an artifact arising from
the lack of complete mistracking when �→0 for transmis-
sion through an incoherent wall, which we discussed in Sec.
II B 1. As we mentioned above, in this limit the coherent
regime describes the physical situation, so these effects are
not physically relevant.

In the wide wall limit �→�, the behavior of 
��g /g�wire�
is qualitatively similar to that of 
��g /g�dw� of Sec. III. The
coherent magnetoconductance is significantly reduced with
respect to the incoherent one and becomes negative for large
� �in Fig. 11�a� this is most evident for l+=10 nm�. These
effects are due to the intrinsic properties of coherent trans-
port through a disordered domain wall which we discussed in
Sec. III B.

For large � the incoherent regime is the physically rel-
evant one. In this case the magnetoconductance decreases as
1/�2, which is the same parametric behavior as the intrinsic
case �Sec. III D�. However, we will see in the next section
that this effect is larger in magnitude for 
��g /g�wire�. In this
case, comparison between the incoherent disordered wall
�Fig. 11�b�, thick lines� with an incoherent ballistic wall �Fig.
11�b�, thin lines� shows that the presence of disorder inside
the wall enhances the magnetoconductance effect in wide
domain walls. This enhancement has two causes. First, for a
disordered wall there is an intrinsic contribution due to scat-
tering from impurities inside the wall, which is absent in the
case of a ballistic wall. Second, the disordered wall gives rise
to an enhanced spin-mistracking �Sec. III A�, which leads to
an increase in the GMR scattering in the surrounding
regions.

To our knowledge no experimental data exists comparing
the conductance through domain walls in wires with different
amounts of disorder; the findings of this section suggest that
such a difference may be observable.

B. Enhancement of domain wall magnetoconductance from
extrinsic scattering

The total magnetoconductance of a wire containing a do-
main wall, ��g /g�wire, arises from scattering effects which

may be classified as either intrinsic or extrinsic. Intrinsic
effects are those due to scattering occurring within the region
of the domain wall itself, and are characterized by the intrin-
sic magnetoconductance ��g /g�dw studied in Sec. III D. Ex-
trinsic effects, on the other hand, occur in the regions adja-
cent to the domain wall, and arise from a GMR-like
enhancement of backscattering due to the spin-mistracking
of electrons scattered by the wall.

We now determine the relative importance of intrinsic and
extrinsic effects in the magnetoconductance of a domain wall
in a nanowire. In order to do this, we compare ��g /g�wire,
which contains both intrinsic and extrinsic effects, with
��g /g�dw, which contains only intrinsic ones.

In the narrow wall limit, �→0, the amount of impurity
scattering inside the wall goes to zero, and hence 
��g /g�dw�
becomes negligible. On the other hand, Fig. 11 shows that, in
the physically relevant case of coherent walls, 
��g /g�wire�
achieves its maximum value in this limit. It is therefore clear
that for narrow walls, extrinsic scattering effects are the
dominant mechanism underlying the domain wall magneto-
conductance.

For general �, however, the situation is more complicated.
We saw in Sec. III D that 
��g /g�dw� is significant for disor-
dered walls. At the same time, the scattering from impurities
inside the wall enhances the spin-mistracking of transmitted
and reflected electrons �Sec. III A�, which will lead to extrin-
sic scattering. We therefore expect that both intrinsic and
intrinsic effects will be significant in general. To determine
the relative magnitude of the two, it is necessary to compare

��g /g�wire� and 
��g /g�dw� quantitatively.

For this comparison we need to “renormalize” ��g /g�dw

to describe the same total system size as the wire, i.e.,
Lwire=2lsd+�. To do this, we calculate separately the total
conductances �summed over all spin and transverse chan-
nels� for each of the three regions of the wire: the domain
wall �gdw�, and the two surrounding regions �gleft and gright�.
Taking the incoherent combination of the three regions35 we
then obtain a total conductance gint over the length of the
wire:

1 − gint

gint
=

1 − gleft

gleft
+

1 − gdw

gdw
+

1 − gright

gright
. �36�

Combining conductances in this way is equivalent to making
the assumption that the two spin channels are equilibriated at
the wall boundaries rather than at a distance lsd from the
wall.

