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We study an infinite-range ferromagnetic Ising model in the presence of a transverse magnetic field, which
exhibits a quantum paramagnetic-ferromagnetic phase transition at a critical value of the transverse field. In the
thermodynamic limit, the low-temperature properties of this model are dominated by the behavior of a single
large classical spin governed by an anisotropic Hamiltonian. Using this property, we study the quench and ac
dynamics of the model both numerically and analytically, and develop a correspondence between the classical
phase-space dynamics of a single spin and the quantum dynamics of the infinite-range ferromagnetic Ising
model. In particular, we compare the behavior of the equal-time order-parameter correlation function both near
to and away from the quantum critical point in the presence of a quench or ac transverse field. We explicitly
demonstrate that a clear signature of the quantum critical point can be obtained by studying the ac dynamics of
the system even in the classical limit. We discuss possible realizations of our model in experimental systems.
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I. INTRODUCTION

Quantum phase transitions have been studied extensively
for several systems.1 More often than not, simple prototype
systems such as the Ising model in a transverse field or rotor
models bring out many important characteristics of such
transitions.1,2 In most of these studies so far, only the equi-
librium situation, where the system is taken adiabatically
across the quantum critical point �QCP�, has been
addressed.1,2 It is well known that in such cases, the thermo-
dynamic properties of the system can be charted by deter-
mining the critical exponents and hence the universality class
of the transition.1–3 However, no such general criteria exists
for nonequilibrium dynamics of quantum critical systems.

In recent years, there has been both theoretical and experi-
mental progress in understanding the behavior of nonequilib-
rium dynamics near QCPs. On the experimental side, there
have been several experiments on ultracold atoms in optical
lattices, which realize such nonequilibrium situations.4 On
the theoretical side, there have been studies of one-
dimensional Ising models in a transverse field and their
variants,5 driven quantum spin chains,6 and correlation func-
tions for quench dynamics close to a quantum critical point.7

The main additional difficulty over the equilibrium case that
one encounters in these theoretical studies arises from the
fact that the description of nonequilibrium dynamics near a
QCP necessitates the knowledge of all or at least the first few
excited states in the Hilbert space of the many-body Hamil-
tonian. This precludes a detailed study of most systems,
which can be realized experimentally. The notable excep-
tions are situations where the systems can be described by
either integrable models,5,6 or can be analyzed numerically
by exact diagonalization methods applicable to finite-size
systems.5

In this work, we study both the quench and the ac dynam-
ics of an infinite-range ferromagnetic Ising model in the
presence of a transverse field near its QCP. Such a model, as

we show in this work, can be represented by a single large
spin. This particular feature of the model allows us to ana-
lyze its nonequilibrium dynamics near the QCP. Further, the
value of this single spin increases linearly with the system
size so that the large spin and thermodynamic limits coincide
for the model. This enables us to describe the system in the
thermodynamic limit accurately using the classical equation
of motions for a single spin. In particular, we can develop a
correspondence between the classical phase-space dynamics
of a single spin and the quantum dynamics of the infinite-
range ferromagnetic Ising model in the presence of a trans-
verse field. In view of the long-range dipole-dipole interac-
tions involved in many systems with order-disorder
transitions driven by tunneling fields, the study of the quan-
tum critical behavior of this model is not just a matter of
theoretical curiosity, but can have an application in
ferroelectrics2 such as KH2PO4 and ferromagnets such as
Dy�C2H5SO4�39H2O. Further, this model can also be real-
ized in two-component Bose-Einstein condensates �BEC� of
ultracold atoms.8

The main results reported in this work are the following.
First, we obtain the equilibrium phase diagram for the
infinite-range model and also obtain its collective excitations
using a Holstein-Primakoff approach for both the ferromag-
netic and the paramagnetic phase. Second, we study the
quench dynamics of the equal-time order-parameter correla-
tion function �EOC� and obtain analytical expressions for its
long-time behaviors. Finally, we study the dynamics of the
EOC in the presence of a weak external ac transverse field;
we show that the response of the system in the presence of
the ac field near the QCP involves multiple frequencies and
hence appears noisy in the time domain. This behavior,
which persists even in the classical large S limit of the
model, is to be contrasted to that in both the paramagnetic
and the ferromagnetic phases far from the critical point
where the response of the system involves only a few fre-
quencies and does not exhibit such noisy behavior. There are
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some studies on classical Ising models in the presence of
oscillating longitudinal fields9 and some mean-field and
Monte Carlo studies10,11 in the presence of an oscillating
transverse field. However, these studies are for completely
different models and none of them investigates the true quan-
tum dynamics.

The organization of the paper is as follows. In Sec. II we
introduce the model, chart out its phase diagram, and study
its equilibrium properties. In Sec. III we discuss the quench
dynamics of the system across the QCP both classically and
quantum mechanically. In Sec. IV we study the ac dynamics
of the model. This is followed in Sec. V by a discussion of
the possible realizations of our model in experimental sys-
tems and conclusions.