By comparing gint with the conductance of a uniform re-
gion of length 2lsd+�, we calculate an “intrinsic” magneto-
conductance ��g /g�int. This quantity represents the desired
renormalization of ��g /g�dw to the length Lwire. We note that
for l+�� this can be calculated approximately as

��g/g�int =
�

2lsd + �
��g/g�dw. �37�

In Fig. 12 we show the ratio of 
��g /g�wire� and

��g /g�int� as a function of � for several values of � and lsd,
in the incoherent case. We see that the ratio is largest in the
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limit of small �. As we mentioned previously, this is because

��g /g�dw� becomes negligible in the limit �→0 while

��g /g�wire� becomes large. We note that the ratios shown in
Fig. 12 apply to the incoherent regime. As we saw in Fig. 11,

��g /g�wire� is much larger near �→0 for the coherent case
than for the incoherent one. Therefore in the coherent case
the corresponding enhancement of 
��g /g�wire� with respect
to 
��g /g�int� will also be larger.

For large �, Fig. 12 shows the less obvious result that

��g /g�wire� is substantially larger than 
��g /g�int� even in
the case of wide walls ��	200 nm�. The ratio depends on
the parameter values, and for those of Fig. 12 it is between
�1.2 �unrealistically small lsd, shown for comparison� and
�2.2 �large lsd� at �=200 nm. We thus see that extrinsic
spin-dependent scattering effects are quantitatively important
for domain wall magnetoconductance, even for wide walls.
This is an important point, since the most widely accepted
existing models14,18,20 consider conductance only through the
region of the wall, and hence ignore extrinsic effects.

V. CONCLUSION

In this work we have studied spin-dependent electron
transport through domain walls in disordered ferromagnetic
nanowires. Using a numerical scattering matrix formalism,
we considered a large range of impurity concentrations, cor-
responding to transport regimes from ballistic through to dif-
fusive. In addition, our approach allowed us to consider spin-
dependent impurity scattering, and to distinguish between
the fully coherent and fully incoherent transport regimes.

The contribution of a domain wall to the resistance of a
wire is due to two main mechanisms. The first one is the
reflection of electrons from the domain wall itself and impu-
rities within the domain wall region. The second is related to
the spin-dependent resistivity of the wire regions surround-
ing the domain wall. We therefore considered first the spin-
dependent “intrinsic” transport coefficients of the disordered
domain wall region itself, and then showed in the last section

what can be expected for the resistance of the whole wire,
which is the experimentally measurable quantity.

The intrinsic effects stem from the presence of impurities
inside a domain wall, which causes electrons to be scattered
both with and without spin reversal. This leads to an en-
hancement of backscattering caused by exposure of electrons
in a superposition of spin states to spin-dependent scattering.
In the incoherent regime this gives rise to a reduction of the
intrinsic domain wall conductance. The maximum reduction
occurs at a disorder-dependent value of the domain wall
length.

In the phase-coherent regime, the relative amount of re-
flection with spin reversal is reduced with respect to the in-
coherent regime. For large disorder, this acts to suppress the
backscattering enhancement observed in the incoherent case.
Indeed, the overall effect in this regime is an enhancement of
transmission through the domain wall. This can be under-
stood as arising from a suppression of weak localization by
the domain wall, which is consistent with the findings of Ref.
20. However, there are several reasons why such a behavior
would be difficult to observe experimentally. In particular,
the fluctuations of the magnetoconductance are large relative
to its average value, which means that both positive and
negative values may be observed for individual samples.
Nevertheless, our analysis suggests that a negative magneto-
conductance effect may be observable experimentally, pro-
vided that one works with highly disordered systems at low
temperatures. If, while staying below the phase coherence
length, the wall width exceeds a critical length that decreases
with disorder, a negative magnetoresistance should appear. In
principle, this effect may therefore be observable in a variety
of materials.