II. EQUILIBRIUM PROPERTIES

We consider a system of N spin-1/2 objects governed by
the Hamiltonian

H = −
J

N
�
i�j

Si
zSj

z − ��
i

Si
x, �1�

where Si
a= ��i

a /2, a=x ,y ,z are, respectively, the x ,y, and z
components of the spin-1/2 operator represented by the stan-
dard Pauli spin matrices �a. Here we assume that J�0 �fer-
romagnetic Ising interaction�. This Hamiltonian is invariant
under the Z2 symmetry Si

x→Si
x, Si

y→−Si
y, and Si

z→−Si
z. �The

Z2 symmetry would not be present if there was a longitudinal
magnetic-field coupling to �iSi

z.� Note that the model in Eq.
�1� differs from the one studied in Ref. 12, where the spins
were taken to be living on two sublattices, with Ising inter-
actions only between spins on different sublattices. We con-
sider here the ferromagnetic case, for which the static quan-
tum critical behavior is simple and easily derivable, while
some significant features of its dynamic critical behaviors are
also analytically tractable. We take ��0 without loss of gen-
erality since we can always resort to the unitary transforma-
tion Si

x→−Si
x, Si

y→−Si
y, and Si

z→Si
z, which flips the sign of �

but leaves J unchanged. Equation �1� can be written as

H = −
J

2N
�Stot

z �2 − �Stot
x , �2�

Stot
z = �

i

Si
z, Stot

x = �
i

Si
x, �3�

and we have dropped a constant �J /2N��i�Si
z�2=J /8 from the

Hamiltonian in Eq. �2�. In the rest of this work, we shall use
units �=1.

A. Mean-field theory

We begin with a mean-field analysis of the thermodynam-
ics of the model described by Eq. �1�. Denoting the mean-
field value m=�i�Si

z� /N, the Hamiltonian governing any one
of the spins is given by

h = − JmStot
z − �Stot

x . �4�

This is a two-state problem whose partition function can be
found at any temperature T. If �=1/kBT, we find that m must
satisfy the self-consistent equation

m =
Jm

2��2 + J2m2
tanh����2 + J2m2

2
� . �5�

This always has the trivial solution m=0. In the limit of zero
temperature, there is a nontrivial solution if ��J /2, with
	m 	 = �1/2��1−4�2 /J2; the energy gap in that case is given
by J /2. If ��J /2, we have m=0 and the gap is given by
�−J /2. Hence there is a zero-temperature phase transition at
�c=J /2. The Z2 symmetry mentioned after Eq. �1� is spon-
taneously broken and �Si

z� becomes nonzero when one
crosses from the paramagnetic phase at ��J /2 into the fer-
romagnetic phase ��J /2.

In the plane of �kBT /J ,� /J�, there is a ferromagnetic
�FM� region in which the solution with m�0 has a lower
free energy �the Z2 symmetry is broken�, and a paramagnetic
�PM� region in which m=0. The boundary between the two
is obtained by taking the limit m→0 in Eq. �5�. This gives
2� /J=tanh��� /2�, i.e.,

kBT

J
=

�

J

ln�1 + 2�/J

1 − 2�/J
��−1

. �6�

The phase diagram is shown in Fig. 1.

B. Holstein-Primakoff approach

We shall now find the low-energy spectrum of the Hamil-
tonian in Eq. �2�. The form of Eq. �2� shows that the total

spin S� tot
2 =S�S+1� is a good quantum number; S can take any

value from N /2 down to 1/2 or 0, depending on whether N is
odd or even. For each value of S, the Hamiltonian describes
a single spin; we shall see below that the low-energy prop-

FIG. 1. �Color online� Phase diagram of the model in mean-field
theory. FM and PM denote ferromagnetic and paramagnetic re-
gions, respectively.
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erties of the system are dominated by values of S lying close
to N /2. The multiplicities D�S� for different values of S �not
counting the trivial multiplicity of 2S+1 due to different val-
ues of Stot

z � are given by the following expressions: D�N /2�
= NC0=1, D�N /2−1�= NC1− NC0=N−1, D�N /2−2�= NC2

− NC1=N�N−3� /2, and so on. In general, if p is an integer
satisfying 3	 p	N /2, then

D�N/2 − p� = NCp − NCp−1

=
N�N − 1� ¯ �N − p + 2�

p!
�N − 2p + 1� . �7�

For N→
 and p�N /2, the leading term in D�N /2− p� is
given by Np / p!.