The mesoscopic character of the transport in the coherent
regime is underlined by a study of the conductance fluctua-
tions. For a domain wall it is found that these are reduced
with respect to the uniformly magnetized case, as a result of
decorrelation between the components of a given incoming
spin state which are transmitted with and without reversal of
spin. Furthermore, the sample-dependent fluctuations of the
domain wall contribution to the resistance can be signifi-
cantly larger than its average value in the diffusive limit.
This should be kept in mind when experiments on individual
samples approach the coherent regime.

To address the experimentally measurable conductance of
a disordered nanowire containing a domain wall, we in-
cluded in our treatment uniformly magnetized regions of
length lsd �the spin diffusion length� on either side of the
domain wall. Since the phase coherence length does not ex-
ceed lsd, the rest of the wire is taken into account as a clas-
sical resistance in series that does not contribute to the mag-
netoconductance.

The spin-dependent scattering in the regions adjacent to
the wall results in an enhancement of the resistance. This
arises from processes in which the spin of the electrons does
not follow the domain wall magnetization while they propa-
gate through the wall. The spin-dependent scattering in the
surrounding regions contributes an “extrinsic” domain wall
resistance effect which is similar in nature to giant magne-
toresistance. This mechanism is distinct from the intrinsic
effect occurring inside the wall.

FIG. 12. Ratio of incoherent wire and intrinsic domain wall
magnetoconductance 
��g /g�wire� / 
��g /g�int� as a function of �,
for illustrative values of l+ and lsd. The system parameters are
�=2 and Ly =10 nm.
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As compared to the intrinsic domain wall resistance
alone, the total resistance due to a domain wall in a nanowire
is significantly enhanced by the extrinsic scattering. The en-
hancement is most dramatic for narrow walls, where the in-
trinsic resistance becomes negligible. However, it remains
important �a factor of 2 for typical parameters� even for wide
walls.

In our previous study based on ballistic domain walls in a
circuit model16 we found results in order-of-magnitude
agreement with a recent experiment.4 The relevant regime
for this experiment is intermediate between the coherent and
incoherent regimes, and corresponds to domain walls far
from the adiabatic limit of zero spin-mistracking. In the
present work, we have found that the presence of disorder
inside the wall in this regime leads to a quantitative reduc-
tion of the magnetoconductance effect as compared to the
ballistic wall used in Ref. 16, but is still within an order
of magnitude of the experiment. This is acceptable given the
uncertainties over various physical parameters relevant
for the experiment �such as the precise value of the elastic
mean free path�. On the other hand, in the case of wide
walls in the incoherent transport regime, we have found that
disorder enhances the magnetoconductance effect. This re-
gime is relevant for experiments in materials such as nickel
and iron. Our model should also be applicable to the under-
standing of recent measurements of domain wall resistance
in ferromagnetic semiconductors.50

In both narrow and wide wall regimes, our results show
that disorder inside and outside a domain wall leads to im-
portant effects in the magnetoconductance. Since disorder is
unavoidable in mesoscopic wires, our conclusions should be
testable experimentally.
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APPENDIX A: SCATTERING MATRIX OF DOMAIN
WALL INTERFACES

In this appendix we present formulas for the calculation
of the scattering matrices of the domain wall interfaces s̃�L,R�.
These are obtained by forming scattering state solutions from
the basis states of Eqs. �5� and �17� for each side of the
interface and matching the functions and their derivatives at
z=0 �left interface� or z=� �right interface�. For the domain
wall interfaces the matrix elements corresponding to scatter-
ing between different transverse modes, n��n, are zero
since the domain wall profile depends only on the longitudi-