We shall now find the ground state and low-lying excita-
tions of Eq. �2� in a sector with a given value of the total spin
S, assuming that ��J /2. To do this, we use the Holstein-
Primakoff transformation,

Stot
x = S − a†a ,

Stot
z − iStot

y = �2S − a†aa ,

Stot
z + iStot

y = a†�2S − a†a , �8�

where �a ,a†
=1. Assuming that S is close to N /2, which is a
large number, we make the approximation of ignoring a†a
with respect to 2S in the last two equations in Eqs. �8�; this
gives

Stot
x = S − a†a ,

Stot
z =�S

2
�a + a†� . �9�

The Hamiltonian in Eq. �2� then takes the form

H = − �S + �a†a −
JS

4N
�a† + a�2. �10�

The spectrum of this Hamiltonian can be found by trans-
forming to the variables q and p, where

a =
q + ip
�2

and a† =
q − ip
�2

, �11�

and �q , p
= i. Then Eq. �10� takes the form

H = − ��S +
1

2
� +

1

2
�p2 +

1

2
�� −

JS

N
�q2. �12�

This describes a simple harmonic oscillator with the fre-
quency

�S = ��1 −
JS

�N
. �13�

�Since the maximum value of S is N /2, we see that �S is real
since ��J /2. If ��J /2, we have to analyze the problem
differently as discussed below.
 The energy spectrum of Eq.
�12� is given by

ES,n = − ��S + 1
2� + �n + 1

2��S, �14�

where n=0,1 ,2 , . . . . The ground state of the system corre-
sponds to S=N /2 and n=0.

Since S takes the values N /2 , N /2−1, N /2−2, . . ., Eq.
�14� shows that there are two towers of equally spaced exci-
tations: one with a spacing of � coming from the first term
�arising from excitations in which the total spin changes� and
the other with a spacing �S coming from the second term
�arising from excitations in which the total spin does not
change�. Only the energy spacing � turns out to be thermo-
dynamically significant; this is due to the multiplicities given
in Eq. �7� as we will now see. The partition function of the
oscillator in Eq. �14� at an inverse temperature � is given by

Z�S� =
e���S+1/2�

2 sinh���S/2�
. �15�

The complete partition function is therefore given by

Z = �
S

D�S�Z�S� . �16�

In the thermodynamic limit N→
, the sum in Eq. �16� will
be dominated by values of S lying close to N /2. We can
therefore write the partition function as

Z � �
p=0



Np

p!

e���N/2−p+1/2�

2 sinh���/2�
, �17�

where we have approximated � by its value at S=N /2,
namely, ����1−J /2�. The free energy per spin is then
given by

f = − lim
N→


ln Z

N�
= −

�

2
−

e−��

�
, �18�

to lowest order in the quantity e−��, in the limit of zero
temperature. This shows that the thermodynamic gap is
given by �. Note that this agrees with the gap obtained in
mean-field theory. The harmonic oscillator energy levels
with spacing �S correspond to a collective excitation of all
the spins and therefore they do not appear in mean-field
theory �which only takes into account excitations at a single
site�.

We will end with a brief discussion of the case ��J /2. A
classical analysis with S= �Sx ,Sy ,Stot

z �
=S�cos 
 sin � , sin 
 sin � , cos ��, where � and 
 are the
usual polar and azimuthal angles, gives the Hamiltonian

H��,

 = −
JS2

2N
cos2 � − �S sin � cos 
 . �19�

The lowest-energy configuration of this is given by S=N /2,
�=sin−1�2� /J�, and 
=0. There are two solutions for �, one
lying in the range �0,� /2
 and the other in the range
�� /2 ,�
. We choose either one of these as the ground state
and perform a Holstein-Primakoff transformation around it.
We then find that there are again two towers of equally
spaced excitations, one with spacing J /2 and the other with
spacing �J /2��1−4�2 /J2 corresponding to a collective exci-
tation. The thermodynamically significant spacing is J /2.
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Note that as � approaches J /2 from either above or be-
low, the collective excitation energy softens and goes to zero.
Thus it is the collective excitation gap �not the thermody-
namically significant gap� that is sensitive to the QCP lying
at �c=J /2.

We would like to emphasize here that our model has in-
finite range interactions and we are interested in the thermo-
dynamic limit N→
. In that limit, the effective Hamiltonian
seen by any one spin is just the mean field produced by all
the other spins. Hence there is no difference between the
phase diagrams obtained by the mean-field theory and the
Holstein-Primakoff approach.

A difference between mean-field theory and the Holstein-
Primakoff approach is that only the latter correctly describes
the collective excitation, which involves all the spins �as we
have discussed above�. However, a single mode like the col-
lective excitation does not play any role in determining the
phase diagram in the thermodynamic limit.

III. QUENCH DYNAMICS

In this section, we will study the quench dynamics of the
spin model across the QCP. We saw above that it is the
collective excitations �in which the total spin does not
change� that are sensitive to the presence of a QCP. We will
therefore restrict our attention to the lowest-energy sector in
which the total spin is given by S=N /2.

A quench dynamics across a QCP has been studied earlier
for Ising-type systems with short-range interactions5 and
driven XY spin chains.6 Here, taking advantage of the fact
that the large S �and hence classical� limit of our model is
also the thermodynamic limit, we shall derive an analytical
expression for the long-time average of the EOC in the ther-
modynamic limit as the system is quenched across the QCP
starting from the paramagnetic phase. In this section, we
shall mostly follow the method of Ref. 5.