nal coordinate. The amplitudes r̃ ±�n;�n
�L,R� , t̃ ±�n;�n

�L,R� and r̃� ±�n;�n
�L,R� ,

t̃� ±�n;�n
�L,R� satisfy 4�4 sets of equations. The equations for

r̃
��n;�n
�L� and t̃

��n;�n
�L� read �for clarity we omit the n and L

labels�

1 + r̃�� =�v�
ṽ�

t̃�� + iA−�� v�
ṽ−�

t̃−��, �A1a�

� v�
v−�

r̃−�� = iA��v�
ṽ�

t̃�� +� v�
ṽ−�

t̃−��, �A1b�

ik��1 − r̃��� = i�k̃� − �k�A���v�
ṽ�

t̃��

− ��k� + k̃−�A−��� v�
ṽ−�

t̃−��, �A1c�

− ik−�� v�
v−�

r̃−�� = ��k� − k̃�A���v�
ṽ�

t̃��

+ i�k̃−� + �k�A−��� v�
ṽ−�

t̃−��,

�A1d�

while for r̃
��n;�n
��L� and t̃

��n;�n
��L� we have

1 + r̃��� + iA−�� ṽ�
ṽ−�

r̃−��� =� ṽ�
v�

t̃��� , �A2a�

− iA��1 − r̃��� � +� ṽ�
ṽ−�

r̃−��� =� ṽ�
v−�

t̃−��� , �A2b�

− i�k̃� − �k�A���1 − r̃��� � − ��k� + k̃−�A−��� ṽ�
v−�

r̃−���

= − ik�� ṽ�
v�

t̃��� , �A2c�

��k� − k̃�A���1 + r̃��� � + i�k̃−� + �k�A−��� ṽ�
v−�

r̃−���

= − ik−�� ṽ�
v−�

t̃−��� . �A2d�

We present only the equations for the elements of s̃�L� explic-
itly; because of the symmetry of the spiral domain wall pro-
file �Eq. �14��, the elements of s̃�R� can be found from Eqs.
�A1� and �A2� after interchanging r���↔r���

� , t���↔ t���
�

and replacing k�→−k�.

APPENDIX B: DELTA FUNCTION SCATTERING
MATRICES IN UNIFORM AND DOMAIN WALL

POTENTIALS

We now consider the scattering matrices for a delta func-
tion scatterer located in regions of uniform and rotating mag-
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netization, s����y�� and s̃����y��. In the uniform case, s����y��
can be obtained using the result for a spin-independent delta
function potential.26 The individual amplitudes are given by

t��n�;�n
��� = t���n�;�n

��� = �����M�
−1�n�n, �B1a�

r��n�;�n
��� = r���n�;�n

��� = t��n�;�n
��� − �n�n, �B1b�

where M� is an N��N� matrix with elements

�M��n�n = �n�n +
iu�
n��y��
n�y��

��v�n�v�n

. �B2�

The scattering matrix for a delta function located inside a
domain wall, s̃����y��, is more complicated because the do-

main wall basis states ̃�n�r�� couple up and down compo-
nents. Defining �n=A�nA−�n we have

t̃ �n�;�n
��� = t̃��n�;�n

��� =� ṽ�n�

ṽ�n

1

1 + �n�
������n�n

− iA−�n���−���n�n� , �B3a�

t̃ −�n�;�n
��� = − t̃�−�n�;�n

��� =� ṽ−�n�

ṽ�n

1

1 + �n�
�− iA�n������n�n

+ ��−���n�n� , �B3b�

r̃ �n�;�n
��� = r̃��n�;�n

��� =� ṽ�n�

ṽ�n

1

1 + �n�
������n�n + iA−�n���−���n�n

− �1 − �n���n�n� , �B3c�

r̃ −�n�;�n
��� = − r̃�−�n�;�n

��� =� ṽ−�n�

ṽ�n

1

1 + �n�
�iA�n������n�n

+ ��−���n�n − 2iA�n��n�n� , �B3d�

where ���� and M̃� are matrices of dimension Ñ��� Ñ� and

Ñ�� Ñ�, respectively, defined by

�����n�n = �M̃�
−1�n�n, �B4a�

��−���n�n = iA�n�M̃−�
−1�n�n, �B4b�

�M̃��n�n = �n�n −
mu�
i�2

�1 + �n��
n��y��
n�y��

k̃�n� + �n�k̃−�n�

. �B4c�

The amplitudes in Eqs. �B1� and �B3� determine the ma-
trices s����y�� and s̃����y�� that are composed numerically for
each impurity configuration in order to obtain the total trans-
mission coefficients in various regimes.