A. Quantum analysis

To begin with, we study the dynamics of the EOC �de-
fined as ��Stot

z �2� /S2� by changing the transverse field � from
an initial value �i��c to a final value � f suddenly, so that
the ground state of the system has no time to change during
the quench. In this case, just after the quench, the ground
state of the system can be expressed, in terms of the eigen-
states 	n� of the new Hamiltonian H f =−�J /4S��Stot

z �2

−� fStot
x , as

	�� = �
n

cn	n� , �20�

where cn denotes the overlap of the eigenstate 	n� with the
old ground state 	��. As the state of the system evolves, it is
given at time t by

	��t�� = �
n

cne−iEnt/�	n� , �21�

where En= �n 	H f 	n� are the energy eigenvalues of the
Hamiltonian H f. The EOC can thus be written as

���t�	�Stot
z �2/S2	��t�� = �

m,n
cncm cos��En − Em�t/ � 


� �m	�Stot
z �2/S2	n� . �22�

Equation �22� can be solved numerically to obtain the time
evolution of the EOC. However, certain qualitative features
of the dynamics can be extracted from Eq. �22� without re-
sorting to numerics. First, we note that when � f and �i both
lie in the paramagnetic phase, we expect the old ground state
to have a large overlap with the new one, so that cn��n1. In
this case, ��Stot

z �2�t�� is expected to undergo small oscillations
about ��Stot

z �2�t=0��. On the other hand, if � f ��c��i, there
is very little overlap between the two ground states and the
amplitude of oscillation is again expected to be small. Note
that the situation is completely different from the adiabatic
turning on of �, where for � f ��c, the system has a maximal
value of ��Stot

z �2�. In between these two regimes, when � f

��c, the old ground state is expected to have a significant
overlap with many eigenstates 	m�, and the oscillation ampli-
tude can be expected to be large. These qualitative expecta-
tions are verified in Fig. 2. Here, we have quenched the
transverse fields to � f /J=0.9, 0.01, and 0.4 starting from
�i /J=2.0. The oscillation amplitudes of the EOC for S
=100, as shown in Fig. 2, are small for � f =0.9 and 0.01,
whereas it is substantially larger for � f =0.4.

Next, to understand the dynamics of the EOC in a little
more detail, we study its long-time averaged value given by

O = lim
T→


���Stot
z �2�t���T/S2 =

1

S2�
n

cn
2�n	�Stot

z �2	n� �23�

for different � f. Note that the long-time average depends on
the product of the overlap of the state 	n� with the old ground

FIG. 2. �Color online� Dynamics of ��Stot
z �2� /S2 for S=100 after

quenching the transverse field to different values � f /J from an ini-
tial field �i /J=2. The oscillation amplitudes are small, as seen from
the solid �red� and dotted �blue� curves corresponding to � f /J
=0.9 and 0.01, respectively, far away from the critical point �c /J
=0.5. The oscillation is large in the ordered phase near the critical
point as seen from the dashed �black� curve � f /J=0.4.
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state and the expectation of �Stot
z �2 in that state. From our

earlier discussion regarding the dynamics of ��Stot
z �2�, we

therefore expect O to have a peak somewhere near the criti-
cal point on the ordered side, where such an overlap is maxi-
mized. This is verified by the explicit numerical computation
of Eq. �23� in Fig. 3 for several values of S and �i /J=2. We
find that O peaks around � f /J=0.25, and the peak height
decreases slowly with increasing S.

B. Classical analysis

To understand the position and the system-size depen-
dence of the peak in O, we now look at the thermodynamic
�large system size� limit; in the present model, this is also the
large S and therefore classical limit. With this observation,
we study the classical equations of motion for S
=S�cos 
 sin � , sin 
 sin � , cos �� for �=� f. In the present
model, S is a constant. Thus in the classical limit, we need to
study the equations of motion for � and 
. To this end, we
note that the classical Lagrangian can be written in terms of
� and 
 as13

L = − S�1 − cos �

d


dt
− H��,

 , �24�

This gives the equations of motions

d�

dt
= � f sin 
 ,

d


dt
= −

J

2
cos � + � f cot � cos 
 . �25�

Equation �25� has to be supplemented with the initial condi-
tion that Stot

x =S at t=0. The condition Stot
x =S corresponds to

�=� /2, 
=0, which is also a fixed point of Eq. �25�. There-
fore we shall start from an initial condition that is very close
to the fixed point: �=� /2−�, 
=�, where � is an arbitrarily
small constant. Further, since the motion occurs on a con-
stant energy surface after the quench has taken place, we
have

� f =
J

4
cos2 � + � f sin � cos 
 . �26�

Using Eqs. �25� and �26�, we get an equation of motion for �
in closed form,

d�

dt
=

�� f
2 sin2��� − �� f − �J/4�cos2 �
2

sin �
� f��� . �27�

It can be seen that the motion of � is oscillatory and has
classical turning points at �1=sin−1�	1−4� f /J 	 � and �2

=� /2. One can now obtain ��Stot
z �2�T= �cos2 ��T from Eq.