APPENDIX C: DELTA FUNCTION SCATTERING IN
WEAK DISORDER LIMIT

In the limit of weak disorder, u�→0, transport through
the impurity potential V�r�� �Eqs. �22�–�24�� can be treated
within the Born approximation. This approach yields the
scattering amplitudes to lowest order in u�. For the uni-
formly magnetized case, we have

t��n�;�n
�uni� = ����eik��n����n�n −

iu�
��v�n�v�n

�
�=1

Ni


n��y��
n�y��ei�k�n−k�n��z�� + O�u�
2� ,

�C1a�

r��n�;�n
�uni� = − ����

iu�
��v�n�v�n


�=1

Ni


n��y��
n�y��ei�k�n�+k�n�z�

+ O�u�
2� . �C1b�

In the case of a domain wall, the situation is more com-
plicated because scattering from the interfaces at z=0,�
leads to mixing of up and down spin channels. It is most
convenient to first calculate amplitudes for transport through
the disordered region 0�z��, not including the interfaces,
which we write t̃

��n�;�n
�Ni��� and r̃

��n�;�n
�Ni��� . Formally, these coeffi-

cients correspond to a scenario in which the rotating poten-
tial ��z�=�z /� is valid for all z, so that the asymptotic states

are the domain wall basis states ̃�n
� �r��. Within the Born

approximation, these amplitudes are given by

t̃ �n�;�n
�Ni��� = eik̃�n����n�n −

i�u� + u−�A�n�A�n�

��ṽ�n�ṽ�n

�=1

Ni


n��y��
n�y��ei�k̃�n−k̃�n��z�� + O�u�
2� , �C2a�

t̃ −�n�;�n
�Ni��� = eik̃−�n��

u−�A�n − u�A−�n�

��ṽ−�n�ṽ�n

�=1

Ni


n��y��
n�y��ei�k̃�n−k̃−�n��z� + O�u�
2� , �C2b�

r̃ �n�;�n
�Ni��� = −

i�u� − u−�A�n�A�n�

��ṽ�n�ṽ�n

�=1

Ni


n��y��
n�y��ei�k̃�n+k̃�n��z� + O�u�
2� , �C2c�
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r̃ −�n�;�n
�Ni��� =

u−�A�n + u�A−�n�

��ṽ�n�ṽ�n

�=1

Ni


n��y��
n�y��ei�k̃�n+k̃−�n��z� + O�u�
2� . �C2d�

To calculate the average scattering probabilities, it is nec-
essary to take the squared magnitude of the quantities in Eqs.
�C1� and �C2� and then average over the impurity positions
r��. Because the positions of different impurities are uncorre-
lated, the average of terms involving two different impurities
are a factor 1 /kFLz smaller than those involving a single
impurity. They are therefore negligible, and the scattering is
dominated by the single impurity scattering events.51

We note that the probabilities corresponding to the ampli-
tudes t�n;�n

�uni� and t̃ �n;�n
�Ni���, which are equal to unity in the limit

u�=0, cannot be calculated by simply taking the absolute
square of the amplitudes in Eqs. �C1a� and �C2a�. This is due
to the presence of the factor �n�n, which means that the term
of O�u�

2� in the amplitude �not given in Eqs. �C1a� and
�C2a�� also contributes a term of O�u�

2� in the corresponding
probability. It is therefore necessary either to calculate the
amplitudes to O�u�

2� or, more conveniently, to use conserva-
tion of probability to express it in terms of the other
probabilities.