�27�,

�cos2 ��T = N/D , �28�

N = �
�1

�2

d�
cos2 �

f���
= 4�8� f�J − 2� f�/J , �29�

D = �
�1

�2

d�
1

f���
. �30�

When trying to evaluate D, we find that the integral has an
end-point singularity at �2; this can be regulated by a cut
off � so that �2=� /2−�. With this regularization,
D=−J ln��� /�� f�J−2� f� /2. The cut off used here has a
physical meaning and is not arbitrary. To see this, note that
the angles �� ,
� define the surface of a unit sphere of area
4�. This surface, for a system with spin S, is also the phase
space that has 2S+1 quantum mechanical states. For large S,
the area of the surface occupied by each quantum mechanical
state is therefore 4� / �2S+1��2� /S. In other words, each
quantum mechanical state will have a linear dimension of
order 1 /�S; this is how close we can get to a given point on
the surface of the sphere. Note that this closeness is deter-
mined purely by quantum fluctuation and vanishes for S
→
. Thus �, which is also a measure of how close to the
point �=� /2 we can get, must be of the order of 1 /�S; this
determines the system-size dependence of �cos2 ��T. Using
Eq. �28�, we finally get

�cos2 ��T =
16� f�J − 2� f�

J2 ln�S�
. �31�

Equation �31� is one of the main results of this work. It
demonstrates that the long-time average of the EOC must be
peaked at � f /J=0.25, which agrees perfectly with the exact
quantum-mechanical numerical analysis leading to Fig. 3.
Moreover, it provides an analytical understanding of the S
�and hence system-size� dependence of the peak values of
� f /J. A plot of the peak height of O as a function of 1/ ln�S�
indeed fits a straight line, as shown in Fig. 4; so we conclude

FIG. 3. �Color online� Plot of the long-time average O as a
function of � f /J for different S. In the plot the solid �blue�, dotted
�black�, dash-dotted �green�, and the dashed �red� lines represent,
respectively, the results for S=50, 100, 200, and 500. O peaks
around � f /J=0.25 and the peak value decreases with increasing S.
For all plots we have chosen �i /J=2.
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that the peak in O vanishes logarithmically with system size
S.

IV. AC DYNAMICS

In this section we study the dynamics of the system in the
presence of an oscillatory transverse field. As in Sec. III, we
shall first study the quantum dynamics of the system in the
presence of a transverse ac field. This will be followed by an
analysis of the classical equations of motion �Eq. �25�
,
which describe the behavior of the system in the large S
limit.

A. Quantum analysis

In the presence of a transverse ac field, the total Hamil-
tonian is

H�t� = −
J

2N
�Stot

z �2 − ��d + �acos��t�
Stot
x , �32�

where �d denotes the static part of the transverse field, �a is
the amplitude of the ac part, and � is the drive frequency.
Note that for small �a, �d determines the point in the phase
diagram about which the ac dynamics takes place. For the
rest of this work we shall restrict ourselves to this limit and
for definiteness take a small ratio �a /�d=0.18. We have
checked that the qualitative picture of the ac dynamics that
we describe below remains the same for a large range of this
ratio as long as �a /�d�1.

To elucidate the properties of the ac dynamics of our
model, we calculate the EOC ���t� 	 �Stot

z �2 	��t�� /S2. For a
sufficiently small driving frequency �, we are in the adia-
batic regime and the system always stays in the instanta-
neous ground state of H�t�. In this case, the behavior of the
EOC is the same as that for the static case, and has been well
studied.2 However, the situation changes when we drive the
system with moderately high frequencies due to possible
Landau-Zener-type transitions between different time-

dependent levels of H�t�, and a full out-of-equilibrium analy-
sis of the problem becomes necessary. If, however, the driv-
ing frequency becomes very high compared to other natural
frequency scales of the system, the eigenstates of H�t� vary
much faster compared to the characteristic time scale of most
of the possible Landau-Zener transitions. Hence such transi-
tions fail to take place and the response is characterized by a
few trivial frequencies. In this work, we shall therefore in-
vestigate the case of moderately high frequency and study
the characteristics of the frequency spectrum of the EOC. For
the sake of definiteness, we shall choose �=0.1J in the rest
of this work.

For a given set of parameters ��d ,�a, and ��, we start
with the ground state of H�t=0� �in Eq. �32�
 as the initial
state 	��t=0��. We then solve the time-dependent
Schrödinger equation to obtain the time evolution of the state
	��t��, using the fourth-order Runge-Kutta method with
adaptive step-size control.14 The time variation of the EOC is
found, and the discrete Fourier transform �DFT� of the data
is taken to obtain its frequency spectrum.

The DFT power spectra show that inside the paramagnetic
and ferromagnetic phases, the response of the system is
dominated by a few frequencies �panels �a� and �c� of Fig. 5
.
These are either the driving frequency �=0.1J or the natural
oscillation frequencies of the system as will be shown in
more detail in Sec. IV B. In contrast, near the QCP �panel �b�
of Fig. 5
, several frequencies appear in the spectrum. Thus
we find that the EOC displays a noisy behavior in the time
domain near the QPT.

To look into the origin of these frequencies, we have plot-
ted the instantaneous overlaps of the time-dependent state

FIG. 4. �Color online� Plot of the maximum peak height Omax of
the long-time average of the EOC as a function of 1/ ln�S�. The
straight line shows the linear fit. FIG. 5. Plot of the DFT power spectrum of the EOC

���t� 	 �Stot
z �2 	��t�� /S2 for different values of �d. Panels �a� and �c�

show the DFTs in the ferromagnetic and paramagnetic phases, re-
spectively, whereas panel �b� shows the same for the quantum criti-
cal region. In all three panels, the height of the peak at the drive
frequency ��=0.1� is maximum and is scaled to 1 �chopped off in
the figure�. The plots clearly indicate contributions from a relatively
large number of frequencies to the DFT power spectrum near the
QCP.
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	��t�� with the first few instantaneous eigenstates 	n�t��’s of
H�t�, for �=0.1 in Fig. 6. These overlaps are significant only
for n=1 �ground state�, and n=3, 5, and 7 for all times. The
overlap is negligible for all other odd n and vanishes for all
even n by symmetry. �The states with odd and even values of
n have opposite values of the Z2 parity mentioned after Eq.
�1�. Hence the matrix element of Stot

x between states with odd
and even n vanishes�. In addition, we have also plotted the
instantaneous gaps Gmn�t�=En�t�−Em�t� in Fig. 7. In the fer-
romagnetic region, as shown in panel �a� of Fig. 6, the tran-
sitions are mainly between the two levels, n=1 and 3. How-

ever, the overlaps have a much higher average value for n
=1 than that for n=3. This indicates that the system mostly
stays close to the ground state. Also, as can be seen from
panel �a� of Fig. 7, the relevant gaps Gmn�t� are almost con-
stant, resulting in a periodic behavior dominated by the driv-
ing frequency �=0.1J and a frequency 0.52J, which is close
to the almost static value of the gaps. Deep inside the para-
magnetic region �panel �c� of Fig. 6
, the system is found to
be in the ground state �	n=1�t��� throughout the evolution;
all other overlaps tend to zero. This is because in this phase,
as can be seen from panel �c� of Fig. 7, the instantaneous
gaps Gmn�t�=En�t�−Em�t� always remain large and prohibit
the occurrence of any transition from the ground state to the
higher levels. Thus the dynamics is again governed by a few
frequencies and has a simple periodic behavior. In contrast,
near the QCP �panel �b� of Fig. 6
 all of the levels n=1, 3,
and 5 have substantial overlaps with the instantaneous
ground state �n=7 also has a small contribution�. The over-
laps are much flatter and more evenly distributed among the
levels n=1 and 3 on an average. Further, as can be seen from
panel �b� of Fig. 7, the gaps Gmn undergo appreciable oscil-
lations, creating possibilities of Landau-Zener transitions at
multiple frequencies. Thus, quite generally, the ac dynamics
near the QCP involves multiple frequencies and is expected
to exhibit noisy behavior in the time domain.

Before ending this section, we would like to point out that
the time evolution of ��Stot

z �2�, for some specific parameter
values, may have large oscillations with an unusually long
time period and discuss the reason for its occurrence. To this
end, we present an example of this phenomenon in Fig. 8.
The figure shows oscillations with a time period of about
1100, which is much longer than the period of the oscillating
transverse field, namely, 2� /��63. This phenomenon is
well known in the context of Rabi oscillations, which can
occur when a two-state system is subjected to a periodic
potential.15 For instance, consider a Hamiltonian that is a 2

FIG. 6. The time evolution �in units of � /J� of the overlaps of
the instantaneous state 	��t�� with the time-dependent eigenstates
	n�t�� of the total Hamiltonian H�t� �n=1 denotes the ground state,
n=2 the first excited state, and so on�. Results are shown for n=1,
3, 5, and 7.

FIG. 7. Plot of the relevant gaps Gmn�t�=En�t�−Em�t� between
different eigenvalues of H�t� as a function of time �in units of � /J�
for different values of �d. In �a�, in the ferromagnetic phase ��d

=0.1�, the gaps are almost static and equal at all times. In �b�, near
criticality ��d=0.55�, the gaps vary considerably with time and at-
tain quite low stationary values. In �c�, in the paramagnetic phase
��d=1.0�, the gaps vary considerably with time, but are always
much larger than their counterparts in the other two phases.