With these considerations, we find the average
probabilities in the uniform case as follows:


R�n�;�n
�uni� � = niu�

2 Lz

Ly

�1 +
1

2
�n�n�

�2v�n�v�n
, �C3a�


T�n�;�n
�uni� � = 
R�n�;�n

�uni� �, n� � n , �C3b�


T�n;�n
�uni� � = 1 − niu�

2 Lz

Ly


n�=1

N� 2 −
1

2
�n�n

�2v�n�v�n
. �C3c�

Summing over all n and n�, we can express the total spin-
dependent transmission and reflection in terms of the mean
free path l� �Eq. �27��:


R���
�uni�� = ����

�

2

N�Lz

l�
F1�N�� , �C4a�


T���
�uni�� = N� − 
R���

�uni�� , �C4b�

where

F1�N�� =
k�,FLy

�N�
� 2

Ly
�2


n�=1

N�


n=1

N� 1 +
1

2
�n�n

k�nk�n�
. �C5�

Here F1�N�� is a form factor which takes account of the
finite number of channels and reduces to unity in the limit
N�→�.

In the domain wall case, the probabilities corresponding
to the amplitudes in Eqs. �C2� are given by


R̃�n�;�n
�Ni���� =

niLz

Ly

1 +
1

2
�n�n

�2ṽ�n�ṽ�n

�u� − u−�A�n�A�n�2, �C6a�


R̃−�n�;�n
�Ni��� � =

niLz

Ly

1 +
1

2
�n�n

�2ṽ−�n�ṽ�n

�u−�A�n + u�A−�n��
2,

�C6b�


T̃�n�;�n
�Ni���� =

niLz

Ly

1 +
1

2
�n�n

�2ṽ�n�ṽ�n

�u� + u−�A�n�A�n�2, n� � n ,

�C6c�


T̃−�n�;�n
�Ni��� � =

niLz

Ly

1 +
1

2
�n�n

�2ṽ−�n�ṽ�n

�u−�A�n − u�A−�n��
2,

�C6d�


T̃�n;�n
�Ni���� = 1 − 
R̃�n;�n

�Ni���� − 
n�=1,

n��n

Ñ�

�
R̃�n�;�n
�Ni���� + 
T̃�n�;�n

�Ni�����

− 
n�=1

Ñ−�

�
R̃−�n�;�n
�Ni��� � + 
T̃−�n�;�n

�Ni��� �� . �C6e�

In general, it is nontrivial to incorporate the interfaces and
thus obtain the total transmission probabilities for the do-
main wall, since if there is nonzero reflection from the inter-
faces then multiple paths through the disordered region need
to be considered. The situation simplifies somewhat in the
wide wall limit of Eqs. �20�, since to O�1/ pF

2� the interface
reflection probabilities are zero. The transmission through
the entire domain wall, including both interfaces and the dis-
ordered region, can then be found by multiplying the trans-
mission of each part. Furthermore, since the interface trans-
mission is diagonal in transverse channel number, only
intermediate spin states need to be summed over.

It is simplest to consider the incoherent case, since the
probabilities are taken before combining with the interfaces,
meaning that the results of Eqs. �C3�–�C6� can be used di-
rectly. In particular, for the transmission and reflection
probabilities from the left we have
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T̃��n�;�n
�dw� � = 

�1,�2=±
T̃��n�;�1n�

�R� 
T̃�1n�;�2n
�Ni��� �T̃�2n;�n

�L� , �C7a�


R̃��n�;�n
�dw� � = 

�1,�2=±
T̃���n�;�1n�

�L� 
R̃�1n�;�2n
�Ni��� �T̃�2n;�n

�L� .