FIG. 8. Plot of the DFT power spectrum in panel �a� and the
time evolution in panel �b� of the EOC ���t� 	 �Stot

z �2 	��t�� /S2 for
S=50, �d=0.55, �a=0.055, and �=0.1. Note the oscillations with a
very large time period of about 1100 in panel �b� and the corre-
sponding peak at a frequency of about 0.006 in panel �a�.
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�2 matrix of the form ��0 /2��z+ �b cos �t��x. If b is small
and we start initially in the ground state of the term ��0 /2��z

�the energy gap corresponding to this term is given by �0�,
we find that if � is to �0, the system periodically makes
transitions to the excited state and returns to the ground state.
The time period of this oscillation is given by
2� /���−�0�2+b2; this is much longer than 2� /� if � /�0 is
close to 1 and b��. The amplitude of the oscillations is
maximum for �=�0. �Similar long-time period oscillations
can occur if � /�0 is close to 1/2 ,1 /3 , . . .�. Returning to our
problem, for the parameters given in Fig. 8, we find that the
system is quite well described if we only keep the first three
eigenstates corresponding to n=1,3 ,5 of the time-
independent part of the Hamiltonian in Eq. �32�. If we trun-
cate the Hamiltonian to only these three states and study the
ac dynamics starting initially with the first eigenstate, we
find that the probabilities of being in the three states have
large and long-time period oscillations as shown in Fig. 9.
We thus have a three-state version of Rabi oscillations. �One
of the parameters used in Fig. 8 ��a� has been chosen to be
different compared to the earlier calculations. This is because
the presence of Rabi oscillations is sensitively dependent on
the parameter values; it was necessary to change the value of
�a, keeping the other parameters fixed, to show a striking
example of such oscillations.
 Note that although the prob-
ability of being in the state n=5 is small at all times, as
shown in Fig. 9, it is necessary to keep this state in order to
obtain the long-time oscillations. We have checked numeri-
cally that if we truncate the Hamiltonian to only the states
n=1 and 3, we do not get these large and long-time oscilla-
tions. We also note that the driving frequency �=0.1 is close
to one-fourth of the gap between the states n=1 and 3,
namely, G13=0.408. The Rabi oscillations are found to peak
at ��0.101 and to disappear if � is changed from that value
by just 4%. Therefore it is expected that the low-frequency
peaks in the DFT spectrum are not generic features at all
drive frequencies, but will be seen only for special values of
the drive frequencies.

B. Classical analysis

The classical analysis of the ac dynamics of the model
involves a numerical solution of Eq. �25� with � f →�d
+�a cos��t�. As in the case of the quantum analysis, we are
going to restrict our analysis to an intermediate drive fre-
quency �=0.1J and �d��a. Note that we are interested in
the classical limit of the quantum dynamics, for which the
system is in its ground state at t=0. Thus we choose the
initial condition for the classical dynamics such that the sys-
tem is close to its fixed point. These fixed points, as can be
easily seen from Eq. �25�, are given by �� f ,
 f�= �� /2 ,0�
when the system is in the paramagnetic phase with �d�0.5,
and by �� f ,
 f�= �sin−1�2�d� ,0
 for the ferromagnetic phase
where �d�0.5. Note that the fixed-point structure of Eq.
�25� changes at �d /J=0.5, which is also the location of the
QCP. Therefore, we choose the initial condition �� f −� ,�� for
small �=0.1. We have checked that smaller values of � do
not lead to qualitative change in the essential features of the
dynamics. Also, in the rest of this section, we shall maintain
the same ratio �a /�d=0.18 as in the previous section.

Before carrying out the numerical simulations, it is useful
to obtain a qualitative understanding of the dynamics of the
system in the presence of the driving field. Since the ampli-
tude of the drive field �a is small and the motion starts from
near the classical fixed point, we expect that a small-
amplitude analysis for the motion of � and 
 would give us
a qualitative understanding of the dynamics for both the
paramagnetic and ferromagnetic phases. Of course, this ex-
pectation is not met near the quantum critical point, and we
are going to discuss this point in more detail subsequently.

Let us first consider the paramagnetic phase where �d
�J /2 and the fixed point is given by �� f ,
 f�= �� /2 ,0�. Lin-
earizing Eqs. �25� about this fixed point, one gets a natural
frequency of �n=�� f�� f −J /2� for small-amplitude motion.
Note that this analysis is only approximate since for our case
� f itself varies in time. But for a small-drive amplitude and
frequency, where �d−�a=0.8J	� f 	�d+�a=1.2J, we ex-
pect the main contribution to the periodic motion of � to
come from approximately the range 0.49J	�n	0.91J.
Thus the power spectrum for the motion of �Stot

z �2�t� /S2

=cos2 �, which has half the time period as cos � in the para-
magnetic phase �since cos � runs over both positive and
negative values�, is expected to have a significant contribu-
tion from frequencies in the range 0.98J	�n	1.8J and
from the drive frequency �=0.1J. This expectation can be
verified from panel �c� of Fig. 10. The exact location of all
the frequencies, however, cannot be easily deduced from this
qualitative argument. Next, let us consider the ferromagnetic
phase at �d=0.1. Here the fixed point is given by �� f ,
 f�
= �sin−1�2� f /J� ,0
. A similar linearization about the fixed
point leads to a natural frequency of �n=��J2 /4�−� f

2

�0.5J. Note that in this case, owing to the small ratio of
�d /J, the variation of � f does not affect �n, at least to lead-
ing order in � f /J. Thus we expect that the contribution to the
DFT would arise from the drive frequency �=0.1J and the
natural frequency �n=0.5J. This explains the double-peaked
structure of the DFT spectrum in panel �a� of Fig. 10.

Finally, let us consider the classical equations at �d
=0.55J. Here the fixed point at �� /2 ,0�, which corresponds

FIG. 9. �Color online� Time evolution of the probabilities of
being in different states when the model considered in Fig. 8 is
truncated to the three states n=1, 3, and 5.
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to the energy minima of H �Eq. �2�
, is quite shallow and
even a small transverse drive field is enough to drive the
system far away from the fixed point. Therefore we expect
the system to traverse a large part of the phase space during
its motion even if �a is small. Consequently, the DFT spec-
trum of cos2 � is expected to have contributions from a wide
range of frequencies, which translates to noisy behavior in
the time domain. This expectation is verified by numerical
computation as can be seen from panel �b� of Fig. 10. Note
that this noisy nature of the ac dynamics of the EOC occurs
due to the presence of a shallow energy minima; this in turn
is the consequence of the presence of a QCP at �d /J=0.5
where the fixed-point structure of Eq. �25� changes. There-
fore we expect that such a feature will be generic for QCPs.

V. DISCUSSION

The results obtained in this work can be relevant for cer-
tain experimental systems. One possible class of systems
where these results may be applicable are ones with long-
range dipole-dipole interactions such as KH2PO4 or
Dy�C2H5SO4�39H2O,2, which exhibit order-disorder transi-
tions driven by tunneling fields. However, the effect of the
finite range of the interactions on the dynamics needs to be

studied carefully before quantitative predictions can be
made. We have left this as a subject of future study.

The other class of systems where our results might be
applicable are two-component BECs, where the interspecies
interaction �U� is strong compared to the intraspecies inter-
action �U��. Such BECs, in the presence of an external rf
drive and a fixed chemical potential, can be described by an
effective Hamiltonian16

Heff = �Sz
2 + � �Sx, �33�

where the spin operator Sz= �b↑
†b↑−b↓

†b↓� /2 and Sx= �b↑
†b↓

†

+b↓
†b↑

†� /2 are the z and x components of the effective spin in
terms of the boson operators b↑,↓, ↑, and ↓ determines the
species or pseudospin index, �= �U−U�� is the coefficient of
the Sz

2 term, and � is the frequency of the external rf field.
Note that U� can be made arbitrarily strong compared to U
by tuning the system near a Feshbach resonance as discussed
for the 41K-87Rb system in Ref. 18. Alternatively, such a
Hamiltonian �Eq. �33�
 with ��0 can also be realized fol-
lowing the method discussed in Refs. 16 and 17. The quench
dynamics described in our work can then be realized by a
sudden change of the frequency of the rf pulse. A more com-
plicated rf pulse shape can also lead to an effective sinu-
soidal time-dependent � whereby the ac dynamics can also
be realized. We also note here there is a vast body of litera-
ture on the model described by Eq. �33�.16,19 Most of these
works study the entanglement property of the model for �
�0. In this regime, the model �antiferromagnetic infinite-
range Ising model in a transverse field� does not have a
second-order quantum-phase transition and has completely
different properties than the ferromagnetic model that we
study here.

In conclusion, we have studied the quench and ac dynam-
ics of the EOC of an infinite-range ferromagnetic Ising
model, both classically and quantum mechanically. We have
shown that both the quench and the ac dynamics reflect the
presence of the quantum critical point of the model. In par-
ticular, the ac dynamics of the EOC, for a small amplitude
and moderate frequency-transverse ac field, exhibits a noisy
behavior near the quantum critical point, which is qualita-
tively distinct from its periodic behavior away from the criti-
cal point in either the paramagnetic or the ferromagnetic
phase. As we have shown, this noisy behavior of the ac dy-
namics of the EOC near the QCP follows from quite general
arguments, and therefore we expect this behavior to qualita-
tively hold for more realistic models exhibiting QCP. Finally,
we would like to point out that the results presented here
may be relevant for Ising systems with long-range dipolar
interactions and two-component BECs.
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FIG. 10. Plot of the DFT power spectrum of the classical EOC
cos2 � for different values of �d, obtained by solving the classical
equations of motion in Eq. �25�. Panels �a� and �c� show the DFTs
in the ferromagnetic and paramagnetic phases, respectively; panel
�b� shows the same for the critical region. Note that the involvement
of many frequencies in the dynamics near the critical point survives
even in the classical limit.
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