�C7b�

The total spin-dependent probabilities, 
T̃
���
�dw�� and 
R̃

���
�dw��,

may be found by summing over the previous expressions,
yielding quite cumbersome expressions. Of particular inter-
est, however, is the transmission with spin-mistracking,


T̃−��
�dw��, which is given by


T̃−��
�dw�� =

2N�

3pF
2 �F2�N�� −

6

�

Lz

l+

N�

kFLy/�
�� +

�2

8
�1 + �2�F3�N��

+
�1 + ��2

8N�
�� , �C8�

where

F2�N�� =
3

2
�1 − � �

kFLy
�2 �N� + 1��2N� + 1�

6
� , �C9�

F3�N�� =
8

N�
2�2 

n�=1

N�


n=1

N� k0n

k0n�
. �C10�

Here F2�N�� and F3�N�� are form factors which reduce to
unity in the limit Ly→�. Note that in the approximation
used here we have k+,F=k−,F=kF and N+=N−. Equation �C8�
shows that the initial slope of T̃−��

�dw� as a function of 1/ l+ is
always negative, which explains the observed behavior in the
inset of Fig. 4.

Another important insight permitted by the perturbative
approach is the spin-dependent difference in transmission
�T±. Here we find


�T�� = − �
4

�

� − 1

pF
2

N�Lz

l+
�N��

kFLy
���2

8
F3�N�� +

1

2N�
� .

�C11�

Equation �C11� shows that 
�T�� increases linearly with 1/ l+

for weak disorder, with a slope whose sign depends on �.
This explains the behavior of 
�T�� observed in Fig. 5�b�.

Interestingly, the sum 
�T+�+ 
�T−� in Eq. �C11� is zero,
implying that the intrinsic magnetoconductance 
�g� is zero
to first order in 1/ l+. This is in agreement with our numerical
results for 
�g�, which show a quadratic dependence on 1/ l+

for small disorder.
Finally, we point out that for spin-independent disorder,

�=1, Eq. �C11� predicts that 
�T��=0. This is because in

this case, the only spin-dependence of scattering comes from
the difference in the up and down wave vectors, which are
treated as zero in the approximation of Eqs. �20�.

APPENDIX D: SPIN-MIXING IN A ONE-DIMENSIONAL
MODEL

The results of Sec. III A for the transmission and reflec-
tion through a sequence of impurity scatterings show that
repeated scattering from delta functions in a domain wall
leads to a relative increase of the spin-mixing transmission
and reflection coefficients, T−�� and R−��. We now gain
some insight into this mechanism through a simple toy
model which captures some essential features of the prob-
lem. In particular, consider a one-dimensional sequence of
idealized spin-mixing scatterers for which there is zero re-
flection and for which the spin-dependent transmission
probabilities are

T = T� = �1 − �+ �−

�+ 1 − �−
� . �D1�

Here �± represent the off-diagonal scattering. Technically,
this model is actually an example of a Markov chain, widely
studied in probability theory.52

The absence of reflection allows us to calculate the total
transmission through Ni scatterers by taking TNi. Diagonaliz-
ing T and taking powers of the diagonal components, we
evaluate this as

TNi =
1

�+ + �−
� �− + �+ 

Ni �−�1 −  Ni�
�+�1 −  Ni� �+ + �− 

Ni
� , �D2�

where  =1−�+−�−. In the limit of infinitely many scatterers
this reduces to

T� =
1

�+ + �−
��− �−

�+ �+
� . �D3�

We thus observe that the spin-flip scattering, when accu-
mulated over many events, leads to a complete mixing of
spin, with the relative weightings determined by �� / ��+

+�−�. In the special case of spin-independent scattering, �+

=�−, all matrix elements in the rhs of Eq. �D3� are equal and
hence, for a given incoming spin direction, the transmission
is mixed equally between both spin directions.

The transmission T� reproduces qualitatively the behavior
of the fractional transmission from Sec. III A, i.e.,
T��� / �T��+T−���. Obviously, such a simplified picture does
not reproduce the actual results on a quantitative level. How-
ever, the qualitative resemblance suggests that it captures an
essential feature of transmission through a disordered do-
main wall, namely, a spin-mixing effect which accumulates
�and saturates� over successive scattering events.
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